
A Relational Framework for Higher-Order Shape Analysis

Gowtham Kaki Suresh Jagannathan
Purdue University

{gkaki,suresh}@cs.purdue.edu

Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can construct relational abstractions for data structures, which
let us automatically verify their structural invariants. Our specifica-
tion language allows definitions of parametric relations for poly-
morphic data types. Such parametrization leads to highly com-
posable specifications and naturally generalizes our approach to
higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable first-order logic that can be efficiently discharged
by an SMT solver. The implementation of these ideas is manifest
in a type checker called CATALYST that is incorporated within the
MLton SML compiler. We present examples and a case study to
demonstrate the expressive power of our specification language and
effectiveness of our type checking and translation mechanisms in
supporting such expressivity. Our experimental results indicate that
our verification strategy is also practical.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of a list
that is indexed by a natural number denoting its length. Length-
indexed lists can be written in several mainstream languages that
support some form of dependent typing, including GHC Haskell [?
], F* [?], and OCaml [?]. For example, the following Haskell
signatures specify how the length of the result list for append and
rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists, capture stronger invariants over append ,
and rev , they still underspecify the intended behavior of these op-

[Copyright notice will appear here once ’preprint’ option is removed.]

erations. For example, a correctly written append function must
additionally preserve the order of its input lists; a function that in-
correctly produces an output list that is a permutation of its inputs
would nonetheless satisfy append ’s type as written above. Sim-
ilarly, the identity function on lists would clearly satisfy the type
given for rev ; a type that fully captures rev ’s behavior would
also specify that that the order of elements in rev ’s output list is
the inverse of the order of its input. While being precise enough to
capture the intended behaviour of rev , it should also be general
enough to allow for any correct implementation of rev to type
check. Is it possible to ascribe such an expressive type to rev , that
can nonetheless be easily described, and efficiently checked?

One approach is to directly state the desired behaviour of func-
tions in type refinements. A straightforward refinement type of rev
that captures its behaviour could be:
rev : {l : ’a list} −→ {ν: ’a list | ν = rev’(l)}
where rev’ represents some reference implementation of rev .
However, the problem of verifying program equivalence is unde-
cidable in general; so, in order for such types to be machine check-
able, the definition of rev’ should closely resemble that of rev .
Conversely, an implementation of rev is well-typed only if its syn-
tactic structure resembles that of rev’ . This situation is undesir-
able as it leads to many correct implementations failing the type
check. An alternative approach is to design rev’ in a way that
can be reasoned by an automatic theorem prover. To be feasible,
this would require the meaning of (potentially arbitrary) recursive
functions like append that may be used by rev’ be understood by
the underlying theorem prover used to verify this property. Clearly,
unlike the case with length of a list, challenges in building suitable
definitions that let us reason about shape properties of a list are
substantial.

Yet, the way length of a list is tracked using its length-indexed
list type offers a hint of how we can reason about its shape. Akin to
the Nat domain that indexes a list type with a length abstraction,
we need an appropriate abstract domain that we can use to index a
list type to help us reason about its shape properties. For instance,
in the case of list reversal, the abstract domain should allow us
to structurally reason about the order of elements in the list. A
useful interpretation of a list order that satisfies this requirement
would be one that relates every element in a list with every another
element, asserting, for example, that one occurs before the other.
By defining an exhaustive enumeration of the set of all such pairs,
we can effectively specify the total order of all elements in the list.
More precisely, we note that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the
transitive closure of such a relation effectively serving as a faithful
representation of the list.

For example, the transitive closure of an occurs-before relation,
denoted as R∗ob for a concrete list l=[x1,x2,x3] is the following
set of tuples:

R∗ob(l) = {〈 x1 , x2 〉 , 〈 x1 , x3 〉 , 〈 x2 , x3 〉}

1 2014/2/28

Conversely, an occurs-after (Roa) relation serves as the semantic
inverse of occurs-before; given these two relations, we can specify
the following type for rev :
rev : { l : ’a list} −→ {ν: ’a list | R∗ob(l) = R∗oa(ν)}
The above specification asserts that for every pair of elements x and
y in the input list l , if x occurs before y in l , then it has to occur
after y in the result list ν. This property succintly captures the fact
that the result list is the same as the original list in reverse order
without appealing to the operational definition of how the result
list is constructed from the input. By using a relational domain to
reason about the shape of the list, we avoid having to construct
a statically checkable reference implementation of rev , thus cir-
cumventing the limitations that plague such approach.

We refer to operators like Rob and Roa as structural rela-
tions because they explicitly describe structural properties of a
data structure. As demonstrated with rev example, such relations
can be used as appropriate abstract domains to reason about the
shapes of structures generated by constructor applications in al-
gebraic datatypes. Given that relations naturally translate to sets
of tuples, standard set operations such as union and cross-product
are typically sufficient to build useful relational abstractions from
any concrete domain. This simplicity makes relational specifica-
tions highly amenable for automatic verification.

The type of rev given above captures its full functional behav-
ior by referring to the order of elements in its argument and result
lists. However, the notion of order as a relation between elements
of the list is not always sufficient. Consider the dup function with
following ML type:

dup : ’a list -> (’a*’a) list

Function dup duplicates elements in its input list. An invariant that
we can expect from dup is that the order of left components of
pairs in result list is same as the order of its right components, and
both are equal to the order of elements in the input list (’a list).
Clearly, our definitions of “occurs-before” and “occurs-after” as
binary relations over elements in a list are insufficient to express
the order of individual components of pairs in a list of pairs. How
do we construct their general definitions that let us capture ordering
invariants over different kinds of lists without generating distinct
relations for each kind?

We address this issue by taking the cue from parametric poly-
morphism. We allow structural relations defined over a polymor-
phic datatype to be parameterized by relations over type variables
in the datatype. For instance, Rob relation over ’a list can be
parametrized by a relationR over ’a leading to parametric occurs-
before relation. Instead of directly relating the order of two ele-
ments x and y in a given ’a list , a parametric occurs-before re-
lation could generically relate the ordering of the elements of two
relations - R(x) and R(y); R’s specific instantiation would draw
from the set of relations defined over the datatype that instantiates
the type variable (’a).

For example, assume that Rfst is a unary singleton relation
defined over pairs such that: Rfst((x, y)) = {〈x〉}. Then, the
relational parameter (R) of occurs-before can be instantiated with
Rfst to generate a relation that relates x1 to x2 if and only if, for
some x3 and x4 , (x1,x3) occurs before (x2,x4) in a list of
pairs. Dually, Instantiating R with Rsnd , where Rsnd((x, y)) =
{〈y〉}, generates a relation that would let us reason about order
of right components in a list of pairs. It can be noted that such
instantiated relations are sufficient to express the behavior of dup .
Not surprisingly, the ability to parameterize relations in this way
allows structural relations to be used seamlessly with higher-order
polymorphic functions, and enables composable specifications over
defined relations.

In this paper, we present an automated verification framework
integrated within a refinement type system to express and check
specifications of the kind given above. We describe a powerful
specification language based on relational algebra to define and
compose structural relations for any algebraic datatype. These def-
initions are only as complex as the datatype definition itself in the
sense that it is possible to construct equivalent relational definitions
directly superimposed on the datatype. Relations thus defined, in-
cluding their automatically generated inductive variants, can be
used in type refinements to specify shape invariants, and other such
relational properties. Our typechecking procedure verifies specifi-
cations by interpreting constructor applications as set operations
within these abstract relational domain. Typechecking in our sys-
tem is decidable, a result which follows from the completeness of
encoding our specification language in decidable logic.

The paper makes the following contributions:

1. We present a rich specification language for expressing refine-
ments that are given in terms of relational expressions and fa-
miliar relational algebraic operations. The language is equipped
with pattern-matching operations over constructors of algebraic
datatypes, thus allowing the definition of useful shape proper-
ties in terms of relational constraints.

2. To allow relational refinements to express shape properties over
complex data structures, and to be effective in defining such
properties on higher-order programs, we allow the inductive re-
lations found in type refinements to be parameterized over other
inductively-defined relations. While the semantics of a relation-
ally parameteric specification can be understood intuitively in
second-order logic, we prove that it can be equivalently encoded
in a decidable fragment of first-order logic, leading to a practi-
cal and efficient type-checking algorithm.

3. We present a formalization of our ideas, providing a static
semantics, meta-theory that establishes the soundness of well-
typed programs, a translation mechanism that maps well-typed
relational expressions and refinements to a decidable many-
sorted first-order logic, and a decidability result that justifies
the translation scheme.

4. We describe an implementation of these ideas in a type checker
called CATALYST equipped with support for verifying refine-
ments over structural relations that is incorporated within the
MLton SML compiler. We demonstrate the utility of these ideas
through a number of benchmarks, and a case study of automati-
cally verifying α-conversion, and capture-avoiding substitution
operations of an implementation of untyped lambda calculus.

The remainder of the paper is as follows. In the next section,
we present additional motivation and examples for our ideas. Sec-
tion 3 formalizes the syntax and static semantics of relational re-
finements in the context of a simply-typed core language. Section
4 extends formalization to polymorphic core language, and para-
metric refinements. Our formalization also presents our translation
scheme to translate relational refinements to decidable first-order
logic. Details about the implementation, and its performance on
benchmarks are given in Section 5. Section 6 presents our case
study of automatically verifying untyped lambda calculus imple-
mentation. Sections 7 and ?? discuss related work and conclusions,
respectively.

2. Structural Relations
Our specification language is primarily the language of relational
expressions composed using familiar relational algebraic operators.
The language is also equipped with pattern matching over con-

2 2014/2/28

structors of algebraic types to define expressive shape properties
in terms of these relational expressions. The language additionally
comes equipped with a family of polymorphic relations, the most
important of which are listed below:

Rnull = {〈〉}
Rid x = {〈x〉}
Rdup x = {〈x, x〉}
Rempty x = {〈 〉}
RnotEqk x = {〈x〉 − {〈k〉}
Reqk x = {〈x〉 − (〈x〉 − 〈k〉)}

Rnull does not relate any elements; so it is an empty set. Rid is
the identity relation, Rdup is a relation that associates a value with
a pair that duplicates that value, and Rempty is an empty relation
expressed in such a way that it relates every element to nothing.
RnotEqk is a relation indexed by a constant k that relates x to itself,
provided x is not equal to k. Reqk is defined similarly, except it
relates x to itself exactly when x equal to k.

To see how new structural relations can be built using relational
operators, primitive relations, and pattern-match syntax, consider
the specification of the list-head relation that relates a list to its
head element:

relation Rhd (x :: xs) = {〈x〉} | Rhd [] = Rnull

For a concrete list l , Rhd(l) produces the set of unary tuples
whose elements are in the head relation with l . This set is clearly
a singleton when the list is non-empty and empty otherwise. The
above definition states that for any list pattern constructed using
“::” whose head is represented by pattern variable x and whose tail
is represented by pattern variable xs, (1) (x :: xs, x) ∈ Rhd, and
(2) there does not exist a pattern variable x′ such that x′ 6= x, but
(x :: xs, x′) ∈ Rhd. The declarative syntax of the kind shown
above is the primary means of defining structural relations in our
system.

2.1 Relational Composition
Simple structural relations such as Rhd have fixed cardinality , i.e.,
they have a fixed number of tuples regardless of the concrete size
of the data structure on which they are defined. However, practical
verification problems require relations over algebraic datatypes to
have cardinality comparable to the size of the data structure, which
may be recursive.

For example, consider the problem of verifying that an imple-
mentation of rev preserves the set of elements in its input list.
To specify this property, we need a membership relation (Rmem)
that relates a list l to every element in l (regardless of l’s size), so
that we can assert that if an element is in the membership relation
with rev ’s input list, it must be in a membership relation with the
output list the function produces. A recursive definition of Rmem
could look like:

Rmem x :: xs = {〈x〉} ∪ (Rmem xs)

Notably, the above definition is actually an inductive extension
of the simple head relation Rhd defined above. Suppose R is a
structural relation that relates a list l of type ’a list with elements
v of type ’a . Then, the inductive extension of R (written R∗) is
the least relation that satisfies the following conditions:

• R(l, v)⇒ R∗(l, v)

• if l = x :: xs, then R(xs, v)⇒ R∗(l, v)

The above definition is equivalent to the following:

R∗(x :: xs) = R(x :: xs) ∪ R∗(xs)

Using this operator, we can now succintly define a membership
relation Rmem as:

relation Rmem = R∗hd
This relation can now be used to specify the element preservation
property for rev described informally above. We can think of
the induction operator as a controlled abstraction for structural
recursion. Based on the recursive structure of an algebraic datatype,
sophisticated inductive definitions can be generated from simple
structural relations defined for that datatype.

Equipped with Rmem we can now precisely define the occurs-
before relation defined earlier. Recall that relation Rob relates a list
to a list of pairs whose first element is the head of the list, and
whose second elements are members comprising the tail:

relation Rob(x :: xs) = {〈x〉} × Rmem(xs) | [] = Rempty []

The transitive closure of this relation R∗ob expresses the occurs-
before property on every element in the list. The occurs-after rela-
tion can be defined similarly:

relation Roa(x :: xs) = Rmem(xs) × {〈x〉} | [] = Rempty []

2.2 Parameterized Relations
Consider how we might specify a zip function over lists, with
following type:

zip : ’a list -> ’b list -> (’a *’b) list

We wish to assert that any correct implementation of zip must
guarantee that the elements of the output list are pairs of ele-
ments drawn from both argument lists. The Rmem relation defined
above provides much of the functionality we require; intuitively,
we would like to assert that the first element of every pair in the
output list be in a membership relation with the zip ’s first argu-
ment, and the second element of every pair be in a membership
relation with zip ’s second argument. Unfortunately, as currently
defined, Rmem operates directly on the pair elements comprising
the output list, not the pair’s individual components. What we re-
quire is a mechanism in our relational specification framework that
allowsRmem to assert the membership property on the pair’s com-
ponents (rather than the pair directly) with respect to either the first
or second input list argument.

To do this, we allow structural relations to be parameterized
over other relations. In the case of zip , the parameterized member-
ship relation can be instantiated with the appropriate relationally-
defined projections on a pair type. Concretely, given new param-
eterized definitions of Rhd and Rmem, and related auxiliary rela-
tions:

relation (Rhd R) x::xs = R(x) | [] = (Rempty R)
relation (Rmem R) = (Rhd R)∗

relation (Rfst R) (x,y) = R(x)
relation (Rsnd R) (x,y) = R(y)

zip can be assigned the following type:

zip : l1 -> l2 ->
{ l | (Rmem (Rfst Rid)) l = (Rmem Rid) l1
∧ (Rmem (Rsnd Rid)) l = (Rmem Rid) l2 }

The refinement on zip ’s output list l asserts that the list con-
structed by projecting the first (resp. second) element from l’s pairs
contains the same elements as l1 (resp. l2), thus accurately captur-
ing the invariant that zip ’s output pairs are only constructed from
its input lists.

As a more substantial example, the following signature for
foldl relates the membership properties on its input list to its
output:

(′R1,
′R2) foldl :

3 2014/2/28

{l : ’a list} -> {b : ’b} ->
({f: {x :’a} -> {acc : ’b} ->

{ z : ’b | ′R2(z) = ′R1(x) ∪ ′R2(acc) }}) ->
{ ν | ′R2 (ν) = ((Rmem ′R1) l) ∪ ′R2(b)}

To see how we might instantiate relational variables ’R1 and ’R2

that are intended to capture shape constraints on elements of the
input list and output, resp., consider the function makeTree that
uses foldl to generate a binary tree using function treeInsert
(not shown):

datatype ’a tree =
Leaf of ’a |
Tree of (’a * (’a Tree) * (’a Tree))

relation (Rthd R) (Leaf x) = 〈 〉 | (Tree (x,t1,t2) = R(x)
relation Rtmem R = (Rthd R)∗

makeTree : { l : ’a list} ->
{ν : ’a tree | Rtmem(ν) = Rmem(l)}

val makeTree x = fn l =>
foldl (Rid, (Rtmem Rid)) l (Leaf x) treeInsert

In this example, relation variables ′R1 and ′R2 in foldl ’s defi-
nition are instanitated to Rid and Rtmem, resp. The resulting re-
finement for foldl ’s result thus requires that the elements in the
output tree be the same as elements in the input list. Similarly, the
refinement on the result type of the higher-order argument f re-
quires that the output tree returned by f must contain the elements
in the tree produced by the accumulator and the elements in the
input list whose tree elements have not yet been constructed.

We can construct an alternative type for foldl that relates the
order of elements in the argument list to some order of the result.
The intuition is as following: let us say the result type (’b) has
some notion of order and a relation to describe the order such that
the result of foldl ’s higher-order argument (f) has a refinement
given in terms of this relation; i.e., it says something about how
the order relation of its result (z) relates to its arguments (x and
acc). But, x comes from list, and f is applied over elements of
the list in a pre-defined order. Therefore, we can express invari-
ants that relate the order of the input list to the order of the result
type (abstracted by relational variable ’R below), given an asser-
tion that describes the order in which f is applied over the list. To
simplify the presentation, we only parameterize the ordering rela-
tion in foldl ’s signature shown below, and elide the parameteric
refinements dealing with membership as described above:

(’R) foldl : {l : ’a list} -> {b : ’b} ->
({f : { x : ’a } -> { acc : ’b } ->

{ z | ’R3(z) = (〈 x 〉 × ’Rmem(acc)) ∪
’R3(acc)}) ->

{ν | ’R3(ν) = R∗oa (l) ∪ ’R3(b)) ∪
(Rmem(b) × (Rmem (l)))

The following program is successfuly typechecked by our imple-
mentation given the standard definition of foldl , thus verifying
that rev inverts the order of its input list, while id preserves list
order.

val Cons = fn x => fn xs => x::xs
val Id = fn x => fn xs => xs [x]
rev : {l : ’a list} -> {v : ’a list | R∗ob(v) = R∗oa(l)}
val rev = fn l => foldl (R∗ob) l [] Cons
val id = fn l => foldl(R∗oa) l [] Id

Calculus λR

x, y, z, ν ∈ variables

C ::= Cons | Nil constructors
v ::= λ(x : τ). e | v : τ | C v value
e ::= x | e x | let x = e in e

| match x with C x ⇒ e else e
| e : τ expression

T ::= unit | int | intlist datatypes
τ ::= {ν : T |φ} | x : τ → τ dependent types

Specification Language
R ∈ relation names

φ ::= r = r | r ⊂ r | φ ∧ φ | φ ∨ φ | > type refinement
r ::= R(x) | r ∪ r | r × r relational expression
ΣR ::= 〈R, τR, C x⇒ r〉 relation definition

| 〈R, τR, R∗〉

θ ::= T | T ∗ θ tuple sort
τR ::= intlist :→ {θ} relation sort

Figure 1: Language

3. Core langugage
3.1 Syntax
We formalize our ideas using a core calculus (λR) shown in Fig. 1,
an A-normalized extension of the simply-typed lambda calculus.
The language supports a few primitive types (unit and int), a
recursive datatype (intlist), along with dependent base and function
types. Because the mechanisms and syntax to define and elaborate
recursive data types are kept separate from the core, λR is only
provided with two constructors, Nil and Cons used to build lists.
The language has a standard call-by-value operational semantics
that is elided here.

Dependent type refinements (φ) in λR are assertions over re-
lational expressions(r); these expressions, which are themselves
typed, constitute the syntactic class of expressions in our specifica-
tion language. We refer to types of relational expressions as sorts,
in order to distinguish them from types of λR expressions. A struc-
tural relation definition is a triple, consisting of a relation name,
its sort, and either (a) a pattern-match sequence that relates con-
structors of an algebraic datatype to a relation expression, or (b)
an inductive extension of an existing relation, captured using the
closure operator (∗).

Relational definitions are sort-checked and elaborated into a
dependent type refinement for constructors of the domain type. A
structural relation maps a value to a set of tuples (θ). We use “:→”
to distinguish such maps from the mapping expressed by dependent
function types. For example, the notation

Rob :: intlist :→ {int * int}

indicates that the sort of relation Rob is a map from integer lists
to pairs. For the purposes of the formalization, we assume the
existence of a single primitive relation Rid whose sort is int :→
{int} that defines an identity relation on integers.

Elaboration rules for relational definitions are given in Figure 2.
The rules abuse the ΣR notation, treating it as a map from relation
names to their definitions. Rule E-Base populates type environment
Γ′; rules E-Cons and E-Nil collect and aggregate type refinements
from list constructor applications. Rule E-Rel elaborates the rela-
tional expressions found in a definition’s pattern-match sequence
to type refinements of Nil and Cons using rules E-Cons and E-Nil.
Rule E-Rel-Star first unrolls the inductive definition of its argument
relation (R2 in the rule) before elaboration.

4 2014/2/28

Γ # Γ′

E-BASE

Γ = ·, Nil : intlist

Γ′ = Γ, Cons : int→ intlist

→ intlist

·# Γ′

E-CONS

Γ′ = Γ, x : int , xs : int

Γ′ ` Cons x xs : {ν : intlist |φ} Γ′ ` r
Γ′′ = ·, Cons : x : int→ xs : intlist

→ {ν : intlist |φ ∧ (R(ν) = r)}
Γ ⊕ 〈 Cons , R, r〉# Γ,Γ′′

E-NIL

Γ ` r
Γ ` Nil : {ν : intlist |φ} :

Γ′ = ·, Nil : {ν : intlist |φ ∧ (R(ν) = r)}
Γ ⊕ 〈 Nil , R, r〉# Γ,Γ′

E-REL

ΣR(R) = 〈 Nil ⇒ r1, Cons x xs ⇒ r2〉
Γ ` r1 :: θ Γ ` r2 :: θ Γ′ = Γ, R :: intlist :→ {θ}

Γ ⊕ 〈 Nil , R, r1〉 ⊕ 〈 Cons , R, r2〉# Γ′

Γ # Γ′

E-REL-STAR

ΣR(R1) = R∗2 ΣR(R2) = 〈 Nil ⇒ r1, Cons x xs ⇒ r2〉
Γ ` R2 :: τR Γ′ = Γ, R2 :: τR

Γ ⊕ 〈 Nil , R1, r1〉 ⊕ 〈 Cons , R1, r2 ∪R1(xs)〉# Γ′

Γ # Γ′

Figure 2: Elaboration rules for structural relations

Sort Checking Specification Language Γ ` r :: {θ}

S-REL

(R :: τR) ∈ Γ

Γ ` R :: τR

S-APP

Γ ` R :: T :→ {θ} Γ ` x : T

Γ ` R(x) :: {θ}

S-UNION

Γ ` r1 :: {θ} Γ ` r2 :: {θ}
Γ ` r1 ∪ r2 :: {θ}

S-CROSS

Γ ` r1 :: {θ1} Γ ` r2 :: {θ2}
Γ ` r1 × r2 :: {θ1 ∗ θ2}

Well-Formedness Γ ` r, Γ ` φ, Γ ` τ

WF-RPRED

� ∈ {=,⊂}
Γ ` r1 :: θ Γ ` r2 :: θ

Γ ` r1 � r2

WF-REF

� ∈ {∧,∨,⇒}
Γ ` φ1 Γ ` φ2

Γ ` φ1 � φ2

WF-BASE

Γ, ν : T ` φ
Γ ` {ν : T |φ}

WF-FUN

Γ ` τ1 Γ, x : τ1 ` τ2
Γ ` x : τ1 → τ2

Sub-typing Γ ` τ1 <: τ2

SUBT-BASE

Γ ` {ν : T |φ1} Γ ` {ν : T |φ2}
[[Γ, ν : T]]L ∧ [[φ1]]L |=L [[φ2]]L

Γ ` {ν : T |φ1} <: {ν : T |φ2}

SUBT-ARROW

Γ ` τ21 <: τ11 Γ, x : τ21 ` τ12 <: τ22

Γ ` (x : τ11)→ τ12 <: (x : τ21)→ τ22

Type Checking Expression Language Γ ` e : τ

T-VAR

(x : τ) ∈ Γ

Γ ` x : τ

T-APP

Γ ` e : (x : τ1)→ τ2 Γ ` y : τ1
Γ ` e y : [y/x]τ2

T-ABS

Γ, x : τ1 ` e : τ2
Γ ` λ(x : τ). e : (x : τ1)→ τ2

T-SUB

Γ ` e : τ1 Γ ` τ1 <: τ2
Γ ` e : τ2

T-LET

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2 Γ ` τ2
Γ ` let x = e1 in e2 : τ2

T-MATCH

Γ ` C : (x : τx → {ν : Tx |φc}) Γ ` y : {ν : Tx |φ}
fresh(z) Γ′ = x : τx, z : {ν : unit | [y/ν]φc} Γ,Γ′ ` e1 : τ Γ ` e2 : τ

Γ ` match y with C x ⇒ e1 else e2 : τ

Figure 3: Static semantics of λR

3.2 Sorts, Types and Well-formedness
Figure 3 defines rules to check sorts of relational expressions and
establish well-formedness of type refinements. Both judgements
make use of environment Γ, defined as follows:

Γ ::= · | Γ, R :: τR | Γ, x : τ

We use Γ to maintain sort bindings for relations, and type bindings
for λR variables. As evident in the definition, Γ is an ordered
environment. Furthermore, we assume that any syntactic object is
bound only once in Γ. Any later binding for an object in Γ overrides
the previous binding.

It should be noted that domain of a relation is always a primitive
type. A relation application is sensible if its argument has the

5 2014/2/28

required type. The rule S-APP captures this semantics. The rules
for union and cross-product are straightforward.

Dependent type checking rules for λR expressions are shown in
Figure 3. The rule to type check match expression first ensures
that actual arguments to the constructor (C) in pattern match with
its formal arguments. Next, the (un-refined) co-domain type of
the constructor (C) is checked against that of test variable (y). It
then type checks expression in else branch under the same type
environment (Γ), but with branch under an extended environment
(Γ′). The extended environment contains bindings for matched
pattern variables, and records guard condition as type refinement
of a fresh dummy variable (z). For instance, consider the following
match expression:

match y with Cons x xs ⇒ e1 else e2

where y is an intlist , and Cons has type1:

Cons : x:int → xs:intlist → {ν:intlist | Rmem(l)
= RId(x) ∪ Rmem(xs)}

When type checking the expression under the environment Γ, e2 is
type checked under the original environment (Γ), but e1 is checked
under the extended environment:

Γ, x : {ν :int | >}, xs : {ν :intlist | >},
z : {ν : 1 | Rmem(y) =RId(x) ∪ Rmem(xs)}

Rule T-SUBT lets the type system take advantage of sub-typing
by allowing safe type cast from sub-type to super-type. The cor-
nerstone of subtyping is the sub-typing judgement between base
dependent types defined by the rule SUBT-BASE. Intuitively, the
rule adjudges a dependent type τ1 to be a sub-type of τ2, if:

• Their base types match, and,
• Given a logical system L, the conjunction of the interpretation

of type environment (Γ) in L and the interpretation of type re-
finement φ1 (of τ1) in L semantically entails the interpretation
of type refinement φ2 (of τ2) in L.

We chose Many-Sorted First Order Logic to give interpretations to
λR type refinements and type environment (Γ). Sub-section 3.4
describes our semantics in detail.

3.3 Properties of Type Checking
With sub-typing factored out as a separate judgement, type system
of λR is similar to SMT-base dependent type systems found in the
literature [? ? ?], and enjoys the usual progress and preservation
properties:

LEMMA 3.1. (Progress) if · ` e : τ , then either there exists an
e′ such that e −→ e′, or e is a value.

LEMMA 3.2. (Preservation) if · ` e : τ and e −→ e′, then
· ` e′ : τ

THEOREM 3.3. (Type Safety) if · ` e : τ , then there exists a
value ν such that e−→ ∗ ν.

3.4 Semantics of Specification Language
We define semantics of our specification language by translating
well-typed relational expressions and well-formed type refinements
to propositions of many-sorted first-order logic (MSFOL).

Many-sorted first-order logic extends first-order logic (FOL)
with sorts (types) for variables. For our purpose, we only consider
the extension with booleans and uninterpreted sorts, i.e., sorts that,

1 We assign same names to formal and actual arguments for convenience.
Formal arguments can always be consistently renamed.

unlike int , do not have an attached interpretation. Ground terms,
or quantifier-free formulas, of MSFOL are drawn from the propo-
sitional logic with equality and n-ary uninterpreted functions. As-
cribing MSFOL semantics to λR specification language involves
interpreting a λR variable as an MSFOL variable, a λR primitive
type as an uninterpreted sort, and a relation as an uninterpreted
function with boolean co-domain. Subsequently, set operations,
such as union and cross-product, naturally translate to quantified
assertions involving conjunctions and disjunctions of uninterpreted
function applications. As an example, consider the following asser-
tion involving relation Rmem from intlist to {int} :

Rmem(l) = RId(x) ∪ Rmem(xs)

Conjunctions and disjunctions of such assertions make up type re-
finements λR. To ascribe semantics to the above assertion in MS-
FOL, we start by interpreting intlist type as an uninterpreted
sort A0, and int as uninterpreted sort A1. Variables l and xs ,
and x are interpreted as similarly named variables of sort A0

and A1, respectively. Relation Rmem :: intlist :→ {int} is
treated as a binary uninterpreted function Rmem from A0 × A1

to booleans. Likewise, RId :: int :→ {int} is interpreted as
a binary uninterpreted function RId from A1 × A1 to booleans.
Under these interpretations, the assertion itself tranlates to the fol-
lowing quantified MSFOL formula:

∀(k : A0). Rmem(l, k)⇔ RId(x, k) ∨Rmem(xs, k)

Special relation RId defines identity relation; so, RId(x, k) if and
only if x = k. We use this to rewrite the MSFOL formula to arrive
at the meaning of the assertion we wrote:

∀(k : A0). Rmem(l, k)⇔ x = k ∨Rmem(xs, k)

By similar reasoning, one would interpret the meaning of the asser-
tion:

Rob(l) = RId(x) × Rmem(xs)

as the following MSFOL formula:

∀(j : A0). (k : A0). Rob(l, j, k)⇔ x = j ∧Rmem(xs, k)

Where, Rob is an uninterpreted function from A1 × A0 × A0 to
booleans.

It has to be noted that despite treating interpreted types (eg:
list and int) as uninterpreted sorts, the exericise of ascribing
semantics to type refinement language in MSFOL is complete. This
can be established by the argument that interpretation of any type
is the collection of operations allowed on that type, and our type
refinement language does not contain operations that are specific to
values of a type.

Formal semantics of specification language of λR are presented
in Figure 4. The semantics are operational in the sense that they
describe an algorithm to compile assertions in type refinements of
λR to formulas in MSFOL. In order to capture the instantiation
semantics of quantified formulas, we find it quite useful to represent
them using lambda terms. We, therefore, use a typed calculus with
propositional atoms, as an intermediate language of compilation to
logic. We refer to the calculus as λφ . Primitive types of λφ consist
of booleans, and a class of uninterpreted types (A). There exists an
uninterpreted type (A) in calculus for every primitive type in λR.
We assume the presence of a functionF that peforms this mapping,
and we parametrize our semantics over F .

Variables and relation names of λR and type refinement lan-
guage are also valid variables of λφ . They occur as free-variables
in λφ expressions. We let x range over λR variables any type, R
over relation names, which are variables of function type in λφ ,
and k over locally bound variables. Propositions (φF) and lambda
expressions representing prenex-quantified propositions, constitute

6 2014/2/28

MSFOL

x ∈ λR variable k, j ∈ quantifying variable
R ∈ uninterpreted relation

φL ::= ∀(k : TF). φL | φF | φL ∧ φL quantified
| φL ∨ φL | φL ⇒ φL proposition

φF ::= v | v = v | φF φF | φF ⇔ φF quantifier − free
| φF ⇒ φF | φF ∨ φF | φF ∧ φF proposition
| v : τF

v ::= x | k | j | R variable
TF ::= A | bool sort
τF ::= bool | TF → τF sort of φF

Auxiliary Definitions

F : T → A
Inst : φL × v → φL

Inst(∀(k : TF).φL, y) = [y/k]φL

ηwrap : φF × τF → φL

ηwrap(φF , τF1 → τF2) = ∀(k : τF1).ηwrap(φF k, τF2)
ηwrap(φF , bool) = φF

Semantics of Relational Expressions [[r]]L

[[T]]L
def
= F(T)

[[T ∗ θ]]L
def
= [[T]]L → [[θ]]L

[[intlist :→ {θ}]]L
def
= [[intlist]]L → [[θ]]L → bool

[[Rid]]L
def
= ∀(j : [[int]]L).

∀(k : [[int]]L).j = k

[[R :: τR]]L
def
= ηwrap(R, [[τR]]L)

[[R(x)]]L
def
= Inst([[R]]L , x)

[[r1 ∪ r2]]L
def
= γt([[r1]]L ,∨, [[r2]]L)

[[r1 × r2]]L
def
= γ1([[r1]]L ,∧, [[r2]]L)

γt(∀(k : TF)e1,�, ∀(k : TF)e2) ↪→ ∀(k : TF)γt(e1,�, e2)
γt(φF1 ,�, φF2) ↪→ φF1 � φF2
γ1(∀j : TFj φ

F
1 ,�,∀k : TFk φ

F
1) ↪→ ∀(j : TFj)∀(k : TFk)φF1 � φF2

Semantics of Type Refinements [[φ]]L

[[φ1 ∧ φ2]]L
def
= γ1([[φ1]]L ,∧, [[φ2]]L)

[[φ1 ∨ φ2]]L
def
= γt([[φ1]]L ,∨, [[φ2]]L)

[[r1 = r2]]L
def
= γt([[r1]]L ,⇔, [[r2]]L)

[[r1 ⊂ r2]]L
def
= γt([[r1]]L ,⇒, [[r2]]L)

Figure 4: Semantics of Specification Language

syntactic values of λφ . We collate bound variables under a single
binder and represent the later form equivalently as λ(k : TF). φF .
A relation (R) application expression is a proposition, hence a
value. This lets us continue treating R’s as uninterpreted. Opera-
tional semantics of λφ are call-by-value. The only reduction rule is
standard beta reduction.

Rules in Figure 4 provide interpretation of expressions and
types of specification language as expressions and types of λφ .
The interpretation of a λR type is its image with respect to F . A
colon-arrow type of relation is interpreted as a function type with
boolean co-domain. While its domain is expected to be a product
type, we chose to curry it to simplify presentation. A relation (R)
of type τR is interpreted as a variable R of (function) type [[τR]]L.
To compose relation applications using set operators (eg: union),
it is convenient to have R under a binder. We, therefore, consider
its eta-equivalent form as standard interpretation of R. We use an
auxiliary function (ηwrap) that accepts a λφ proposition expression
and its type scheme, and wraps it under an eta-equivalent binder.
Beta reduction in λφ always produce a value; so, evaluation relation
is a total function (Eval) over well-typed terms. We use Eval to
provide semantics to relation application expressions.

The standard interpretation of set-union and cross-product op-
erations, when sets are represented using prenex-quantified propo-
sitions is as following:

∀x.φ1 ∪ ∀x.φ2
def
= ∀x.(φ1 ∨ φ2)

∀x.φ1 × ∀y.φ2
def
= ∀x.∀y.(φ1 ∧ φ2)

Our semantics for union and cross-product operations are straight-
forward application of this interpretation to lambda-bound propo-
sitions. We use syntactic rewrite functions - γt and γ1, to for this
purpose. Finally, we use one more rewrite function - γ∀, to rewrite

λφ propositions bound under lambda to quantified propositions of
MSFOL.

To demonstrate the compilation process, we consider the fol-
lowing λR assertion, which is legal, albeit tautological, type refine-
ment:

RId(x) ∪ RId(y) = RId(y) ∪ RId(x)

The series of steps that compile the assertion to an MSFOL formula
are shown in Figure 52. It can be observed how the interpretation
of RId and Rmem as λφ binders aids in compiling the assertion to
MSFOL formula. Change of example needed to include Rmem..

The semantics of types and type refinements given 4 can be
lifted in straightforward way to the level of type enviroments (Γ):

[[Γ, x : {ν : T |φ}]]L
def
= [[Γ]]L ∧ ν : [[T]]L ∧ [[φ]]L

[[·]]L
def
= true

LEMMA 3.4. (Completeness of semantics) For every type refine-
ment φ, if Γ ` φ, then compile (Γ, φ) terminates and produces
an MSFOL formula.

3.5 Decidability of λR Type Checking
Sub-typing judgement in our core language (λR) relies on the
semantic entailment judgement of MSFOL. The premise of SUBT-
BASE contains the following:

[[Γ, ν : T]]L ∧ [[φ1]]L |=L [[φ2]]L

2 We focus only on highlighted part of the assertion as compilation stack
increases. We switch back to showing complete assertion when all sub-parts
are reduced. Digit before the dot in step number indicates this switch.

7 2014/2/28

[[Rid(x) ∪ Rid(y) = Rid(y) ∪ Rid(x)]]L (1.1)

γt([[Rid(x) ∪ Rid(y)]]L, ⇔, [[Rid(y) ∪ Rid(x)]]L) (1.2)

γt([[Rid(x)]]L, ∪, [[Rid(y)]]L) (2.1)

Inst[[Rid]]L x (3.1)

Inst (∀(j : [[int]]L .∀(k : [[int]]L).(j = k))x (3.2)

Inst (∀(j : A0).∀(k : A0).(j = k))x (3.3)

∀(k : A0).(x = k) (3.4)

γt(∀k.(x = k) , ∪, ∀k.(y = k)) (2.2)

∀(k : A0).(γt((x = k), ∪, (y = k))) (2.3)

∀(k : A0).((x = k ∨ y = k)) (2.4)

γt(∀(k : A0).(x = k ∨ y = k), ⇔,
∀(k : A0).(y = k ∨ x = k)) (1.3)

∀(k : A0).(γt(x = k ∨ y = k, ⇔, y = k ∨ x = k)) (1.4)

∀(k : A0).(x = k ∨ y = k ⇔ y = k ∨ x = k) (1.5)

Figure 5: Compiling a λR assertion to MSFOL

Consequently, decidability of type checking in λR reduces to de-
cidability of semantic entailment in MSFOL. Although semantic
entailment is undecidable for full first-order logic, our MSFOL
is a carefully chosen fragment of first-order logic for which the
problem is known to be decidable. The fragment, known as Effec-
tively Propositional (EPR) first-order logic, or Bernay-Schonfinkel-
Ramsay (BSR) class of logic, consists of prenex quantified proposi-
tions with uninterpreted relations and equality. Off-the-shelf SMT
solvers (eg: Z3) are also effecient decision procedures for EPR
logic [?]. Therefore, type checking in λR is also practical. Our
experimental results, provided in Section 5 corroborate this state-
ment.

THEOREM 3.5. (Decidability) Type checking in λR is decidable.

Proof Follows from Lemma 3.4 and decidability proof of EPR
logic.

4. Parametricity
4.1 Syntax
We now extend our core language (λR) with parametric polymor-
phism, and its specification language with parametric relations - re-
lations parametrized over other relations . We refer to the extended
calculus as λ∀R. Figure 6 shows type and specification language
of λ∀R. We have elided expression language of λ∀R, as it is not rel-
evant to the discussion. Unmodified syntactic forms are also elided
using ellipsis.

The only algebraic data type in λ∀R is a polymorphic list,
which is the domain for structural relations. Consequently, struc-
tural relations have sort schemes (σR), akin to type schemes (σ) of
the term language. For example, the non-parametric head relation
(Rhd) from Section 2, when defined over a ’a list will have a
sort scheme of ∀ ’a. ’a list :→ ’a . Specification language
contains an expression (RT) to instantiate generalized type vari-
able in parametric relation sorts.

A parametric relation generalizes a structural relation, just as
a polymorphic list generalizes a monomorphic one. Our syntax
and semantics for parametric relations are based on this corre-
spondence. Since the list type constructor takes only one type
argument, structural relations in λ∀R are parametrized over one
relational parameter. The domain of the relational parameter to a
structural relation over a ’a list should be ’a . When ’a in ’a
list is instantiated with ’b list , the relational parameter of a
parametric relation over ’a list can be instantiated with a struc-

Calculus λ∀R

t ∈ tuple− sort variables x, y, k ∈ variables
′a , ′b ∈ type variables

T ::= ′a | ′a list | ... datatypes

τ ::= {ν : T |Φ} | ... dependent type

δ ::= ∀t.∀(R :: ′a :→ t). δ | τ parametric type

σ ::= ∀ ′a . σ | δ type scheme

Specification Language

Φ ::= ρ = ρ | ρ ⊂ ρ | Φ ∧ Φ type refinement

| Φ ∨ Φ | >
ρ ::= R(x) | ρ ∪ ρ | ρ× ρ rel. expression

R ::= RT | R θR | R instantiation

θ ::= t | t ∗ θ | ... tuple sort

τR ::= ∀t. (′a :→ t) :→ (′a list :→ θ) relation sort

| ...

σR ::= ∀a. τR | τR sort scheme

ΣR ::= 〈Rs, Rp, σR, C x⇒ r〉 rel. definition

| 〈Rs, Rp, σR, R∗〉 | ...

Figure 6: λ∀R - Language with parametric relations

tural relation over ’b list . For instance, the relational parameter
R in the parametric membership relation (Rmem R), defined in
Section 2, can be instantiated with the non-parametric head relation
3 (Rhd) after instantiating ’a in its sort scheme with a ’b list .
The resulting relation can now be applied to a list of lists (i.e., a ’b
list list) to denote the set of head elements in the constituent
lists.

The definition of a parametric relation very often does not place
constraints over co-domain of its relational parameters. For in-
stance, consider the parametric Rhd relation over ’a list re-
produced from Section 2:

relation (Rhd R) (x::xs) = R(x) | ([]) = Rnull

Relation Rhd requires that domain of its parameter be a , but
it places no restriction on co-domain of R . In order to have a
truly parametric definition of Rhd , it is imperative that we let the
relational parameter to have an unrestricted co-domain. Therefore,
we let tuple-sort variables (t) to be used in tuple sorts (θ). A tuple-
sort variable (or simply a sort variable) can be instantiated with a
tuple sort, such as int*int . To simplify presentation, we require
the relational parameter to always have a sort variable as their co-
domain, so that sort of a parametric relation always has a quantified
sort variable (t) at the beginning. For instance, parametric relation
Rhd over an int list has the following sort:

∀t. (int :→ {t}) :→ (int list :→ {t})
The above sort is obtained by instantiating type variable a with
int in its sort scheme, which is shown below:

∀a. ∀t. (a :→ {t}) :→ (a list :→ {t})
In order to use a parametric relation in type refinement, its re-

lational parameter has to be instantiated. Polymorphism in λ∀R is
predicative; so, parametrization over relations in λ∀R is also pred-
icative. An instantiated parametric relation is equivalent to a non-
parametric relation; it can be applied to a variable of term language,

3 A note on notation: We use (Rmem R) and (Rhd R) to denote para-
metric membership and head relations, resp. We continue to useRmem and
Rhd to denote their non-parametric versions. We use qualifiers ”paramet-
ric” and ”non-parametric” to disambiguate.

8 2014/2/28

Semantics of Bind Equations [[ψ]]L

[[
R2 = λ(x : T1). bind (R1(x), λ(k : T2). r)

]]
L

def
= ∀(x : [[T1]]L). γ⇒([[R1(x)]]L , ∀((k : [[T2]]L)[[r]]L, [[R2(x)]]L)

∧ ∀(x : [[T1]]L). γ⇐([[R1(x)]]L , ∀(k : [[T2]]L)[[r]]L, [[R2(x)]]L)

γ⇒(∀(k : TF1).φF1 , ∀(k : TF1).∀(j : TF2).φF2 , ν
F) ↪→ ∀(k : TF1). ∀(j : TF2). φF1 ∧ φF2 ⇒ νF j

γ⇐(∀(k : TF1).φF1 , ∀(k : TF1).∀(j : TF2).φF2 , ν
F) ↪→ ∀(j : TF2).∃(k : TF1). νF j ⇒ φF1 ∧ φF2

Figure 7: Semantics of bind equations for parametric relations in λ∀R

and can also be used to instantiate other parametric relations . For
instance, (Rhd RId) is an instantiated relation. It can be applied
to a list l , or can be used to instantiate another parameteric re-
lation (eg: (Rmem R)). The class of relational expressions (ρ) of
λ∀R generalizes relation applicaton expression (R(x)) of λR to in-
stantiated relation application (R(x)).

To extend the generality of parametric relations to dependent
types of term language, we lift the parametrization over relations
from the level of type refinements to the level of type itself. We refer
to dependent types parametrized over relations as as parametric
dependent types (δ). An example of parametric dependent type is
the type of foldl from Section 2. Another example is the type of
map shown below:

(’R1,’R2) map : l → (f : x → {ν | ’R2(ν) =
’R1(x)})

→ {ν | (Robs ’R2)(ν) = (Robs ’R1)(l)}
The above type of map uses Robs as transitive occurs-before rela-
tion (R∗ob). More examples of parametric dependent types can be
found in Section 6.

4.2 Sort and Type Checking
Rules to check sorts of relational expressions and well-formedness
of type refinements (Φ) in λ∀R are straightforward extensions of
similar rules for λR. We elide them in the interest of space. Sort-
checking parametric relation definition reduces to to sort-checking
non-parametric relation definition under an environment extended
with the sort of its relational parameter. Checking sort of a relation
instantiation is same as checking sort of a function application in
typed calculi, such as System F. Rules to check generalization and
instantiation expressions can be adapted from System F.

4.3 Semantics of Parametric Relations
Before we describe our semantics for parametric relations , we
present few auxiliary definitions:

Ground Relation A ground relation of a parametric relation (R)
is a non-parametric relation obtained by instantiating the relational
parameter with identity (RId) relation in its definition. For in-
stance, ground relation of parametric membership (Rmem) relation
is Rmem RId , whose definition is obtained by substituting RId for
relational parameter in the definition of (Rmem R) . The substituted
definition is effectively the definition of non-parametric member-
ship relation (Rmem). Since we require the co-domain of the rela-
tional parameter in λ∀R to be a tuple-sort variable (t), instantiating
with RId is always sort-safe. Therefore, there exists a ground rela-
tion for every parametric relation in λ∀R.

Transformer Expression A transformer expression (FR) is a λR
relational expression under a binder that binds a tuple of variables.
A transformer expression is expected to transform the tuple to a
set of tuples through cross-product combination of relation appli-
cations. The sort of a transformer application is a colon-arrow from

r ::= R(x) | r × r
FR ::= λ(x : T). r transformer
eb ::= bind (R(x), FR) bind expression
Eb ::= λ(x : T). bind (R(x), FR) bind abstraction
ψ ::= R = Eb bind equation
ΣbR ::= λR.Eb bind definition

Figure 8: Bind Syntax

tuple-sort (θ1) to a set sort ({θ2}). An example of a transformer
expression of sort a :→ { a*a } is the reflexive transformer:

λ (x) . RId(x) × RId(x)

Bind Expression Consider an operator that accepts a relation
application and a transformer expression (FR), applies transformer
expression (FR) over every tuple in the set representing relation
application, and subsequently folds the resulting set of sets using
union. Such an operator has following sort:

∀ t1,t2. {t1} :→ (t1 :→ {t2}) :→ {t2}

We name the operator bind , after set monadic bind. Formal syntax
of a bind expression are given in Figure 8.

By binding a relation application with a transformer expression,
a bind expression effectively creates a new relation. For instance,
for an a list l , bind expression that binds Rmem(l) with re-
flexive transformer is as following:

bind(Rmem(l), λx.RId(x)×RId(x))

As per our informal semantics of bind , reflexive transformer is
applied on every tuple in the set Rmem(l) , and the the resulting
set of sets is folded using union. The result is the set of reflexive
pairs of elements in the list. It should be observed that this is the
same set produced by parametric (Rmem R) , if it is instantiated
with primitive R dup relation (Section 2). Therefore, we note that:

(Rmem R dup)(l) = bind(Rmem(l),λx.RId(x)×RId(x))

Where, equality should be interpreted as equality of sets on both
sides. Since semantics of a relation application is the set of tu-
ples, the above equation defines the semantics of (Rmem R dup)
in terms of its ground relation Rmem . It should be noted that sim-
ilar observation can be made about every instantiation of Rmem .
Therefore, Rmem can be defined equivalently as:

Rmem = λ R .λ l . bind(Rmem(l),λx.R(x))

We refer to the above definition as bind definition of Rmem . Ev-
ery well-sorted parametric structural relation definition in λ∀R can
be transformed to a bind definition that is extensionally equal, i.e.,
both produce same set of tuples for every instantiation, and subse-
quent application. Therefore, pattern-match syntax to define para-
metric relations should be treated as a syntactic sugar over its bind

9 2014/2/28

definition. We briefly describe the elaboration to bind definition
in following sub-section. However, we do not establish a formal
proof of equivalence between a pattern-match based definition and
its elaborated bind definition. For formal treatment, we assume that
a parametric relation is defined using bind syntax from Figure 8.

4.3.1 Elaboration to Bind Definition
Elaborating parametric relation definition to bind definition re-
quires that we construct its ground relation, and a transformer
expression. Ground relation definition is derived by instantiating
parametric definition with RId , as stated previously. Constructing
transformer expression is equally simple - one only needs to look
at the co-domain tuple sort of the parametric relation. A sort vari-
able in the tuple sort is interpreted as application of its parameter
relation, an asterisk in sort translates to a cross-product, and a λ∀R
type in the tuple sort translates to application of RId relation. For
instance, for a hypothetical parametric relation (Rx R) with fol-
lowing sort:

Rx :: ∀t. (int :→ {t}) :→ (int list :→
{int*t*t})

We construct the following transformer expression by looking at its
co-domain sort:

λ(x,y,z).RId(x)×R(y)×R(z)
Naming the ground relation of Rx as Rx’ , the equivalent bind
definition of Rx is:

λR.λl.bind(Rx’(l),λ(x,y,z).RId(x)×R(y)×R(z))

4.3.2 Bind Equations
By substituting parametric relation with its bind definition, every
instantiation of a parametric relation can be beta-reduced to a bind
abstraction (Eb in Figure 8), which, like any non-parametric struc-
tural relation in λ∀R, is a map from a list to set of tuples.
Therefore, instantiated parametric relation can be treated as a new
non-parametric relation that is defined using bind . For example,
(Rmem R dup) can be treated as a new non-parametric relation R1 ,
defined in terms of bind :

R1 = λl.bind(Rmem(l),λx.RId(x)×RId(x))
By rigourously defining semantics of bind equations such as above,
we can effectively capture semantics of any instantiation of a para-
metric relation in terms of its ground relation. This is the insight
that allows us to use parametric relations seamlessly in type refine-
ments. For instance, bind semantics for (Rmem R dup) let us prove
the following implication, which could potentially arise during sub-
type checking:

(Rmem R dup)(l1) = (Rmem R dup)(l2)
⇒ Rmem(l1) = Rmem(l2)

Formal semantics of bind equations, which also define an algo-
rithm to compile bind equations to MSFOL formulas, are described
in Figure 7. Our semantics extend MSFOL semantics of relational
expressions from Figure 4 to bind equations. Under our semantics,
the bind equation for Rmem R dup is interpreted as a conjunction of
following first-order formulas (elaborated for clarity):

• If x ∈ Rmem(l) , and y ∈ RId(x) × RId(x) , then y ∈
R1(l) .
• If y ∈ R1(l) , then there must exist an x such that x ∈
Rmem(l) and y ∈ RId(x) × RId(x)

Since sets have no other notion associated with them other than
membership, the above first-order assertions completely describe
(Rmem R dup)(l) in terms of Rmem(l) .

4.4 Decidability of Type Checking
Type refinements (Φ) in λ∀R can be elaborated to a conjunction
of bind equations representing semantics of instantiated relations,
and a λR type refinement (φ). Consequently, we have the following
result:

THEOREM 4.1. (Decidability) Type checking in λ∀R is decidable.

Proof Follows from the decidability proof of EPR logic, to which
bind equations are compiled to, and decidability result (Theorem
3.5) for λR.

5. Implementation
We have implemented our specification language and verification
procedure as an extended type-checking pass (called CATALYST)
in MLton, a whole-program optimizing compiler for Standard ML4

The input to our system is CoreML, an A-normalized intermedi-
ate representation with pattern-matching, but with all SML module
constructs elaborated and removed. SML programs are annotated
with relational specifications, defined in terms of relational depen-
dent types that decorate function signatures, along with definitions
of paramterized structural relations over the program’s datatypes.
The type system is a conservation extension of SML’s, so all pro-
grams that are well-typed under CATALYST are well-typed SML
programs. Our type-checking and verification process closely fol-
lows the description given in the previous sections. Verification
conditions, representing the consequent of the SUBT-BASE type-
checking rule (Figure 3) are compiled to a first-order formula, as
described in Sections 3 and 4, and checked for validity (satisfia-
bility of its negation) using the Z3 SMT solver.

To be practically useful, our implementation extends the formal
system described thus far in three important ways:

1. Primitive Relations: We provide a general framework to add
new primitive relations; the framework allows the class of re-
lational expressions to be extended by permitting relational ex-
pressions to be abstracted in prenex form. The framework only
needs to be seeded with the single primitive relation Rid. For
example, R6=k is defined as:

R6= = λ k.λ x.Rid(x) - Rid(k)

Similarly, R=k can be defined as:

Req = λ k.λ x.Rid(x) - (Rid(x) - Rid(k))

Both R6= and Req can be ascribed colon-arrow sorts, similar
to structural relations. Once defined, a primitive relation can
be used freely in type refinements. For example, the relation
yielded by evaluating (R6= c) can be used to instantiate the
parametric Rmem relation to define the set of all elements in
a list that are not equal to some constant c .

2. Base Predicates: Consider the following polymorphic identity
function, augmented with its obvious relational refinement:

id : x → {v | Rid(v) = Rid(x) }
val id = fn x => x

The post-condition is an unintuitive way of expressing the sim-
ple fact that id returns its argument. To avoid such needless
verbosity, we admit non-relational assertions (called base pred-
icates), drawn from propositional logic with equality, to our

4 The source code for the implementation is available online from: github
URL.

10 2014/2/28

specification language; these predicates may be freely com-
posed in type refinements using logical connectives.

3. Inference and Annotation Burden: Our implementation infers
sorts for structural relations, and relational parameters in depen-
dent types. Our term language and specification language have
distinct sort instantiation expressions. We also infer appropriate
tuple-sort instantiations by unification. Therefore, neither the
ML program, nor the specification needs to be annotated with
sorts.
The type checking algorithm performs bi-directional type
checking [?], and needs annotations only for recursive function
definitions. For all other expressions, CATALYST synthesizes
a suitable dependent type. For example, types from different
branches of ML case expression are unified using a logical
disjunction. Generating a suitable type for a let expression re-
quires that we use an existential quantifier in type refinements,
which is skolemized [?] while encoding the VC in MSFOL.
Notably, we do not expose any quantifiers in our specification
language.
For non-recursive function applications, although it is possible
to infer instantiation annotations for parameteric relations with
help of a an expensive fix-point computation that generates an
exhaustive list of all possible instantiations, CATALYST relies
on manual annotations for parameter instantiations in these
cases.

5.1 Experiments
We have used CATALYST to verify invariants, often to the extent of
full functional correctness, on:

• List library functions, such as as concat , rev , revAppend ,
foldl , foldr , map , exists , filter , zip etc., and
• Okasaki’s red-black tree [?] library functions, such as balance ,

multiple order traversal functions, and mirrorImage .

Excluding the time take by MLton compiler to elaborate and type
check these Standard ML programs, none of our benchmarks took
more than 0.2s to verify, including A-Nomalization, specification
elaboration, VC generation, and SAT solving through Z3.

6. Examples and Case Study
6.1 Examples
exists. Consider the higher-order exists function over lists
shown in Fig. 9a (dependent type signatures are elided for brevity).
A type that captures the semantics of exists , irrespective of its
implementation, should assert that exists returns true if and
only if its higher-order argument returns true for some member
of the list. We express the invariant as the following type:

(’R exists) :
l → f : x → { ν | ν = true ⇔’R(x) 6= Rnull)} →
{ν | ν=true ⇔ (Rmem ’R)(ν) 6= Rnull }

The interpretation of the type is as follows: Let there be a relation
’R such that f returns true if and only if relation ’R x is not
the empty set for f ’s argument x . Then, exists returns true if
and only if relation R is not the empty set for some member of the
list.

A parametric dependent type for filter , shown in Fig. 9b is
given below:

(’R filter) :
l → f : x → { ν | ν = true ⇔’R(x) = Rnull)} →
{ν | (Rmem ’R)(ν) = Rmem(l) }

The intuition behind this type is the same as that of exists .
However, since filter removes those elements for which its higher-
order argument returns true, f ’s dependent relation type is ’R(x)
= Rnull .

contains Consider the definition of the contains function
shown in Fig. 9c that uses exists to check for the existence of
a constant string str in a list l . Since the higher-order function
passed to exists is:

val isStr = fn x => x=str

the relational dependent type of isStr is:

isStr : x →{ν | (Reqstr)(ν) 6= Rnull

This clearly suggests that relational parameter of exists has to
be instantiated with (REq str) . Having made this observation,
we stress that no type annotation is required for isStr , as is a
non-recursive function.

Observe that the call to exists from contains includes
explicit parameter instantiation. The resultant type of hasStr is:

hasStr : {ν | ν=true ⇔(Rmem (Reqstr))(l) 6= Rnull}

6.2 α-conversion
An SML implementation of the untyped lambda calculus is shown
in Figure 10. The substitution operation (subst) substitutes a
free variable (id) in an expression (e2) with another expression
(e1). Function alphaConvert consistently renames occurrences
of the bound variable in an abstraction expression. Observe that
subst and alphaConvert are mutually recursive definitions.
Both functions make use of freeVars , which returns a list of free
variables in an expression.

It is widely agreed that substitution andα-conversion operations
on lambda calculus terms are quite tricky to define correctly [? ? ?
]. Some of the behaviors exhibited by incorrect implementations in-
clude (a) α-conversion renames a free variable, or fails to rename a
bound variable; (b) substitution fails to substitute free occurrences
of the variable (id), or substitutes a bound occurrence of the vari-
able; or (c) substitution is not capture-avoiding, i.e., substituting e1
for id in e2 captures variables of e1 , which are otherwise free.

The relational specification of substitution and α conversion is
given in the bottom-half of Fig. 10 5 Note that one need not expose
notions of capture-avoidance, or other such intricacies, to write
down the specification, which is given in terms of a new structural
relation Rfv that relates an expression of the calculus to its free
variables6 Function freeVars returns a list, whose members are
free variables of its input expression. Its type represents this fact.

CATALYST successfully verifies the implementation against its
specification. Alternate (incorrect) implementations such as those
that fail to perform the capture-avoiding check on line 35, or the
free variable check on line 31 trigger a type error. Conversely, note
that, despite enforcing strong invariants, the relational specification
for subst and alphaConvert does not constrain how these func-
tions are realized in ML. For instance, an implementation of subst
that pro-actively renames bound variables in e2 before substitution
is successfully verified against the same specification.

7. Related Work
Type systems of mainstream functional languages, such as GHC
Haskell and OCaml, support a basic form of dependent typing [? ?

5 We introduce some syntactic sugar in defining type refinements. For exam-
ple, the branch expression (if φ then φ1 else φ2) in a type refinement
translates to ((φ ∧ φ1) ∨ (¬φ ∧ φ2)).
6 We write Rmem instead of (Rmem RId) in the specification when there
is no ambiguity.

11 2014/2/28

fun exists l f = case l of
[] => false

| x::xs =>
let

val v1 = exists xs f
val v2 = f x
val v3 = v1 orelse v2

in
v3

end

(a) exists

fun filter l f = case l of
[] => []

| x::xs =>
let

val xs’ = filter xs f
val v2 = f x

in
if v2 then xs’

else x::xs ’
end

(b) filter

fun contains l str =
let

val isStr =
fn x => x=str

val hasStr = exists (REq str) l
isStr

in
hasStr

end

(c) contains

Figure 9: Examples

ML Program
1 datatype exp = Var of string
2 | App of exp*exp
3 | Abs of string*exp
4

5 fun freeVars e = case e of
6 Var id => [id]
7 | App (e1 ,e2) => concat [freeVars e1 ,
8 freeVars e2]
9 | Abs (id ,e’) => filter (RNeq id)

10 (freeVars e’) (fn fv => not (fv = id))
11

12 fun alphaConvert e = case e of
13 Abs (id,e’) =>
14 let
15 val fv_e ’ = freeVars e’
16 val id’ = createNewName fv_e ’ id
17 in
18 Abs(id ’,subst(Var id’,id,e’))
19 end
20 | _ => raise Error

21 and subst e1 id e2 = case e2 of
22 Var id’ => if id = id ’
23 then e1 else e2
24 | App(e21 ,e22) =>
25 let
26 val e21 ’ = subst e1 id e21 ,
27 val e22 ’ = subst e1 id e22
28 in
29 App (e21 ’,e22 ’)
30 end
31 | Abs(id’,e2 ’) => if id’ = id then e2 else
32 let
33 val fv_e1 = freeVars e1
34 in
35 if contains fv_e1 id ’
36 then subst e1 id (alphaConvert e2)
37 else Abs(id ’,subst e1 id e2 ’)
38 end

Relational Specification
relation Rfv (Var x) = {(x)} | (App (e1 ,e2)) = Rfv(e1) U Rfv(e2) | (Abs (id ,e)) = Rfv(e) - {(id)};

concat : ll -> {v | (Rmem RId)(v) = (Rmem (Rmem RId))(ll)};
createNewName : fvs -> id -> {v | not (v = id) /\ not ({(v)} ⊆ Rmem(fvs))};
freeVars : e -> {l | Rmem(l) = Rfv(e)};
alphaConvert : e -> {ex | Rfv(ex) = Rfv(e)};
subst : e1 -> id -> e2

-> {ex | if ({(id)} ⊆ Rfv(e2)) then Rfv(ex) = (Rfv(e2) - {(id)}) U Rfv(e1) else Rfv(ex) = Rfv(e2)};

Figure 10: SML implementation and specification of the untyped lambda calculus.

] using GADTs [?]. At a high level, a structural relation of a data
type is similar to a GADT insofar as it corresponds to an index that
tracks an inductively definable relation over the data type. However,
unlike the indexed type systems of Haskell and OCaml, where types
are kept separate from terms, ours is a dependent type system.
Variables and constants of term language can freely enter the type
universe. In this sense, our type system is similar to the refinement
based dependent type system of F* [?]. Type refinements in F*
are drawn from full first-order logic extended with theories that an
SMT solver can reason with, whereas our specification language for
ML programs is an abstraction over first-order logic that was tailor-
made for equational and relational reasoning. The expressivity of
using full-first order logic in F* comes at the cost of decidability of
type checking. Further, even with access to full first-order logic in
type refinements, a relationally parametric type cannot be directly
expressed in F*; second-order quantification is required.

Structural relations, in their operational manifestation, can be
compared to the structurally recursive measures of Liquid Types
[? ?] where the co-domain is always a set. Parametric structural
relations may be viewed as generalizing such measures to higher-

order measures. However, the focus in liquid types is on infererring
type refinements with help of user-provided templates, which re-
quires templates to be simple so that inference remains trackable.
Relationally parametric dependent types can be compared to liq-
uid types with abstract refinements [?], which let liquid types
parametrize over type refinements (boolean predicates). Once ap-
plied to a value, an abstract refinement becomes a concrete refine-
ment, which can only be used to refine a type. On the other hand,
a relational parameter can be treated just as any other relation in
our type refinements, including being passed as a higher-order ar-
gument to parametric relations. We require this generality to rea-
son about shape invariants of higher-order catamorphisms such as
foldl .

Liquid type measures are an example of structurally recursive
abstraction functions that map an algebraic data type to an abstract
domain, such as natural numbers or sets. Suter et al.[?] describe
decision procedures for the theory of algebraic data types extended
with abstraction functions to decidable abstract domains. However,
our encoding does not require such theory extensions to logic. A
structural relation straightforwardly translates to an uninterpreted

12 2014/2/28

relation in the first-order logic. Using bind semantics, our encoding
was also able to support parametric relations, which would other-
wise require higher-order abstraction functions in logic.

Imperative shape analyses have previously used relations to cap-
ture some inductive properties [?], and to describe memory con-
figurations [?]. However, their applicability has been limited ow-
ing to destructive updates and pointer manipulations in imperative
programs. In [?], Might describes a shape analysis to determine
control-flow shape of higher-order functions. Our type system is
capable of describing some notion of control flow for higher-order
functions; e.g., the order in which the higher-order argument of
foldl is applied over the list. However, inductive relations are
conspicuous by their absence in functional program analysis, de-
spite the fact that such programs are highly amenable for inductive
reasoning. To the best of our knowledge, our type system is first to
use inductive relations for performing shape analysis on functional
programs.

Logical relations have been used extensively to reason about
contextual equivalence [?]. Whereas a logical relation relates two
terms of a (possibly recursive) type, a structural relation relates a
term of an iso-recursive type to its constituent values. Parametric
logical relations have been used to reason about contextual equiva-
lence for effectful programs [? ? ?]. In these works, a binary log-
ical relation that relates effectful expressions is parametrized by a
relation that relates their states. In contrast, a parametric structural
relation is a structural relation over a polymorphic data type, that
is parametrized by relations over type variables in the data type.
While the primary purpose of structural relations is to enable spec-
ification and static verification, there is a possibility of sufficiently
equipping our framework to reason about invariance of arbitrary
relations, which is the key to reason about contextual equivalence.
This is a possible avenue for future research.

Henglein [?] describes a domain-specific language to define
ordering relations for composite data types such as lists and trees.
However, the notion of order there is the domain order used to com-
pare two elements of same domain, such as a lexicographic order.
In contrast, order relation in our case describes relative ordering of
elements in a composite data type.

8. Conclusions
In this paper, we have presented a relational specification language
integrated with a dependent type system that is expressive enough
to state structural invariants on functions over algebraic data types,
often to the extent of full-functional correctness. We described how
parametric relations can be used to enable compositional verifi-
cation in presence of parametric polymorphism and higher-order
functions. We demonstrated that even with such expressive specifi-
cation language, type checking can remain decidable and practical.
We have presented several examples and a case study to show wide
applicability and practicality of our approach.

A. Appendix
LEMMA A.1. (Completeness of semantics) For every type refine-
ment φ, if Γ ` φ, then compile (Γ, φ) terminates and produces
an MSFOL formula.

Proof Proof by induction on well-formedness judgement.

13 2014/2/28

