
EE570 Term Project

Gowtham Kaki

Thursday, November 21, 13

Overview

• Three papers on logic and applications

• Chu-Min Li, Zhu Z, Manya, F and Simon L, Minimum
Satisfiability and Applications, IJCAI, 2011.

• Pulina L, and Tachella A, A Structural Approach to Reasoning
with Quantified Boolean Formulas, IJCAI, 2009.

• Huang M, Shi X, Jin F, and Zhu X, Using First-Order Logic to
Compress Sentences, AAAI, 2012

2

Thursday, November 21, 13

SAT Problem

• Given a formula in propositional logic, does there exist an
assignment to literals such that the formula evaluates to
true?
 (x ∨ z) ∧ (y ∨ ¬z)

• SAT problem for formula with arbitrary number of literals is
NP-complete.

• Nevertheless, very important problem as it finds
applications in

• Propositional theorem proving, and

• Solving other NP-hard problems

3

Thursday, November 21, 13

SAT in Theorem Proving
• Given a propositional formula ϕ,

 ϕ is valid ≡ ¬ϕ is UNSAT

• Eg: How do you verify that Frege’s theorem is valid?

4

Thursday, November 21, 13

SAT in Theorem Proving
• Given a propositional formula ϕ,

 ϕ is valid ≡ ¬ϕ is UNSAT

• Eg: How do you verify that Frege’s theorem is valid?

5

• ¬ (Frege's theorem) → → UNSAT

• SAT solver is a decision procedure for propositional logic

SAT
Solver

Thursday, November 21, 13

Encoding NP-hard problems in SAT

• Encode 4-Queens problem in SAT:

• 16 boolean variables : x[i][j] 1≤i, j≤4. x[i][j] is true if and
only if board[i][j] has queen in the solution.

• For every x[i][j], x[i][k], assert ¬(x[i][j] ∧ x[i][k]).
Similarly for columns and diagonals.

• The result is a large conjunction of formulas like above.

6

• Conjunction → → SAT with model M
SAT

Solver

F F T F

T F F F

F F F T

F T F F

Thursday, November 21, 13

MaxSAT and MinSAT problems
• Consider en extension of SAT problem where set of CNF

clauses of the formula are divided into two sets:

• Hard clauses - Inviolable constraints. Need to be satisfied
at any cost

• Soft clauses - Optional constraints. Some or all of them
can remain unsatisfiable.

• MaxSAT problem - Maximize the number of SAT soft
constraints (≡ Minimize UNSAT).

• MinSAT problem - Minimize the number of SAT soft
constraints (≡ Maximize UNSAT)

• Observe that MaxSAT and MinSAT are dual problems.
7

Thursday, November 21, 13

MinSAT Application - MaxClique
• Clique of a graph G =(V,E) is a sub-graph G’=(V’,E’), such that V’

⊆ V, E’ ⊆ E, and E’ = V’ x V’.

• MaxClique problem - Given a graph G=(V,E), find a clique of G
with largest number of vertices.

• MinSAT encoding of MaxClique: Let G’=(V’,E’) be the MaxClique
sub-graph of G. We add:

• A variable xi for each vertex vi ∈ V. xi is true iff vi ∈ V’.

• A hard constraint ¬xi ∨ ¬xj for every pair of non-adjacent
vertices vi and vj.

• A soft constraint ¬xi for every i.

• Minimizing # of SAT soft constraints ≡ Maximizing # of vertices
in G’. 8

Thursday, November 21, 13

MinSAT Application - MaxClique

• Hard : (¬x1 ∨ ¬x4) ∧ (¬x1 ∨ ¬x5) ∧
(¬x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4)

• Soft : (¬x1) ∧ (¬x2) ∧ (¬x3) ∧ (¬x4)
∧ (¬x5)

9

Thursday, November 21, 13

DPLL

• Davis-Putnam-Logemann-
Loveland (DPLL) algorithm
is an algorithm to decide
satisfiability of
propositional logic
formulae in CNF form.

• Based on backtracking and
propositional clause
resolution (Robinson,
1965).

10

Σ ⊨ ϕ Σ ⊨ ¬ϕ ∨ ψ1 ∨ .. ∨ ψn
 Σ ⊨ ψ1 ∨ .. ∨ ψn

Σ ⊨ ϕ Σ ⊨ ϕ ∨ ψ1 ∨ .. ∨ ψn
 Σ ⊨ ⊤

Thursday, November 21, 13

MinSatz

• Algorithm proposed by
the paper for MinSat
problem

• Extends DPLL with the
weighted soft constraints.

• Goal is to maximize the
number of unsatisfied soft
constraints.

11

• Similar to (α,β)-pruning, passes the maximum found so far.

• uses overestimation as static evaluator.

Thursday, November 21, 13

MinSatz - Overestimation
• Overestimate(ϕ) finds the maximum number of unsatisfiable soft

constraints out of the remaining soft constraints when the
current assignment is completed in some way.

• A naive overestimation just returns number of remaining soft
constraints.

• Paper proposes an intelligent overestimation calculation based
on following observations:

• Consider the two soft clauses containing literals x and ¬x.
Surely, both cannot be UNSAT simultaneously.

• consider the case where there are two unit soft clauses with
literals x1 and x2, respectively, and a hard clause (x1 ∨ x2).
Again, both soft clauses cannot be simultaneously UNSAT.

12

Thursday, November 21, 13

MinSatz - Overestimation

• Overestimate(ϕ) makes use of aforementioned observations:

• Construct a graph G’’ that contains a vertex for each soft
constraint.

• Add an edge between two vertices if corresponding soft
constraints cannot be simultaneously satisfied (as per
observations made).

• Observe that for every clique in G’’, utmost one soft
constraint can be unsatisfiable. Therefore, number of
cliques in the clique partition of G’’ gives upper bound on
number of unsatisfiable soft constraints.

13

Thursday, November 21, 13

MinSatz - Critique

• Consider a ϕ with hard
part =
x1 ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3)
∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)
and soft part = (¬x1)

• hardUnitPropagate
propagates hard unit clause
(x1), therefore makes lone
soft constraint UNSAT
(makes it empty).

14

• Predicate at Line 5 evaluates to true. MinSatz returns 1.

• But, hard part of ϕ is UNSAT!

Thursday, November 21, 13

MinSatz - Critique

• MinSatz returning values > 0 for UNSAT ϕ is clearly
inappropriate.

• Interesting Qn: what is the weakest pre-condition under
which the given algorithm can return correct answer?

• Ans: ϕ has to be a CNF formula with only Horn clauses. A
CNF clause is a Horn clause if it contains atmost one +ve
literal (a non-negated variable).

• Unit resolution is complete for Horn CNF formula [Boyer
R S, 1971].

• Therefore, if formula is UNSAT, then it wouldn’t even reach
Line 5 of MinSatz.

15

Thursday, November 21, 13

MinSatz - Critique
• Consider the case when

LB>0 (i.e., some soft
constraints can be UNSAT
when hard part is SAT)

• Assume that first recursive
call (line 13) encounters
unsatisfiability.
Consequently, it returns -1.

• Now, -1 becomes LB for
second recursive call

16

• Unfortunately, we have lost the best solution found so far!

• More importantly, MinSatz might return non-optimal solution.

Thursday, November 21, 13

MinSatz - Critique

• Consider a ϕ with hard
constraints:
{(x1 ∨ x2), (¬x1 ∨ x3)}
and soft part =
{(¬x1), (¬x2), (¬x3)}

• Assume selectVariable selects
x1. First recursive call sets
x1 to true.

• hardUnitPropagate
immediately returns SAT,
assigning true to x3.

17

• Now, ϕ is empty. So, MinSatz returns with number of empty soft
constraints, which is 2. But, correct answer is 3!

Thursday, November 21, 13

MinSatzEE570

• MinSatzEE570 is modified
MinSatz with corrections
for inconsistencies.

• Reduces MinSAT to SAT
problem and invokes DPLL
when all soft constraints
are UNSAT (orange box).

• Accounts for unsatisfiability
result and consequent -ve
return value from recursive
calls (blue box).

18

Thursday, November 21, 13

MinSatzEE570
• Uses specialized

hardUnitPropagateEE570.

• Adds tautological clauses of form
(x ∨ ¬x) for each x that gets
eliminated during unit
propagation.

• Eg: usual unit propagation on
(x1) ∧ (x1 ∨ x2 ∨ ... ∨ xn)
returns ⊤(empty), after {x1↦ #t}.

• hardUnitPropagateEE570 returns
(x2 ∨ ¬x2) ∧ ... ∧ (xn ∨ ¬xn) so
that MinSatzEE570 can chose
optimal assignments for x2, .. , xn

19

Thursday, November 21, 13

MinSatzEE570 - Implementation
• Both DPLL and MinSatzEE570 were implemented in racket,

a dialect of scheme - https://github.com/gowthamk/ee570

• Racket provides exception handling, so failure case (eg:
UNSAT in a recursive call) can be caught and handled at
appropriate location (eg: reset LB value).

• Racket is still scheme, so rewrite system from HW-3 was
reused to perform unit propagation (which is essentially
boolean-simplify with appropriate rules). Also, HW-2 was
reused to maintain consistent and non-redundant
assignments to literals.

• Experiments performed on MaxClique calculation verified
correctness of implementation.

20

Thursday, November 21, 13

https://github.com/gowthamk/ee570
https://github.com/gowthamk/ee570

Quantified Boolean Formulas

• Informally, quantified boolean formulas are propositional
formulas extended with existential and universal quantifiers.

• Formally, A quantified boolean formula (QBF) is a formula of
form φ = Q1z1Q2z2 ... Qnzn ϕ, where

• Qi ∈ {∀,∃}.

• z1, z2 ... zn are distinct boolean variables. Q1z1Q2z2 ... Qnzn is
called prefix of φ,

• ϕ, called matrix of φ, is a propositional formula.

• Without loss of generality, we assume ϕ to be in CNF.

21

Thursday, November 21, 13

Semantics of QBFs
• Consider (x ∨ y). Is it SAT?

• Now, consider ∀x.∀y.(x ∨ y). Is it SAT? -- Contradictory clause.

• Consider (x ∨ ¬x). SAT?

• Now, ∀x. (x ∨ ¬x). SAT?

• What do we observe?

• A universally quantified formula is SAT, if its propositional matrix
is valid, i.e., if it is true under all possible interpretations of
universally quantified variables.

• Similarly, for existential quantification, it can be observed that QBF
is SAT if there exists atleast one interpretation of existentially
quantified variables for which propositional matrix is true.

22

Thursday, November 21, 13

Backtracking Search of QBF

• Semantics of QBF (the process of its evaluation) can be
represented as an AND-OR tree.

• For eg, AND-OR tree for
 ∀x.∃y.(x ⇔ y) is shown here.

• The tree naturally leads to
backtracking based search
procedure.

• Optimizations possible. For eg: Backtrack as soon as search
encounters a contradictory clause. No need to unroll fully.

23

Thursday, November 21, 13

Clause Resolution for QBFs

• General clause resolution rule
for propositional logic is well
known.

• Clause resolution rule for
QBFs is similar, except for

• The literal that occurs with different polarity in both
clauses (ψ in the fig.) should be an existential literal

• Φi ≠ Θj where0≤i≤n,and0≤j≤m

24

Thursday, November 21, 13

STRUQS

• STRUQS is the solver for quantified boolean formulas described
in the paper [Pulina L, and Tachella A, A Structural Approach to
Reasoning with Quantified Boolean Formulas, IJCAI, 2009]

• Alternates between backtracking search with optimizations
(backjumping) and clause resolution.

• But, DPLL already does that for propositional logic. What is the
novelty, then?

• Unlike propositional logic, clause resolution for QBFs is
complete![Kleine-Büning et al., 1995]

• Technically, one can construct a solver with only clause
resolution. But, clause resolution may lead to exponential blowup
of formulas. So, it is not better than backtracking search.

25

Thursday, November 21, 13

STRUQS

• STRUQS alternates between search and resolution based
on a heuristic.

• The heuristic is a function of structure of the QBF (thence
the name). Its optimal value was determined using
experiments.

• Experiments performed on QBFEVAL’08 dataset. STRUQS
solved 39% of dataset in allotted 600s of CPU time. Would
have been placed 3rd in QBFEVAL’08.

• The conclusion is that it is profitable to employ search and
resolution alternatively rather than relying on any one of
them.

26

Thursday, November 21, 13

Compressing English Sentences

• Third paper [Huang M, Shi X, Jin F, and Zhu X, Using First-
Order Logic to Compress Sentences, AAAI, 2012] uses a
combination of following to compress English sentences:

• NLP Parser aided Parts-of-speech (POS) tagging,

• Inference rules in first-order logic (FOL),

• Markovian Logic Network (MLN) to learn relative
weights for rules and carry out compression.

• Main contributions: FOL rules for compressing a sentence
by word/sentence deletion. Using MLNs to impose those
rules on a dataset.

27

Thursday, November 21, 13

Rules

• Consider sentence “I am positively sure”. Adjective
“positive” can be removed.
 adjective(i) ⇒ delete(i)

• Counterexample : ”the relative velocity of object is 2 km/s”.
adjective(i) ∧ (∃ j.property(words[i, i + i], j)) ⇒ ¬delete(i)

• Premises of 2nd rule subsume those of 1st rule, yet it
arrives at a contradicting conclusion!

• Dilemma : What rule to apply?

• Solution : Add weights to rules to decide the most-
applicable rule.

28

Thursday, November 21, 13

Markovian Logic Network
• The problem of deciding the most-applicable rule, when rules

have relative weights, is an old one. Markovian Logic
Network solves the problem for first-order logic.

• A Markovian Logic Network (MLN) is a probabilistic
deductive system that makes uncertain inference based on
first-order rules annotated with probabilities.

• Formally, a MLN is a set of pairs (φ, w), where φ is a
formula in first-order logic and w is a weight for the
formula, a real number

• For eg, when rules propositional logic are annotated with
w=1, (assuming any other rule has w=0), an MLN would
deduce tautology with w=1 and contradiction with w=0.

29

Thursday, November 21, 13

Experiments
• Many rules as described previously were constructed based

on English grammar and experience. Rules makes use of
POS tags generated by Stanford NLP Parser.

• Problem : How to annotate those rules with weights?
Solution : Let MLN learn the weights utilizing a training set.

• Existing software (thebeast) was used to train MLN. About
1/3rd of the dataset is used to train MLN, which was used
to compress the rest (2/3rds) of the dataset.

• One of their evaluations used humans to rank the quality of
compressed sentences against those generated by others.

• Evaluators ranked new compression model as best for
written corpus, and worse than others for spoken corpus.

30

Thursday, November 21, 13

Sample Results of Compression

31

Thursday, November 21, 13

Conclusion

• SAT problem for propositional logic and quantified boolean
formulas (QBFs).

• DPLL algorithm for propositional SAT and STRUQS
approach to QBF SAT.

• Propositional MinSAT problem. MinSatz algorithm, its
inconsistencies and a corrected MinSatzEE570.

• Applications of SAT and MinSAT

• Compressing English sentences using first-order logic.

32

Thursday, November 21, 13

Thank you!

33

Thursday, November 21, 13

