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Distributed applications often replicate data to improve availability and fault tolerance. But, the use of replication
leads to a significantly more complex and onerous programming model. To ensure a sensible measure of consistency
among different replicas of an object, applications are typically structured so that the operations applied to a replicated
object on one node are subsequently communicated to other nodes where they can be re-applied locally. Oftentimes,
the degree of restructuring and care necessary to transform a sequential or shared-memory concurrent application to a
meaningful (replicated) distributed one can be substantial.

In this paper, we present a new interpretation of replicated types that overcome these concerns. Our declarative
programming model called VML treats replication as a compositional form of versioning, in which consistency is enforced
through programmer-supplied merge functions. Distributed state is now viewed in terms of a tree of immutable object
versions, with merge actions used explicitly by the application or implicitly by the underlying runtime system to
periodically reconcile local versions to yield a consistent global state. Our model frees the programmer from having
to think of low-level operational notions related to distribution and replication, and therefore does not entail any
restructuring of application logic to enable distributed programming.

We show how any ML datatype can be enriched to support mergeability, formalize a concurrency semantics based
on such types, and describe an instantiation of OCaml equipped with these features. Our implementation is integrated
with a content-addressable distributed storage layer that allows any OCaml program to be easily transformed into a
composable, efficient, and highly-available distributed application.
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1 INTRODUCTION

Real-world distributed programs are challenging to write and maintain because they often conflate two distinct
mechanisms. The first concerns the expression of application logic - how do we define computations that are
robust in the presence of distributed communication among concurrently executing threads of control? The
second deals with system concerns - how do we express notions of visibility, replication, and consistency when
the nodes participating in such computations may be geographically distributed and the networks that connect
them unreliable? To simplify reasoning in such complicated environments, programming models often make
strong assumptions on the guarantees provided by an implementation (such as serializability (Papadimitriou
1979) or strong consistency (Corbett et al. 2012; Dragojevi¢ et al. 2015)) that may inadvertently mask,
restrict, or ignore important albeit unpleasant realities (e.g., network partitions (Brewer 2000; Gilbert and
Lynch 2002)). When unwarranted assumptions are made, program behavior is often difficult to predict
and verify. On the other hand, when these features are explicitly exposed to the programmer, e.g., by
requiring that applications be written in terms of specialized distributed data structures (Burckhardt et al.
2012, 2014; Shapiro et al. 2011a) or control primitives (Alvaro et al. 2011a), simplicity, composability, and
ease-of-reasoning can suffer.

In this paper, we consider how declarative abstractions can be used to overcome this tension to provide
the best of both worlds: functional programs whose logical structure can be seamlessly transplanted to a
distributed setting, while nonetheless being resilient to system realities such as network failure and latency. Our
key insight is the development of a principled methodology that allows us to transform low-level operational
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details such as replication and consistency into high-level compositional abstractions over language-level data
types.

To illustrate how the kinds of problems described above manifest in practice, consider how we might
write a simple monotonic counter library (see Fig. 1a). A Counter supports two (update) operations - add
and mult - that lets a non-negative integer value be added or multiplied to the counter, resp. Observe
that the library is written in an idiomatic functional style, with no special reasoning principles needed to
realize desired functionality. As long as applications use the library on a single machine, this implementation
behaves as expected. However, if the library is used in the context of a more sophisticated application, say
one whose computation is distributed among a collection of machines, its behavior can become significantly
harder to understand. In particular, a distributed implementation might wish to replicate the counter
state on each node to improve response time or fault tolerance. Unfortunately, adding replication doesn’t
come for free. Attempting to update every replicated copy atomically is problematic in the absence of
sophisticated transaction support, which impose significant performance penalties. But, without such
heavyweight mechanisms, applying an Add operation on one node may not be instantaneously witnessed on
another, which may be in the process of simultaneously attempting to perform its own Add or Mult action.
While synchronizing the activities of all nodes to ensure at most one such operation is performed at a time
is impractical, designating a single node to hold the counter state eschewing replication altogether (as in a
typical client-server configuration), is also an undesirable solution, given the sensitivity of such architectures
to network partitions and server failures, and the negative performance impact it incurs in geo-distributed
environments (Sovran et al. 2011). Removing coordination altogether by simply replicating counter state
without having any supporting consistency protocol is an equally infeasible approach.

A method often adopted to address these concerns is to re-define a data type’s operations to return effects
instead of values (Burckhardt et al. 2014; Shapiro et al. 2011a). An effect is a tag that identifies the operation
to be applied uniformly at all replicas to incorporate the effects of the original operation. Fig. 1b shows the
Counter library with operations re-defined to return effects. Observe that the Counter.add x v operation
now returns an Add x effect, which, when applied at a replica (see apply in the figure), adds x to the local
counter value. Note, however, that add and mult are not commutative operations - assuming two replicas
have the same initial counter value of 0, applying the effect of adding 3 and then multiplying 5 on one replica
yields 15, while applying the effect of first multiplying 5 and then adding 3 yields 3 on the other. Such
scenarios are possible in a distributed system because there are no coherence guarantees on the order in which
effects are received by different nodes. Thus, implementations must be carefully written to take the lack of
commutativity into account when defining how effects are applied at a replica; in the figure, multiplication is
expressed in terms of addition to avoid the kind of undesirable behavior described above.

In this implementation, all replicas will eventually contain the same counter value, assuming updates
to the counter eventually quiesces. While transmitting effects provide a low-level operational basis for
handling replicated state, the ad hoc nature of the solution confounds desirable high-level reasoning principles.
Indeed, the semantic gap between the two versions of the counter, one cognizant of replication and the other
not, breaks backward compatibility with the original state-based implementation. Just as significantly, its
non-trivial construction must be developed in different guises for every distributed data structure used by
the application. The lack of composability is yet another important downside of this approach. Consider
an application that uses two replicated counters, ¢; and co, bound by the invariant ¢y > ¢1, duly enforced
by the application when updating ¢ or ¢;. An execution may nonetheless witness anomalous states that
violate the invariant because updates to ¢; and co may be applied independently in any order on any replica.
For example, if a replica increments both counters, a read operation performed at another replica may
witness the increment to c1, but not ¢z, thus violating the invariant. The intention to atomically apply both
effects cannot be captured in the absence of external mechanisms to compose effects (such as effect-based
transactions (Sivaramakrishnan et al. 2015)). Rather than viewing a distributed computation in terms of
Add effects produced by operations, can we formulate a more declarative interpretation, directly in terms of
the counter value maintained by each node? To do so, we first observe that each replica essentially operates
over its own version of a counter. Thus, local operations on a replicated object can be thought of as yielding
new versions, collectively producing a version tree, with one branch for each replica. Every branch represents
different (immutable) versions maintained by different nodes, with the state produced by the computation



Counter:

t

add: int -> t -> t
mult: int -> t -> t
read: t -> int

t = int

add x v = v + (abs x)

mult x v = v * (abs x)

read v = v

(a) Counter library in OCaml

Counter:

t

eff

add: int -> t-> eff
mult: int -> t -> eff
apply: eff -> t -> ¢t
read: t -> int

t = int

eff = Add int

add x v = Add (abs x)

Add (v * (abs x - 1))
apply (Add x) v =

mult x v =
X + v

read v = v

(b) Counter library re-engineered for effect-based replication

performed over a counter on a node recorded along the node’s local branch for the counter. Now, to generate
a globally consistent view of a counter, we only need to define a merge operation that explains how to combine
two local versions to produce a new version that reflects both their states. This operation is defined not in
terms of replicas or other system-specific artifacts, but in terms of the semantics of the datatype itself.

Fig. 1. A replicated counter can be expressed as a sequence
of versions managed by logically-distributed concurrently ex-
ecuting threads. Local versions produced by these threads
periodically merge their state with one another. In the figure,
when the local version of Node 3, labeled 20, merges with
the local version of Node 1, whose counter state is 15 at the
time, a new counter value is produced. This value takes into
account the previous merged state (10) from which the two
versions were derived to yield a new merged state of 25. There
is no other form of synchronization or coordination among
versions except through merging. In the figure, red circles
represent counter state produced through merging, and blue
circles represent state produced by applying counter operations
on a node-local version.

Framing replication as merging leads to a counter
implementation that bears strong similarity to the
original sequential one:

Replicated_Counter =
Counter
merge lca vl v2 =
lca + (vl - lca) + (v2 - 1lca)

The role of 1ca (lowest common ancestor) here cap-
tures salient history - the state resulting from the
merge of two versions derived from the same an-
cestor state should not unwittingly duplicate the
contributions of the ancestor. This interpretation of
a replicated datatype is thus given in terms of the
evolution of a program state implicitly associated
with the different nodes that comprise a distributed
application with merge operations serving to com-
municate and reconcile different local states.

Our main innovation is thus the development of
a programming model that realizes a monadic ver-
sion control system centered around data, rather
than file, coherence. The vML (Versioned ML)
programming model comprises the vsT (Versioned
State) monad which lets programmers write and
compose concurrent computations around multiple
(implicit) versions of a mergeable datatype, an or-
dinary ML datatype additionally equipped with a
merge function responsible for deriving a consistent
global state from a collection of local versions of
that state. A computation progresses by forking
(i.e., replicating) new versions of existing versions,



CANVAS =
pixel = {r:char; g:char; b:char}

tree =

| N pixel

| B {tl_t: tree; tr_t: tree; bl_t: tree; br_t: tree}
t = {max_x:int; max_y:int; canvas:treel

loc = {x:int; y:int}

new_canvas: int -> int -> t

set_px: t -> loc -> pixel -> t

get_px: t -> loc -> pixel

merge: (* lca *)t -> (% vl #)t -> (¥ v2 )t -> t

Fig. 2. Canvas: a sample VML application

allowing synchronization-free local computation to proceed on those nodes, creating new versions along an
existing branch that represents updated local instances, and by merging branches to realize global consistency.

Our model allows ML programmers to get the benefits of achieving highly available (low-latency) distributed
computation, while continuing to enjoy the comforts of high-level reasoning and the familiarity of using
standard libraries already provided by the language. Notably, while vML makes no explicit reference to any
specific operational manifestation of a distributed system (e.g., programmers do not need to explicitly manage
replicas), we demonstrate that it can be nonetheless efficiently realized on existing real-world geo-replicated
distributed systems.

Our contributions are summarized below:

e We formally introduce the concept of a mergeable datatype to admit high-level declarative reasoning
about distributed computation and replicated state in ML programs.

e We describe VML, a programming model that extends ML to bring to bear the power and flexibility
of a version control system to the administration of replicated data. VML hides the complexity of
version control behind a monad, and exposes its functionality via a simple API that lets programmers
define and compose distributed ML computations around such data. Issues related to replication
only manifest implicitly in the definition of a merge operation that defines coherence among different
instances of (presumably) replicated state.

e We present a formalization of the VML programming model, and establish its soundess (consistency)
and progress guarantees.

e We describe an implementation of the VML library that transparently adds persistence and replication
features to a mergeable type, and which sits atop the Irmin persistent store (Irmin 2016), a content-
addressable storage library for OCaml. We also present case studies and experimental results that
justify the practical utility of our approach.

The remainder of the paper is organized as follows. We present the VML programming model informally in
the next section. Sec. 3 develops a series of examples that illustrate how merge operations can be defined and
composed for non-trivial data types. Sec. 4 defines an operational semantics, and formalizes our intuition of
a mergeable type in terms of morphisms over datatype operations. We also present soundness (consistency)
and progress guarantees enjoyed by the semantics. Sec. 5 presents an instantiation of the model suitable for
highly-available distributed environments with network partitions and failures. Experimental results and
benchmarks are given in Sec. 6. Secs. 7 and 8 describes related work and conclusions.

2 PROGRAMMING MODEL

In this section, we describe the VML programming model through the example of a collaborative drawing
application we call Canvas. Fig. 2 shows the signature of the Canvas application. Canvas represents a free-hand
drawing canvas in terms of a tree of quadrants. A quadrant is either a leaf node containing a single pixel (an r-
g-b tuple), or a tree of sub-quadrants, if the quadrant contains multiple pixels of different colors. Quadrants are



expanded into a tree structures as and when pixels are colored.
The representation is thus optimized for sparse canvases, such
as whiteboards. The application supports three simple oper-
Ica ations: creating a new canvas, setting the pixel at a specified

/ \ coordinate, and returning the pixel at a given coordinate. The
El v, vy merge function is explained below. Canvas lets multiple users

collaborate on a canvas that is conceptually shared among them.
Under a shared-memory abstraction, there would be a single

merged copy of the canvas that is updated concurrently by multiple
clients; from the perspective of any single client, the canvas
could change without any explicit intervention. VML ascribes

functional semantics to sharing by letting each client work on
its own version of the state (the tree data structure in this
example), later merging concurrent versions on-demand. Thus,
the primary artifact of the VML programming model is a ver-
sioned data structure in which different versions are managed
by different clients.

VML requires a three-way merge function to merge concurrent versions of a drawing canvas (see Fig. 4)
that includes two concurrent versions (vl and v2), and their lowest common ancestor (lca) - the version
from which the two concurrent versions evolved independently. The merge function can make use of the pixel
values of the common ancestor to merge the pixel values on both the canvases. For instance, if the color
of a pixel in v1 is white, and in v2 it is green, and its color in lca is white, then it means that only v2
modified the color. Hence the pixel is colored green in the merged canvas. On the other hand, if the pixel
is red in v1, then it means that both vi and v2 have modified the color. In such case, an appropriate
color-mixing algorithm can be used to determine the color of pixel. For instance, the pixel can be colored
yellow - an additive combination of red and green. The logic is illustrated in Fig. 3.

VML lets programmers define and compose concurrent computations around versioned data structures.
Fig. 5 shows the signature of the vST monad that implements the programming model along the lines of the
well-known State monad (Wadler 1995). The monad encapsulates a versioned functional state ( >a) and the
type (’a, ’b) t represents a monadic computation that returns a ’b result. Functions return and bind
have their usual monadic interpretation. get_current_version is like the State monad’s get; it returns
the versioned state encapsulated by the monad. To initiate a computation, we use with_init_version_do
which runs a monadic computation against a given initial version and returns the result. The fork version
operation returns a computation that forks a new concurrent version from the current version, and runs the
given monadic computation asynchronously against the forked version. sync next _version (simply called
sync ) accepts a proposal for the next version of the state; this proposal is the current local version of the
state that reflects local modifications not yet witnessed by any other concurrently executing computation.
The operation returns (via a monad) the actual next version, which becomes the current version for the rest
of the computation. This version is created by merging the proposal with a subset of concurrent versions that
have become available since the last merge or fork. Thus, sync effectively lets a computation synchronize
with concurrent computations to obtain their latest updates.

Fig. 6 demonstrates how a collaborative drawing session between Alice, Bob and Cheryl can be composed
using VML. A possible execution of the session is visualized in Fig. 7. Assume that the session starts with
Alice on a 5 x 5 blank canvas, as shown below:

Fig. 3. Merging concurrent versions (vl and v2)
of a drawing canvas. 1lca is their common ances-
tor.

C = Canvas;;

with_init_version_do (C.new_blank 5 5) alice_f

Alice starts by reading the current version of the canvas, which is blank. She then invites Bob for collaboration
by forking a new concurrent version for Bob. Bob, in turn, invites Cheryl for collaboration. All three of them
start working on the blank canvas. Alice draws a red horizontal line from (0,0) (top-left) to (4,0) (top-right)
using C.draw line.! Meanwhile, Bob draws a green vertical line from (0,0) to (0,4), and Cheryl draws a

Tts definition is not shown, but can be constructed using set_px.



color_mix pxl1l px2 : pixel =

f = Char.code

h x y = Char.chr @@ (x + y)/ 2

(r1,gl,b1) = (f pxl.r, f pxl.g, f pxl.b)

(r2,g2,b2) = (f px2.r, f px2.g, f px2.b)

(r,g,b) = (h r1 r2, h gl g2, h bl b2) {r=r; g=g; b=b}

b_of_n px = B {tl_t=N px; tr_t=N px; bl_t=N px; br_t=N px}

merge lca vl v2 =

vi=v2 vl

vi=lca v2

v2=1lca vi

(lca,vl,v2)
| (_, B _, N px2) -> merge lca vl @@ b_of_n px2
| (_, N pxl, B _) -> merge lca (b_of_n pxl) v2
| (N px, B _, B _) -> merge (b_of_n px) vl v2
| (B x, B x1, B x2) ->
tl_t’ = merge x.tl_t x1.tl_t x2.tl_t

X
tr_t’ = merge x.tr_t xl.tr_t x2.tr_t
bl_t’ = merge x.bl_t x1.bl_t x2.bl_t

x.br_t xl.br_t x2.br_t

r_t=tr_t’; bl_t=bl_t’; br_t=br_t’}

br_t’ = merge
B {tl_t=tl_t’; t
| (_, N px1, N px2) ->
(* pizels are merged by mizing colors *)

px’ = color_mix pxl px2 N px’

Fig. 4. Merging different versions of a canvas.

VST =

(’a, ’b) t
return : ’b -> (’a, ’b) t
bind : (’a, ’b) t -> (°b -> (’a, ’c) t) -> (’a, ’c) t
get_current_version: unit -> (’a, ’a) t
with_init_version_do: ’a -> (’a, ’b) t -> ’b
fork_version : (’a, ’b) t -> (’a, unit) t
sync_next_version: unit -> ’a -> (’a, ’a) t

Fig. 5. Signature of the Versioned State (VST) monad

similar line from (4,0) to (4,4). All three of them call sync with their respective proposals (C{j). While any
partial ordering of concurrent syncs is valid, we consider a linear order where Cheryl’s sync happens first,
followed by Bob’s and then Alice’s. Cheryl’s sync does not find any concurrent versions, hence installs the
proposed version (C{)) as the next version on Cheryl’s branch. Bob’s sync finds Cheryl’s C{ as a concurrent
version, and merges it with its proposal to produce the next version C7, which is then installed on Bob’s
branch. The lowest common ancestor (LCA) for this merge is the initial version (Cp), and the two concurrent
versions are Bob’s Cj and Cheryl’s Cjj. Next, Alice’s sync finds Cheryl’s C{, and Bob’s C; as concurrent
versions, and merges them successively with Alice’s proposal. For the first merge, the two concurrent versions
are Alice’s C) and Cheryl’s C{, and the LCA is the initial version (Cp). The result of this merge is installed
as the next version (V1) on Alice’s branch. For the next merge, the two concurrent versions are Alice’s V3



alice_f C.t unit t =
t >>= 0o ->
get O © bob_f : C.t unit t =
fork bob_f >>= O ->
. get () >>= cO0 -> cheryl_f£f C.t unit t
cO0’ = C.draw_line cO
fork cheryl_f >>= get () >>= c0 ->
{x=0;y=0} .
{x=4 0} O -> c0’ = C.draw_line cO
x=4;y=
y~ c0’ = C.draw_line cO {x=4;y=0}
sync () “v:c0’ >>=
1 s {x=0;y=0} {x=4;y=0}
cl -
=0;y=4 “vic0’ >>=
cl’” = C.draw_line c1 x y~ ¥ syne O “vie
(x=0:y=4} sync () “v:c0’ >>= cl -> sync () >>=
. 4:Y o cl -> sync () >>= c2 -> return ()
x=4;y=
y~ c2 -> return ()
sync () “v:icl’ >>=
c2 -> return ()

Fig. 6. Canvas: A collaborative drawing session between Alice, Bob, and Cheryl

0
EnnnN CO ;.
.Co' .CO' CA'
0

] /
V 1
1
o ¥C

Bob

Cheryl

Fig. 7. Canvas: Collaborative drawing session visualized

and Bob’s C; and the LCA is Cheryl’s C}2. The result (C;) becomes the next version on Alice’s branch,
and the return value of Alice’s sync. Next, Alice draws a red horizontal line from (0,4) to (4,4), proposes
this canvas (c1’ in the first column of Fig. 6) as the next version to sync. Since there are no concurrent
versions, C becomes her next version. The subsequent sync operations from Bob and Cheryl propose no
new versions, hence simply obtain Alice’s C] as next versions.

3 MERGEABLE TYPES

The Canvas example demonstrates VML’s utility in building concurrent applications with conceptual state
sharing, which makes them suitable for transparent deployment in a distributed setting. The model allows
concurrent computations to be composed around any mergeable type. We now present a series of examples
of mergeable types built either by defining merge functions for ML data types, or by composing existing
mergeable types.

2Thus, the LCA of versions on two branches can lie outside both the branches.



flatten = function

| Leaf x -> x

MRope = | Node (1,_,r) -> A.concat (flatten 1) (flatten r)
A:
t merge old 1 r =
concat: t -> t -> t 1l =r 1 old =1 r
split: t -> txt old = r 1 merge_rec old 1 r
merge: t -> t -> t -> t
merge_rec old 1 r = (old,1,r)
t = | Leaf _, _, _ | _, Leaf _, _
| Leaf A.t | _, _, Leaf _ ->
| Node t * int * t rope_of @@ A.merge (flatten old)
. (flatten 1) (flatten r)
(¥ Standard rope functions *) | Node (o0l1dl,_,o0ldr), Node (11,_,1r),
merge: t -> t -> t -> t Node (rl,_,rr) ->
newl = merge oldl 11 rl
newr = merge oldr 1lr rr
(a) Signature of Mergeable Ropes Node (newl, create_index newl, newr)
(b) Mergeable rope implementation
Fig. 8. Signature and implementation for mergeable ropes
3.1 Ropes

A rope is a data structure that facilitates efficient implementations of operations such as concatenation,
splitting, lookup and insertion at a random position etc., for a list of values. The values are usually characters,
their lists being strings. A rope is essentially a binary tree, whose leaf nodes store substrings of a larger string
such that their left-to-right (in-order) concatenation yields the larger string. The idea is to facilitate efficient
lookups and insertions at random positions in the string by storing position indexes in the internal nodes of
the tree.

Fig. 8a shows a rope interface in OCaml. The type of the list of values is left abstract (A.t); it can
be instantiated with any module that supports concat and split operations. The interface shown in
Fig. 8a is that of a mergeable rope (MRope ), whose merge implementation is shown in Fig. 8b. The function
returns one of its versions (1 or r), if the other one is the same as the common ancestor. Otherwise, it calls
merge_rec, which recursively compares the structures of merging ropes, and their common ancestor. The
function recurses until one of the ropes differs from the other two, or all of them are leaf nodes, at which
point it relies on the (abstract) list merge function (A.merge) to merge the lists represented by the ropes.
merge_rec uses auxiliary functions, mk_rope and create_index (definitions not shown), respectively, to
construct a rope given a list (A.t ), and to compute the index at a node given its left sub-tree.

A notable feature of the mergeable rope implementation, which is also a characteristic of mergeable types
in general, is compositionality. A rope is a polymorphic mergeable data type that composes mergeability over
its polymorphic constituents. Compositionality is concretized by the MRope signature, which requires the
type of items in the list (A.t) to also be mergeable (A.merge).

3.2 Lists

As an abstract data type, 1ist supports three operations: insert x i 1, to insert an element x at position
i in the list 1, delete i 1, to delete the element at i’th position in 1, and subst i x 1, to substitute
the element at the i’th position with x in 1. Lists of mergeable items are mergeable if they preserve the
following properties:

e Elements present in both the merging lists will be present in the final list. No element is deleted
unless it is deleted in at least one list.

e An element deleted in one list will not reappear in the merged list (unlike, for example, Amazon’s
replicated shopping cart (DeCandia et al. 2007)).



MList =
A:
t
merge: t -> t -> t -> t

t = A.t list

(¥ All the standard list functions *)

merge: t -> t -> t -> t (* and the merge function *)
(¥ The following are ezposed only for this presentation *)
edit =

A.t * int

int

int * A.t * A.t
edit_seq: t -> t -> edit 1list option

n o H

op_transform: edit list -> edit list -> edit 1list

Fig. 9. Signature of Mergeable Lists

e The order of elements is retained. That is, if = occurs before y in one of the lists, and if both elements
are present in the merged list, then x occurs before y in the merged list.

e If an element y is substituted for an element x in one list, then y is also substituted for x in the
merged list (i.e., z is absent and y is present), unless x is deleted or substituted in the other list. In
the former case, deletion wins, and neither x nor y occur in the merged list. In the latter case, if z is
substituted by a different element z in the other list, then the merged list substitutes by a merge of
y and z, defined as per the merge semantics of the list element type.

The merge operation for lists is composed of two separate functions, edit_seq and op_transform. Both
these functions have been implemented in less than 50 lines of OCaml. The functions are described below.

e edit_seq takes a pair of lists, v and v', and computes the shortest sequence of list operations that
need to be applied on v to obtain v’. Such a sequence is called an edit sequence. The length of
the sequence corresponds to the standard notion of the edit distance between the two lists, which
can be computed in polynomial time (Wagner and Fischer 1974). edit_seq modifies one such
algorithm to also compute the edit sequence (an edit list). The signature specified in Fig. 9
represents edits using the type edit. Constructors I, D, and S stand for insert, delete, and
subst , respectively.> The subst constructor also carries the A.t element that was substituted. The
element serves as the lca argument to A.merge in case of concurrent conflicting substitutions.
Fig. 10 illustrates edit sequences for a sample list. The sequence [I(c,0); S(3,c,s)] maps the list
[a;b;c] to [c;a;b;s] because subst 3 s (insert c 0 [a;b;c]) = [c;a;b;s].

e op_transform takes a pair of edit sequences, s; and s, that map a list v to two different lists, v; and
vg (e.g., Fig. 10), and transforms s; to s} such that s} has the same effect on vy as s; had on v. For
instance, in Fig. 10, let s; be the edit sequence [D(1); S(1,c,d)], which maps the list [a;b;c]
(v) to [a;d] (v1). The D edit deletes the first element of v. However, if s; is to be applied on the list
[c;a;b;s] (v2), which has a new element at position 0, the D edit must delete the second element
from wvo, if it were to have the same effect as it did on v. We say D(1) in s; has to be transformed
w.r.t the sequence s = [I(c,0);8(3,¢c,s)]. The function op_transform computes such operational
transformations for an edit sequence s; w.r.t another edit sequence so. A notable transformation
rule is for a substitution w.r.t another substitution at the same position. Since the substituting items
could be different, the function relies on the item merge function (A.merge) to merge them into a

3 Note that I, D and S are not effects; no list function generates them, and they are not exchanged between concurrent threads.
They are simply tags used by the list merge operation for convenience. Indeed, to better appreciate the virtues of mergeable
types, we encourage the reader to think about how one might implement a replicated list with this functionality using an explicit
effect representation as described in Sec. 1.



alice_f : L.t unit t = .
bob_f : L.t unit t =

fork bob_f >>= () -> (* Invite Bob *)
get () >>= co ->
get () >>= cO -> . .
c0’ = L.insert ("candy",Qty.of_int 1) 1 @@
qty = L.assoc "eggs" .
L.delete @@ L.lookup "milk"
c0’ = L.subst 1 ("eggs",qty+1) cO

sync “v:ic0’ >>=
sync () “v:c0’ >>= ¥ O v
cl -> return ()
cl -> return ()

Fig. 11. Bob and Alice collaboratively build a grocery shopping list

single item. For instance, in Fig. 10, there are simultaneous substitutions to the item c in s; and sg;
while s; substitutes it with d, sy does it with s. The merged list therefore substitutes ¢ with the
merge of d and s, defined as per the merge semantics of A.t.

The MList.merge can now be defined as a function that first computes edit sequences, s; and sq, for the
two concurrent lists, v; and ve w.r.t their common ancestor v, transforms one of them (say, s1) w.r.t s2 to
obtain s/, and finally applies (the operations defined by) s} to vy to obtain the merged list.

3.3 Lists of Integers and Quantities

A mergeable list of integers can be composed using mergeable lists and mergeable integers. Concretely, it is a
composition of MList and Int types (i.e., MList(Int) ), where Int.merge is the same as Counter.merge
described in the introduction. An alternative instantiation of MList is for a quantity type (Qty) that
supports add and subtract operations, and defines its merge operation a little differently:

merge lca vl v2 = vl = lca v2

( v2 = lca vi max vl v2)

MList (Qty) , like MList(Int), is a list of integers, and has the same semantics under a sequential execution.
Their differences however manifest under a concurrent execution, where both adopt different methods to
reconcile concurrent updates.

If efficient insertions and lookups (by position) are de-

I(c,0); S(3,c,s) sired over a large list of integers, while admitting con-
[a;b;c] [c;a;b;s] current updates, we require a mergeable rope of integers,
which can be obtained by simply composing MList (Int)

D(1); D(2); with MRope (i.e., MRope(MList (Int)) ).

S(1,c,d)| merge(c,d,s) =f | s(2,c,)
3.4 Shopping List

[a;d] [c;a:f] A non-trivial demonstration illustrating the compositional

I(c,0); S(2,c,f) power of mergeable types is a shopping list application
that allows its users to collaboratively build a shopping
list (listing items in the decreasing order of their priority),
by adding new items with a specified quantity, deleting existing items, and increasing or decreasing their
quantity. An item (Item.t ) is represented as a tuple of its name (a string) and the quantity (A Qty.t). The
merge function for Item.t merges the quantities of items (using Qty.merge ) having the same names. Items
with different names are considered distinct. A shopping list is a mergeable list of items, i.e., MList (Item)
(although a grocery shopping list may not be large enough to justify using ropes, MRope(MList (Item))
is certainly allowed). MList(Item).merge automatically lifts the merge semantics for items to a merge
semantics for lists of items. Fig. 12 illustrates its behavior. Here, two users, Alice and Bob, concurrently edit
a shopping list whose initial contents are milk and eggs. While both simultaneously update the quantity of
eggs, Bob also removes milk and inserts candy. Fig. 11 shows the VML code for two concurrent sessions. The
merged shopping list contains eggs and candy, where the quantity of eggs is obtained by merging Alice’s
and Bob’s quantity as per the definition of Qty.merge.

Fig. 10. Lists of mergeable values are mergeable.
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The examples described in this section make certain assumptions
about the concurrency model and the underlying system, such as
the existence of a single lowest common ancestor (LCA) for any
pair of versions, the ability to access a previous version on any
branch, and mergeability of any two concurrent versions. Enforcing
these guarantees in a fully decentralized distributed setting requires
addressing non-trivial theoretical challenges. These, and other details
that contribute to the practicality of our model, such as containing
the complexity of merges, are discussed in subsequent sections.

[C'milk", 1);
("eggs", 2)]

Fig. 12. Merging concurrent shopping lists
4 FORMALIZATION

4.1 Operational Semantics

We formalize our ideas in the context of a lambda calculus ()

shown in Fig. 13. Expressions of A, are variables, constants, and

VML primitives composed using the lambda combinator. For brevity,

we use short names for VML primitives: run for with_init_version_do, and fork for fork_version.
To simplify the technical development, VML’s sync_next_version operation is broken down into two
primitives - push and pull, which can be composed to get the desired effect of the original: sync x =
(Ay.pull) (push x). The semantics of get_current_version is subsumed by pull, hence elided. Values
(v) are constants and lambda abstractions. A program (p) is a parallel composition of threads, where each
thread is an expression (s) indexed by the corresponding thread identifier ().

Fig. 13 also shows the syntax of branches, which are artifacts of evaluation and only appear during run-time.
A branch is a non-empty sequence of tagged values, where the tag captures the abstract run-time operation
that led to the creation of the value. It is implicitly assumed that each value added to a branch is uniquely
identifiable, and hence no two values on a branch are equal. The uniqueness assumption is later extended to
a collection of branches that constitute a branching structure. A real implementation meets this assumption
by versioning values across the branches. Thus, in reality, branches contain versions which denote values.
To simplify the presentation, the semantics, does not make this distinction, and uses values and versions
interchangeably.

The small-step operational semantics of ), is defined via a reduction relation (—) that relates program
states. A program state (p; H) consists of a program p and a branch history H that maps thread identifiers
to corresponding branches. Each thread is associated with a branch during evaluation. Evaluation contexts
have been defined separately for expressions (F) and programs (P), with the latter subsuming the former.

FE is defined to evaluate the first argument of a run expression to a value that constitutes an initial version
(recall that run models VST’s with_init_version_do). A program evaluation context non-deterministically
picks an extant thread to evaluate. The administrative rule that relates transitions of holes to transitions
of expressions and programs is straightforward, and hence elided. The remaining core reduction rules are
presented in Fig. 13. For brevity, we write H(t — (v, f)) to denote the proposition that H maps t to (v, f).
The notation H[t — (v, f)] denotes the extension of H with the binding ¢ — (v, f), as usual.

Reduction rules let expression evaluation take a step by rewriting the expression and suitably updating the
branch history (H). E-APP is the standard beta reduction rule. The E-RUN rule is applicable only when H
is empty, i.e., when no prior branching structure exists, and commences a distributed computation with a
corresponding version tree. The rule rewrites the run v s expression to s, while creating a new branching
structure with two branches: a top branch that has just the initial version (tagged with INIT ), and a branch
for the current thread (t) forked-off from the top branch. The first version on the current branch (H(t))
denotes the same value (v) as the initial version on the top branch, although versions themselves are deemed
distinct. The new version is tagged with a FORK tag that keeps the record of its origin, namely the fork
operation and the branch from which the current branch is forked. The E-FORK rule forks a new thread
with a fresh id (¢') and adds it to the thread pool. The corresponding branch (H(¢')) is forked from the
parent thread’s branch (H(t)). The semantics of branch forking is the same as described above. The fork
expression in the parent thread evaluates to (). The E-PUSH rule creates a new version on the current
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Syntax

t € Thread Ids x,y € Variables ce{()}UN

v € Values n= ¢ | Ax.s

s € Expressions == v | ss | run ss | fork s | pull | push s
p € Programs = s | pllp

f € Tags = INIT | FORK b | PUSH | MERGE b

b € Branches = (v, )] | (v,f) b

Artifacts of Evaluation

E € Eval.Contexts(s) := e | es | ve | run e s
P € Eval. Contexts(p) == E; | o||p | plle

H € Branch Histories u= ¢+ b

lca € LCAfunction = bxb—w

Reduction Relation ‘p; H—1yp'; H

(\z.s) v)g; H —  ([v/z]s); H [E-APP]

(run v s)y; — 8¢ -[tT — [(v, INIT)]][t — [(v, FORK [(v, INIT)])]] [E-RUN]

(fork 8); H(t v (v,2) 2 b) —>  (O¢llser; H[t' — [(v, FORK H(t))]] where t' ¢ dom(H) [E-FORK]

(push v)y; H —  (O¢; Ht — (v, PUSH) :: H(t)] [E-PusH]

(pull)y; H(t— (v,-) im) — vy H [E-PuLL]
[E-PULL-WAIT]

t#£t HFV ~mv vV Av vy, = merge(lca(H(t), H(t)),v,v)
(pull); H(t = (v, f) im)(t' — (v',2) =) — (pull)y; H[t = (v, MERGE H(t)) :: (v, f) =2 m]

Fig. 13. vML: Syntax and Operational Semantics

branch (H(t)) using the pushed value (v). Although our semantics does not directly expose heap-allocated
values, the intention is that v is a replicated object, manipulated on the local heap that, after push, now
becomes subject to merging and coordination with other replicas.

The semantics non-deterministically chooses E-PULL or E-PULL-WAIT rules to reduce a pull expression.
The E-PULL rule reduces pull to (), and returns the latest version on the current branch. The E-PULL-
WAIT rule can be thought of as a stutter step; it doesn’t reduce pull, but updates the branching structure
by merging (the latest version of) a concurrent branch (H(¢')) into (the latest version of) the current branch
(H(t)), and extending the current branch with the merged version (v,,). The versions are merged only if
they are safely mergeable (denoted H b v’ ~»,, v) - a notion that we will explain shorty. The new version is
tagged with a MERGE tag that, like a FORK tag, records its origin. The rule assumes a function lca that
computes the lowest common ancestor (LCA) for the latest versions on the given pair of branches. The formal
definition of LCA is given below. The E-PULL-WAIT and E-PULL rules thus let a thread synchronize with
other distributed threads manipulating versions of replicas in multiple steps before returning the result of the
pull. Since sync is a composition of push and pull, its behavior can be explained thus: sync pushes the
given value onto the current (local) branch, merges a (possibly empty) subset of concurrent branches into the
local branch, and returns the result. (The operation is not guaranteed to synchronize with all concurrent
branches because not all such branches may be available, because of e.g., network partitions.)

To define LCA, we formalize the intuitive notation of the ancestor relationship between versions of a legal
branching history (i.e., a branching history generated by the rules in Fig. 13):

12
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(a) When a thread pushes a new version, it is presumably (b) Versions created by the merge operation are syntactic
a semantic successor of the version it last pulled into successors of merged versions, but need not necessarily be
the heap. semantic successors.

Fig. 14. New versions are created from existing versions either through push or merge.

Definition 4.1 (Ancestor). Version v is a ancestor of version vy under a history H (written H F v < vg)
if and only if one of the following is true:
There exists a branch b in H (i.e., 3(t € dom(H)). H(t) = b) in which vy immediately succeeds vy,
There exists a branch b in H that contains (ve, FORK (v1, f1) :: b1), for some f; and by,
There exists a branch b in H that contains (ve, MERGE (v1, f1) :: b1), for some f; and by,
v1 = vg, Or vy is transitively an ancestor of vo, ie., Jv. H - vy v A HF v=v

The ancestor relation is therefore a partial order with a greatest lower bound (the initial version). Thus,
for any two versions in a legal history, there exists at least one common ancestor. The ancestor relationship
among all common ancestors lets us define the notion of a lowest common ancestor (LCA):

Definition 4.2 (Lowest Common Ancestor). Version v is said to be a common ancestor of versions vy
and vo under a history H if and only if H F v < vy and H F v < vy. It is said to be the lowest common
ancestor (LCA) of v; and vy, iff there does not exist a v’ such that H F v/ < vy and H F v' < vy and
HEFo=<v.

The function lca used in the premise of E-PULL-WAIT computes the LCA of two branches, and assumes
it to be unique. But, observe that the definition of LCA doesn’t guarantee its uniqueness; it has to be
enforced explicitly. The semantics enforces the uniqueness of LCA by constraining the branching structure
via the E-PULL-WAIT rule. The rule merges version v’ into version v only if they are safely mergeable
(H + v~ v), ie., they have a single LCA, and merging both versions does not lead to a case where a
branch (i.e., its latest version) has multiple LCAs with remaining branches, and hence gets stuck. Such
nuances of LCA, and the guarantees provided by the system notwithstanding these nuances, are discussed in
Sec. 4.3.

4.2 Mergeable Data Type

We now formally define a mergeable type. A functional data type library is a tuple consisting of a type (),
and a collection of functions (f, g, etc.) of type ¢ — ¢ that are primitive morphisms. A morphism (P, @,
etc.) is either a primitive morphism, or an associative composition of morphisms (P o @ o R). An object B : ¢
is called a semantic successor of A :t (conversely, A is called a semantic ancestor of B) if and only if there
exists a morphism P such that P(A4) = B.

The aim of a three-way merge function over a type t is to merge a pair of semantic successors, B : ¢t and
C : t, of an object A : t, into another object D : ¢ such that the relationship between the semantic successors
and D satisfies certain conditions. These conditions can be understood by observing the E-PuLL-WAIT
rule of Fig. 13, which applies the merge function to a pair of concurrent versions (v; and ve) and their
lowest common ancestor (v). Thus, the only relationship that exists between v and vy, and v and v is the
syntactic ancestor relationship that follows from the computation’s branching structure. The merge function,
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as described above, however assumes that concurrent versions are semantic successors of their LCA. It is
therefore essential to maintain coherence between the syntactic and semantic ancestor relations.

The ways in which syntactic ancestor relationships are created among versions is captured in Fig. 14.
Whenever an object is pushed onto the branch, an ancestor relationship is created between the previous
version v, and the newly created version vy (Fig. 14a). However, since vy is pushed by the thread after
reading v; into the heap, it is reasonable to assume that v is a result of applying a morphism P to vy (i.e.,
3P. vo = P(v1)). Hence, vy is a semantic ancestor of vy. Fig. 14b captures another way of establishing
an ancestor relationship, namely by merging branches. Version vy, on branch by is merged into v1; on by
to create v12 on by. Versions vy and vs; are now syntactic ancestors of v1o, but for them to be semantic
ancestors, the merge function has to enforce the relationship explicitly. In other words, the result of merging
a pair of semantic successors, B and C, of an A, has to be an object D that is a semantic successor of both
B and C. We now formalize this intuition to define a mergeable type.

Definition 4.3 (Mergeable Type). A type t is said to be mergeable, if and only if there exists a function
M of type t x t x t — (t — t) x (t — t) that satisfies the following property: V(A, B,C : t). (3(P,Q : t —
). B=P(A) A C=Q(A) = (AP.Q :t—1). M(A,B,C) = (P,Q)) A Q(B) = P'(C))

Intuitively, a type t is a mergeable type if, whenever there

Q exist two morphisms P and @) that map A:tto B:tand C : t,

A C there also exists morphisms P’ and @', that map both B and

C to D :t. This intuition is expressed visually in Fig. 15. For

a mergeable type ¢, we have the guarantee that a sequence of

p| M(A,B,C) = (P'.Q) | P’ values read by a thread from its branch is sensible, as per the
data type semantics:

D THEOREM 4.4 (Branch-local consistency). Let ¢t be a

Q' mergeable type, and let H be a legal branching history over

values of type t. For every pair of values vy : t and vs : t along

Fig. 15. Commutative diagram representing the a branch b in H, if H b vy < vo, then there exists a morphism
merge operation. P:t—t such that vo = P(vq).

os)

The proof follows directly from the fact that the values on

branches are computed from previous values either by applying

morphisms locally, or by merging from the remote branches. In the latter case, Def. 4.3 guarantees that the
existence of a morphism from the merging value to the merged value.

Rather than specifying merge (M) in terms of an LCA as we did in describing our programming model,
Def. 4.3 specifies M in terms of a pair of morphisms. This specification is useful to avoid the expression of
certain nonsensical merge functions, and thus enforce a useful branch-local consistency property (Theorem 4.4).
For instance, consider the counter data type from Sec. 1. A three-way merge function can be defined to
return a constant regardless of its arguments:

merge lca a b = 0

Such a merge function allows the client to witness a violation of branch-local consistency. For example, the
client may sync the counter, whose current local value is 10, and obtain 0 as a result, thus witnessing a
violation of a counter’s monotonicity property. Fortunately, Def. 4.3 disallows this semantics. It is impossible
to define the function M for the counter data type that violates the monotonicity invariant, because no counter
morphism violates the invariant. In general, the specification of M guarantees that the merge operation for
a type t preserves any invariants (e.g., balancedness of a tree, sortedness of a list, non-negativeness of an
integer etc) that are preserved by all of ¢’s morphisms. The commutativity of the diagram in Fig. 15 need not
be enforced statically. It can equally be verified at run-time by checking that the morphisms returned by M
map respective concurrent versions to the same value. The E-PULL-WAIT rule of the operational semantics
(Fig. 13) can be extended to this effect:

t£t HEFV ~pv vV Av (P,Q)=M(lca(H(t), HEt)),v,v') Q'(v)=P'(v)
(pull); H(t — (v, f) im)(t' — (v',2) 1) — (pull)e; H[t — (vm, MERGE H(t')) :: (v, f) :: m]
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Def. 4.3 is immediately applicable to simple data types like counter to explain why they are mergeable.
The merge logic for counter is simple enough that it does not require great effort to identify the P and @ that
lead to the concurrent counter versions, and transform them into P’ and @’ such that the diagram in Fig. 15
commutes. For more sophisticated data types, such as 1list, this process is more involved, and may require
the programmer to perform non-trivial reasoning. We now present an alternative definition of a mergeable
type that is stronger than Def. 4.3, but also serves as a recipe to build non-trivial merge functions, like that
of a list.

Notation. As mentioned earlier, we distinguish between the named functions defined by a data type library
(primitive morphisms), and their compositions (morphisms). A sequence of primitive morphisms is written P*
or @*. The composition of a sequence of primitive morphisms (written [P*]) is their right-to-left composition,
ie., fold.left (Af.\g.f og) id P*, where fold_left has its usual OCaml type. The length of a sequence
S is written |S|.

Definition 4.5 (Mergeable Type (Strengthened)). A type t is said to be mergeable if and only if the
following conditions hold:

e There exists a function W : ¢ x t — (t — t)* that accepts an object A : ¢t and its semantic successor
B : t, and returns a minimal sequence of primitive morphisms P*, whose composition maps A to B.
That is, W (A, B) = P*, where [P*](A) = B, and there does not exist an R* such that [R*](4) = B
and |R*| < |P*|

e There exists a function M : (t — t)*x (¢t = t)* — (t — t)x (¢t — t) that accepts a pair of minimal
sequences of primitive morphisms, P* and Q*, and returns a pair of morphisms, P’ and Q’, such
that for any object A : ¢, (Q' o [P*])(A4) = (P’ o [Q*])(A).

The commutativity diagram of Fig. 16 visualizes this definition.

The definition asserts the existence of two functions for a mergeable type t. First, the function W, which
(implicitly) computes the edit distance between an object A : ¢ and its semantic successor B : t. The sequence
of primitive morphisms it returns (P*) is called an edit sequence. Applying the edit sequence on A produces
B (i.e., [P*](A) = B). Second, the definition asserts the existence of a function M, which performs an
operational transformation of the primitive morphisms in an edit script. An operational transformation of a
primitive morphism P w.r.t a morphism () is another primitive morphism P’ such that for any object A : ¢,
P’ has the same effect on Q(A) as P has on A.

Def. 4.5 is immediately applicable to the list type, and lets

Q4 . us explain why it is a mergeable type. MList.edit_seq and

% MList.op_transform, respectively, provide evidences for the
existence of W and M.

A

P4 M(P*.Q%) = (P.Q) | P' 4.3 Properties of the LCA

When merging two concurrent versions v; and vy, the com-

mon ancestor argument for merge must be the LCA of v; and
D vg, without which merge may yield unexpected results. This
is demonstrated for the monotonic counter in Fig. 17, where
an incorrect count is obtained if a common ancestor that is
not an LCA is used to merge 4 and 7. While in this exam-
ple there is a unique LCA for 4 and 7, in general this may
not be the case. With unrestrained branching and merging,
there is no bound on the number of LCAs a pair of versions can have. For example, in Fig. 18a, the merge of
0 with 3 is preceded by two “criss-cross” merges between their respective branches* resulting in there being
two LCAs (5 and 4) for 0 and 3. Multiple LCAs can occur even without criss-cross merges, as demonstrated
by Fig. 18b. Concurrent versions with multiple LCAs do not lend themselves to three-way merging. If such

[os)

Ql

Fig. 16. Commutative diagram for Def. 4.5.

4 When discussing merges and LCAs, we often attribute the properties of latest versions on branches to the branches themselves.
For instance, when we say two branches merge, in fact their latest versions merge. Likewise, LCA of two branches means the
LCA of their latest versions.
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10

10
5 -6
4
+3 +2
8 6
2 1
+1 -1
3 0
\'
(a) In this example, 1 and 3 have two LCAs (3 and 4) (b) In this example, latest versions on b1 and b3, and by
a result of previous merges. The dotted circle denotes a and b3 have two LCAs each, hence are unmergeable.

virtual ancestor obtained by merging the two LCAs.

Fig. 18. Examples where two branches have more than one LCA, hence cannot merge.

versions are latest on their respective branches, they render the branches unmergeable (since 1lca is no longer
a function) as demonstrated by examples in Fig. 18. Note that for both the examples in Fig. 18, no extension
of the branching structure can make the branches merge again. Thus the system is effectively partitioned
permanently. This is clearly a problem.

The problem of multiple LCAs also arises in the context of

0 source control systems, which employ ad hoc mechanisms to
pave the way for three-way merging. Git (Git 2017), for in-

+2 0 stance, recursively merges LCAs by default to compute a virtual
2 ;’ ancestor, which then serves as the LCA for merging concurrent
versions. This method is demonstrated in the branching struc-

*2 5 ture for a mergeable, replicated counter as shown in Fig. 18a,
4 +2 where LCAs 5 and 4 of 0 and 3 are merged (with their LCA
7 being 10) to generate -1 as the virtual LCA to merge 5 and

v 4. A major downside with this approach is that it makes no

guarantees on the relationship between the virtual ancestor and
its concurrent versions; the former may not even be a legal
Fig. 17. This example of a monotonic counter ance'stor of the latter as per the Semar%tics.of the data type.
illustrate why merge needs a lowest common For instance, suppose the integer type in Fig. 18a represents
ancestor, and not just a common ancestor. Both @ bank account balance, which is expected to disallow any ac-
0 and 2 are common ancestors of 4 and 7, while tivity on the account if the balance is ever known to be less
2 is their lowest common ancestor (since 0 < 2). than zero. From the perspective of the library designer and its
The result (v) of merging 4 and 7 is 11 (incorrect) clients, there is no meaningful scenario in which versions 3 and
if 0 is used as the common ancestor for merge, () can emerge from -1, since the only transition allowed by the
and 9 (correct, because 2+2+3+2 = 9) if 21is  gemantics from -1 is to itself. Clearly, ad hoc mechanisms like
used. this are error-prone and difficult to apply in general.
Fortunately, unlike source control systems where branching
structure is entirely dictated by the user, VML abstracts away branching structure from the programmer, and
hence retains the ability to manifest it in a way that it deems fit. In particular, VML solves the problem of
multiple LCAs by suitably constraining the branching structure such that the problem never arises. The
constraints are imposed either implicitly, as a result of how the operational semantics defines an atomic step,
or explicitly, by insisting that certain conditions be met before merging a pair of versions (E-PULL-WAIT).
First, the operational semantics already disables criss-cross merges since it only ever merges versions that are
latest on their respective branches. Second, we impose certain pre-conditions on the merging branches to
preempt the structure shown in Fig. 18b. The intuition is as follows: consider the branch b3 at the instance of
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merging v12. Since it has already merged wvos, v95 could be a common ancestor for b3 and some other branch
(call it b). Now, if bg merges v12, the same could be true of vy3. Since vi2 and v are not ordered by the
ancestor relation, both become LCAs of b3 and b. We observe that this scenario can be prevented if, when
merging by, bs insists on an ancestor relation between the last merged version (ve2) and the currently merging
version. We call the last merged version of a branch its locus. By maintaining a total order of among loci of a
branch b as new versions are created, we effectively guarantee the presence of a version (the locus) that is
lower than all the ancestors of the latest version on b. Next, by requiring the locus to be an ancestor of the
merging version, we ensure that all the common ancestors have a single lowest element, thus enforcing the
uniqueness of the LCA.

We now formalize the intuitions described above via a series of definitions that help us state the guarantees
offered by the system.

Definition 4.6 (Internal and External Ancestors). Given a branch b and a version v € b, an internal

ancestor (=<;) of v is an ancestor from the same branch b. An external ancestor (<,) of v is an ancestor from
a different branch b’ # b.

Definition 4.7 (Locus). Given a branch b and a version v € b, the locus (v,) of v is an ancestor that is not
an ancestor of any other external ancestor of v. That is, H F v, =< v, and there does not exist a v/, ¢ b such
that H F v), < v and H F v, < v). We lift the notion of locus to the level of branches by defining the locus
of a branch as the locus of its latest version.

In a legal branching history, every version has a unique locus

(property follows from Def. 4.8 below). We define the causal

history of a version as the set of all ancestors of that version.

A locus (v,) of a version (v) is therefore the maximum element

(lowest element in the ancestor relation) of the causal history

v Vi of v’s internal ancestor that was the result of the last merge.
This is illustrated in Fig. 19. We make use of this observation

1 while defining mergeability.

Definition 4.8 (Mergeability). Given a history H, a version

v1 and a version v, that is not an ancestor of vy under H, vy is

Fig. 19. The cloud represents the set of all an- ergeable into v; (denoted H + vy ~=,, v1) if and only if the
cestors of versions v; and vi41, i.e., their causal = 1,¢q (vo) of vy is an ancestor of ve, and no internal ancestor

history. The locus vy of bOth_ is the version that of v; that is not also an ancestor of v, is an ancestor of vs.
succeeds every other ancestor in the causal history.

If v; and vy referred in the above definition are the latest

versions on their respective branches by and by, we say by is

mergeable into by, or more generally, b; and b, are mergeable. The definition essentially requires all of

v1’s causal history that precedes its locus v, to be included in vs’s causal history, and none of v;’s history

that succeeds v, to be included in vy’s history. This allows us to view versions v; and vy as having been

independently evolved from a common causal history whose maximum (w.r.t the ancestor relation) is the

version v,. Consequently, v, becomes the LCA for vy’s merge into v;. Generalizing this observation for the
latest versions on any two branches, we state the following theorem:

THEOREM 4.9 (Unique LCA). Every pair of branches in a legal history H, if mergeable as per Def. 4.8,
have a unique lowest common ancestor.

While the definition of mergeability is sufficient to enforce uniqueness of LCAs, it may hinder progress in
the sense that there may not exist a pair of branches in a legal history satisfying the definition, thus making
the progress impossible. The following theorem asserts that this is not the case:

THEOREM 4.10 (Progress). In a legal branching history H produced by the operational semantics, if
two branches, b; and b; are not mergeable (as per Def. 4.8), then there exists a sequence of fork and merge
operations (between mergeable versions) that can be performed on H to yield a new history H', where b; and
bj are mergeable.

17



The proof is by the induction on the size of branching history. The key observation is that the smallest
history that is the union of causal histories of two unmergeable versions (call them v; and v;) is smaller than
the history that includes the unmergeable versions. As shown in Fig. 19, causal histories have maximum
versions (respective loci of v; and v;), which, by the inductive hypothesis, can be made mergeable. We
therefore can merge them to yield a new version v. Since v immediately follows the loci of both v; and vy,
and since both the versions are the latest versions on their respective branches, v can be merged into v; and
vj to create new versions v and v§ on their respective branches, which have a single LCA - v. Thus the
branches are now mergeable.

5 DISTRIBUTED INSTANTIATION

We describe the realization® of VML on top of a persistent distributed store and the language extensions to
enable and enforce the constraints of the VML.

The VML programming model is realized on top of Irmin (Irmin 2016), an OCaml library database
implementation that is part of the MirageOS project (Mirage 2013). Irmin provides a persistent multi-
versioned store with a content-addressable heap abstraction. Simply put, content-addressability means that
the address of a data block is determined by its content. If the content changes, then so does the address.
Old content continues to be available from the old address. Content-addressability also results in constant
time structural equality checks, which we exploit in our mergeable rope implementation (Section 3.1), among
others.

Irmin provides support for distribution, fault-tolerance and concurrency control by incorporating the Git
distributed version control (Git 2017) protocol over its object model. Indeed, Irmin is fully compatible with
Git command line tools. Distributed replicas in VML are created by cloning a VML repository. Due to VML’s
support for mergeable types, each replica can operate completely independently, accepting client requests,
even when disconnected from other replicas, resulting in a highly available distributed system.

Concurrent operations in Irmin are tracked using
the notion of branches, allowing the programmer to
explicitly merge branches on demand. VML’s concur-
Vv e . . . .

31 rency and distribution model is also realized in terms

- V3o of branches; each replica operates on its own branch,
. 22 ~ and thus is isolated from the actions on other repli-
12 by by Vao cas. In the presence of network partitions, the nodes
in one partition may not receive updates from the
other partition, preventing merges from happening
by across a partition. This can be a problem if a pair
of branches in one partition (the current partition)
have multiple LCAs in the other partition (the re-
mote partition), and hence cannot merge. Fig. 20
illustrate this problem for the branching structure

Y]
11 Voq

Fig. 20. Network partitions may leave branches b; and b4 in
one partition (red background), and branches by and b3 in .
the other (yellow background). Access to full history on both of Fig. 18b.

sides of the partition lets both sides make progress. Fortunately, access to full (causal) branching his-

tory assured by Irmin at every node comes to the

rescue. Relying on the history, the current partition
can fork-off (fork) new branches that start where the remote branches left, and map them to new (virtual)
nodes that emulate the nodes in the remote partition. For the example in Fig. 20, the partition of b; and
by can fork new branches b}, and b from by and b3, respectively, and resume the activity as if the partition
never happened. After merging the first versions on b} and b5, branches b; and by will be in the same state
as before (when the partition happened), except that the branches are now mergeable because by, and b}
can merge. The ability to track full provenance information is thus crucial for VML to overcome network
partitions, making it an appropriate programming model for highly-available replicated data types. The vsT

Shttps://github.com/icfp2017/vml
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conceals branching structure, but also transparently performs the necessary merges to obtain a history graph
with a unique lowest common ancestor.

Importantly, Irmin supports user-defined three-way merge functions for reconciling concurrent operations.
While Irmin’s merge functions are defined over objects on Irmin’s content-addressable heap, VML’s merge
functions are defined over OCaml types. We address this representational mismatch with the help of OCaml’s
PPX metaprogramming support (PPX 2017) to derive bi-directional transformations between objects on
OCaml and Irmin heaps. We also derive the various serialization functions required by Irmin®. Synchronization
between replicas is performed using Git’s notion of pushing and pulling updates from remotes (Git Transfer
Protocol 2017). As a result, we reap the benefits of efficient delta-transfer (only missing objects are transferred
between replicas), compression and end-to-end encrypted communication between the replicas.

6 EVALUATION

In this section, we present an evaluation of VML programming model with the aim of assessing its practical
utility for describing geo-distributed eventually consistent applications. In particular, we are interested in
the horizontal scalability of applications built using vML. Typical distributed eventually consistent data
stores use custom synchronization and dissemination protocols for transferring updates between replicas. In
contrast, VML is realized over Irmin (Irmin 2016) which uses Git transfer protocol (Git Transfer Protocol
2017), a protocol not designed with distributed data stores in mind. Hence, we also evaluate the performance
of synchronization and merging.

6.1 Benchmark: Collaborative editing

To evaluate the effectiveness of our model, we have implemented a collaborative editing application that
simulates concurrent editing of the same document by several authors. This application is not unlike Google
Docs, but differs from it by the fact that we do not need a central server that coordinates the edits. Instead,
edits from each author is asynchronously sent to other authors. The shared document itself is represented by
a mergeable rope of characters (Section 2), and hence, the remote edits can be correctly reconciled into each
local document. We resolve conflicts on concurrent substitutions at the same position (such as two authors
concurrently editing "abc" to "xbc" and "ybc", respectively) by choosing the character with the smaller
ASCII code. For the benchmarks, the initial document that we use has 1576 characters. The workload
consists of 4000 edit operations at random indices with 85% insertions and 15% deletions.

6.2 Experimental setup

For our experiments, we instantiate an 8-node geo-distributed cluster using the Google Cloud Platform (GCP
2017). Each node is an ni-standard-4 instance with 2 virtual CPUs and 7.5 GB of memory. The nodes are
arranged in a ring as shown in Figure 21a and synchronize (push and pull updates) when necessary with
its successor. While vML does not impose any restrictions on synchronizing with other nodes, we choose to
only synchronize with the successor since we are guaranteed eventual convergence with a ring cluster. If the
successor becomes unavailable, the node synchronizes with other available nodes. Operations are generated
and applied locally on each node before they are propagated eventually to other nodes with the help of a
background thread that synchronizes with its successor every second.

6.3 Results

We evaluate the scalability of concurrent editing application by increasing the cluster size from 1 to 8 (the 4
node ring cluster consists of nodes numbered 0 to 3), with each node performing concurrent edits to the same
document. In each case, we measure the overall cluster throughput and latency of each operation. The results
are presented in Figure 21b. The results show that the cluster throughput increases linearly with the number
of concurrent editors, while the latency for each operation remains the same. This is because each operation
is performed locally and does not require synchronization with other nodes. The nodes remain available to

6 The Since vST monad relies on Irmin for realizing the branch structure, it is in fact parameterized over a mergeable type that
implements all these functions. Thus the monad is functorized over the mergeable type, but not polymorphic. The convenience
of type parameter inference that polymorphism offers can however be obtained for module parameters using OCaml extensions,
such as Modular Implicits (White 2014).
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Fig. 21. vML performance evaluation.

accept requests even if the node gets disconnected. Since the document type is mergeable, eventually when
the node comes back online, the updates are synchronized with the cluster.

While updates are propagated asynchronously, we also measured the impact of propagating updates
synchronously by forcing synchronization every few operations. This corresponds to a partially synchronous
system, which is also unavailable; if the cluster is unreachable, local operations will not be accepted. While
this is not a realistic deployment, the results help us understand the overhead of synchronization. The results
are shown in Figure 21c. The result show that frequent blocking synchronization is prohibitively expensive
with the throughput dropping to 3 ops/s for synchronizing after every operation. VML uses Git transfer
protocol for synchronization which involves multiple round trips between the nodes for synchronization. But
as the synchronizations get less frequent, we can see that the throughput asymptotically approaches the
asynchronous case (Figure 21b).

Finally, we evaluate the performance of merge functions. For this experiment, we consider the nodes 1
(us-centrall-b) and 2 (europe-westl-b). Both nodes start with the initial document and perform n
concurrent edits without synchronization. After this, the nodes synchronize pushing the local edits and
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pulling the remote edits, and merge to produce the final document. In this case, we indicate the distance of
synchronization as 2n. Figure 21d presents the time share between network and computation for performing
3-way merge as we increase the operation distance between the remote branches. We see that the merge time
is dominated by the network overhead. This is because of the transfer protocol involving multiple round trips
and the need to transfer objects not only for application objects but also Git internal objects for history,
directory structure and branches. We observe that we can improve the network performance by implementing
a streaming protocol that eagerly transfers objects.

More importantly, the cost of computation grows sub-linearly. This is because of efficient merge function
on ropes (Sec. 3.1) enabled by Irmin’s content-addressed storage backend, and more expensive operational
transformation of merging concurrent edits to leaf nodes (Sec. 3.2) is invoked rarely on small. On average, we
measured that with a distance of 256, for merging the two documents with 1743 characters, 50 list merges were
performed on strings of average length 13. A purely list based approach would require a polynomial time edit
sequence algorithm to be applied on the entire document twice. Compared to this, the rope implementation
has much better algorithmic complexity. While not depicted here, we measured that by representing the
entire document using a mergeable list type, in addition to slowing down each edit operation, the merge at a
distance of 256 was 2.3 times slower than the rope implementation. We conclude that versioning and merging
as found in VML can yield substantial throughput and latency gains with low computational cost on modern
eventually-consistent cloud systems.

7 RELATED WORK

Our idea of versioning state bears resemblance to Concurrent Revisions (Burckhardt et al. 2010), a program-
ming abstraction that provides deterministic concurrent execution. The idea of using revisions as a means to
programming eventually consistent distributed systems was further developed in (Burckhardt et al. 2012).
The vML programming model, however, differs substantially from a concurrent revisions model because it
imposes no distinction between servers, machines that hold global state, and clients, devices that operate on
local, potentially stale, data - any computation executing in a distributed environment is free to fork new
versions, and synchronize against other replicated state. Our model, furthermore, supports fully decentralized
operation and is robust to network partitions and failures. Just as significantly, vML allows applications to
customize join semantics with programmable merge operations. Indeed, the integration of a version-based
mechanism within OCaml allows a degree of type safety, composability, and profitable use of polymorphism
not available in related systems.

(Burckhardt et al. 2015) also presents an operational model of a replicated data store that is based
on the abstract system model presented in (Burckhardt et al. 2014); their design is similar to the model
described in (Sivaramakrishnan et al. 2015). In both approaches, coordination among replicas involves
transmitting operations on replicated objects that are performed locally on each replica. In contrast, VML
allows programmers to use familiar state-based and functional abstractions when developing distributed
applications. As we illustrated in Fig. 1b, using effects and operations to coordinate the activities of replicas
may involve addressing subtleties that would not manifest in their absence. Our case studies and experimental
results support our contention that using well-understood state (heap)-based abstractions to build distributed
applications greatly simplifies program reasoning and eases development, without compromising efficiency.

Modern distributed systems are often equipped with only parsimonious data models (e.g., key-value model)
and poorly understood low-level consistency guarantees’ that complicate program reasoning, and make it
hard to enforce application integrity. Some authors (Bailis et al. 2013) have demonstrated that it is possible
tobolt on high-level consistency guarantees (e.g., causal consistency) (Bouajjani et al. 2017; Lloyd et al. 2011)
as a shim layer service over existing stores.

A number of verification techniques, programming abstractions, and tools have been proposed to reason
about program behavior in a geo-replicated weakly consistent environment. These techniques treat replicated
storage as a black box with a fixed pre-defined consistency model (Alvaro et al. 2011b; Bailis et al. 2014a;
Balegas et al. 2015a; Gotsman et al. 2016; Li et al. 2014a, 2012). On the other hand, compositional proof

7Cassandra (Lakshman and Malik 2010), a popular NoSQL data store, comes with various consistency enforcement mechanisms,

such as anti-entropy protocols, QUORUM and LOCAL_QUORUM reads and writes, and light-weight transactions, each of
which can be controlled via configuration knobs or runtime parameters.
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techniques and mechanized verification frameworks have been developed to rigorously reason about various
components of a distributed data store (Lesani et al. 2016; Wilcox et al. 2015). VML seeks to provide a rich
high-level programming model, built on rigorous foundations, that can facilitate program reasoning and
verification. An important by-product of the programming model is that it does not require algorithmic
restructuring to transplant a sequential or concurrent program to a distributed, replicated setting; the only
additional burden imposed on the developer is the need to provide a merge operator, a function that can be
often easily written for many common datatypes.

Several conditions have been proposed to judge whether an operation on a replicated data object needs
coordination or not. (Alvaro et al. 2011a) defines logical monotonicity as a sufficient condition for coordination
freedom, and proposes a consistency analysis that marks code regions performing non-monotonic reasoning
(eg: aggregations, such as COUNT) as potential coordination points. (Bailis et al. 2014b) and (Li et al. 2014b)
define invariant confluence and invariant safety, respectively, as conditions for safely executing an operation
without coordination. (Balegas et al. 2015b) requires programmers to declare application semantics, and the
desired application-specific invariants as formulas in first-order logic. It performs static analysis on these
formulas to determine I-offender sets - sets of operations, which, when performed concurrently, result in
violation of one or more of the stated invariants. For each offending set of operations, if the programmer
chooses invariant-violation avoidance over violation repair, the system employs various techniques, such
as escrow reservation, to ensure that the offending set is effectively serialized. All of these approaches
differ significantly from the core goals of VML, which is to enable seamless application-driven techniques for
programming geo-replicated systems. The VML programmer is not concerned with different system-specific
consistency or isolation levels, or invariants that are sensitive to these levels. Instead, the only requirements
demanded of the developer is the need to reason about a sensible merge semantics for data structures. Such
reasoning can be applied without consideration of system- or architecture-specific details. This reasoning
phase implicitly expresses salient semantic invariants without having to be exposed to low-level operational
details.

There have been numerous proposals over the years for realizing distributed programming functionality in
a functional programming context. Erlang (Armstrong 2007), which is the most well-known, is based on a
“shared-nothing” message-passing programming methodology. Poly/ML (Matthews 1997) and Facile (Thomsen
et al. 1993) extend Standard ML, while Acute (Sewell et al. 2005) and HashCaml (Billings et al. 2006)
extend OCaml, with distributed programming abstractions and support, with particular focus on type-safe
marshalling and mobility. Kali-Scheme (Cejtin et al. 1995) defines a distributed extension for Scheme-48,
and Cloud Haskell (Epstein et al. 2011) describes a domain-specific language that enables development of
distributed Haskell programs. Obliq (Cardelli 1995) explores issues related to mobility, lexical scoping, and
network references in an object-oriented framework that enables safe (i.e., lexical) transmission of closures.
Orleans (Bykov et al. 2011) provides persistent actor-based programming model for elastic cloud application,
but the focus is on strong consistency, mirroring a single-threaded execution.

However, unlike VML, none of these systems consider issues of object replication or consistency as central to
their programming models. The realities of modern-day scalable cloud-based distributed systems, especially
those that are constructed from geographically distributed participants, dictate that we must necessarily
grapple with consistency issues to achieve any kind of reasonable performance; it is noteworthy that
replication is inherent in many widely-used cloud-based distributed system implementations today (e.g.,
Cassandra (Lakshman and Malik 2010) or Dynamo (DeCandia et al. 2007)), which provide only weak
consistency guarantees. Rather than exposing a low-level operational treatment of replication, foisting the
burden of reasoning about replicated state onto the programmer, our primary contribution is the development
of a principled high-level approach to framing these issues that abstracts these kinds of system-level details.
Our goal is to leverage functional programming principles to minimize disruption to the way programmers
structure and reason about their applications, without compromising efficiency or performance. Indeed,
the semantics of mergeable types and versioning has utility in any concurrent setting that must deal with
non-trivial coordination and synchronization costs, even without taking distribution or replication issues into
account.

Finally, vML shares some resemblance to conflict-free replicated data types (CRDT) (Shapiro et al. 2011b).
CRDTs define abstract data types such as counters, sets, etc., with commutative operations such that the
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state of the data type always converges. Unlike CRDTSs, the operations on mergeable types in VML need
not commute and the reconciliation protocol is defined by user-defined merge functions. Moreover, CRDTs
are not composable and each CRDT tends to be built from scratch over the network protocol. Compared
to this, VML types are composable; mergeable ropes are polymorphic over its mergeable content. VML uses
3-way merges using the lowest common ancestor, which is critical for all of our user-defined merges. However,
CRDTs do not have the benefit of lowest common ancestor for merges and are only presented with the two
concurrent versions. If a 3-way merge is desired, then the causal history has to be explicitly encoded in
the data type. As a result, constructing even simple data types like counters are more complicated using
CRDTs (Shapiro et al. 2011b) compared to their implementation in VML.

VML uses 3-way merges using the lowest common ancestor, which is critical for all of our user-defined
merges. However, CRDTs do not have the benefit of lowest common ancestor for merges and are only
presented with the two concurrent versions. If a 3-way merge is desired, then the causal history has to be
explicitly encoded in the data type. As a result, constructing even simple data types like counters are more
complicated using CRDTs (Shapiro et al. 2011b) compared to their implementation in vML. CRDTs also
tend to be implemented directly over the network protocols. Hence, low-level concerns such as duplicate
delivery, lost messages, message reordering are explicitly handled in the data type definition. In VML, the
programmer does not have to deal with underlying network issues since VML is realized on Irmin, a high-level
branch-consistent distributed store.

8 CONCLUSIONS

Replication is a critical feature in geo-distributed systems used to improve latency and availability. Existing
approaches to dealing with replicated data often involve complex and subtle code restructuring, and the use of
specialized datatypes that interact poorly with other language structures. VML is a programming model that
extends ML with implicit support for replication that overcomes these concerns. Its notion of concurrency
and synchronization is encapsulated within a monad that considers distrbuted computation in terms of typed
versions of replicated state. Notably, any ML data structure can participate in a distributed computation
using this monad by providing a merge function that dictates how different versions of that structure can be
reconciled. Our versioning semantics enjoys strong consistency and progress guarantees that make it useful in
a fully decentralized (and unreliable) cloud environment. Furthermore, our experimental results demonstrate
that using such high-level abstractions need not come at the expense of efficient implementations.
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