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Overview

• Three papers on logic and applications

• Chu-Min Li, Zhu Z, Manya, F and Simon L, Minimum 
Satisfiability and Applications, IJCAI, 2011.

• Pulina L, and Tachella A, A Structural Approach to Reasoning 
with Quantified Boolean Formulas, IJCAI, 2009.

• Huang M, Shi X, Jin F, and Zhu X, Using First-Order Logic to 
Compress Sentences, AAAI, 2012
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SAT Problem

• Given a formula in propositional logic, does there exist an 
assignment to literals such that the formula evaluates to 
true?
           (x ∨ z) ∧ (y ∨ ¬z)

• SAT problem for formula with arbitrary number of literals is 
NP-complete.

• Nevertheless, very important problem as it finds 
applications in

• Propositional theorem proving, and

• Solving other NP-hard problems
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SAT in Theorem Proving
• Given a propositional formula ϕ, 

           ϕ is valid ≡ ¬ϕ is UNSAT

• Eg: How do you verify that Frege’s theorem is valid?
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• ¬ (Frege's theorem) →                → UNSAT

• SAT solver is a decision procedure for propositional logic

SAT
Solver
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Encoding NP-hard problems in SAT

• Encode 4-Queens problem in SAT:

• 16 boolean variables : x[i][j] 1≤i, j≤4. x[i][j] is true if and 
only if board[i][j] has queen in the solution.

• For every x[i][j], x[i][k],  assert ¬(x[i][j] ∧ x[i][k]). 
Similarly for columns and diagonals.

• The result is a large conjunction of formulas like above. 
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• Conjunction →                → SAT with model M
SAT

Solver

F F T F

T F F F

F F F T

F T F F
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MaxSAT and MinSAT problems
• Consider en extension of SAT problem where set of CNF 

clauses of the formula are divided into two sets:

• Hard clauses - Inviolable constraints. Need to be satisfied 
at any cost

• Soft clauses - Optional constraints. Some or all of them 
can remain unsatisfiable.

• MaxSAT problem - Maximize the number of SAT soft 
constraints (≡ Minimize UNSAT).

• MinSAT problem - Minimize the number of SAT soft 
constraints (≡ Maximize UNSAT)

• Observe that MaxSAT and MinSAT are dual problems.
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MinSAT Application - MaxClique
• Clique of a graph G =(V,E)  is a sub-graph G’=(V’,E’), such that V’ 

⊆ V, E’ ⊆ E, and E’ = V’ x V’.

• MaxClique problem - Given a graph G=(V,E), find a clique of G 
with largest number of vertices.

• MinSAT encoding of MaxClique: Let G’=(V’,E’) be the MaxClique 
sub-graph of G. We add:

• A variable xi for each vertex vi ∈ V.  xi is true iff vi ∈ V’.

• A hard constraint ¬xi ∨ ¬xj  for every pair of non-adjacent 
vertices vi  and vj.

• A soft constraint ¬xi for every i.

• Minimizing # of SAT soft constraints ≡ Maximizing # of vertices 
in G’. 8
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MinSAT Application - MaxClique

• Hard : (¬x1 ∨ ¬x4) ∧ (¬x1 ∨ ¬x5) ∧ 
(¬x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4)

• Soft : (¬x1) ∧ (¬x2) ∧ (¬x3) ∧ (¬x4) 
∧ (¬x5)
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DPLL

• Davis-Putnam-Logemann-
Loveland (DPLL) algorithm 
is an algorithm to decide 
satisfiability of 
propositional logic 
formulae in CNF form.

• Based on backtracking and 
propositional clause 
resolution (Robinson, 
1965).
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Σ ⊨ ϕ     Σ ⊨ ¬ϕ ∨ ψ1 ∨ .. ∨ ψn                                                                                                                                                                                                                                                    
   Σ ⊨ ψ1 ∨ .. ∨ ψn

Σ ⊨ ϕ     Σ ⊨ ϕ ∨ ψ1 ∨ .. ∨ ψn                                                                                                                                                                                                                                                    
   Σ ⊨ ⊤
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MinSatz

• Algorithm proposed by 
the paper for MinSat 
problem

• Extends DPLL with the 
weighted soft constraints.

• Goal is to maximize the 
number of unsatisfied soft 
constraints.
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• Similar to (α,β)-pruning, passes the maximum found so far.

• uses overestimation as static evaluator. 
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MinSatz - Overestimation
• Overestimate(ϕ) finds the maximum number of unsatisfiable soft 

constraints out of the remaining soft constraints when the 
current assignment is completed in some way.

• A naive overestimation just returns number of remaining soft 
constraints.

• Paper proposes an intelligent overestimation calculation based 
on following observations: 

• Consider the two soft clauses containing literals x and ¬x. 
Surely, both cannot be UNSAT simultaneously.

• consider the case where there are two unit soft clauses with 
literals x1 and x2, respectively, and a hard clause (x1 ∨ x2). 
Again, both soft clauses cannot be simultaneously UNSAT.
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MinSatz - Overestimation

• Overestimate(ϕ) makes use of aforementioned observations:

• Construct a graph G’’ that contains a vertex for each soft 
constraint.

• Add an edge between two vertices if corresponding soft 
constraints cannot be simultaneously satisfied (as per 
observations made).

• Observe that for every clique in G’’, utmost one soft 
constraint can be unsatisfiable. Therefore, number of 
cliques in the clique partition of G’’ gives upper bound on 
number of unsatisfiable soft constraints.
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MinSatz - Critique

• Consider a ϕ with hard 
part =
x1 ∧ (x2 ∨ x3) ∧ (¬x2 ∨ x3) 
∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3)
and soft part = (¬x1)

• hardUnitPropagate 
propagates hard unit clause 
(x1), therefore makes lone 
soft constraint UNSAT 
(makes it empty).
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• Predicate at Line 5 evaluates to true. MinSatz returns 1.

• But, hard part of ϕ is UNSAT! 
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MinSatz - Critique

• MinSatz returning values > 0 for UNSAT ϕ is clearly 
inappropriate.

• Interesting Qn: what is the weakest pre-condition under 
which the given algorithm can return correct answer?

• Ans: ϕ has to be a CNF formula with only Horn clauses. A 
CNF clause is a Horn clause if it contains atmost one +ve 
literal (a non-negated variable).

• Unit resolution is complete for Horn CNF formula [Boyer 
R S, 1971]. 

• Therefore, if formula is UNSAT, then it wouldn’t even reach 
Line 5 of MinSatz.

15

Thursday, November 21, 13



MinSatz - Critique
• Consider the case when 

LB>0 (i.e., some soft 
constraints can be UNSAT 
when hard part is SAT) 

• Assume that first recursive 
call (line 13) encounters 
unsatisfiability. 
Consequently, it returns -1. 

• Now, -1 becomes LB for 
second recursive call

16

• Unfortunately, we have lost the best solution found so far!

• More importantly, MinSatz might return non-optimal solution.
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MinSatz - Critique

• Consider a ϕ with hard 
constraints:
{(x1 ∨ x2), (¬x1 ∨ x3)}
and soft part = 
{(¬x1), (¬x2), (¬x3)}

• Assume selectVariable selects 
x1. First recursive call sets 
x1 to true. 

• hardUnitPropagate 
immediately returns SAT, 
assigning true to x3.
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• Now, ϕ is empty. So, MinSatz returns with number of empty soft 
constraints, which is 2. But, correct answer is 3!
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MinSatzEE570

• MinSatzEE570 is modified 
MinSatz with corrections 
for inconsistencies.

• Reduces MinSAT to SAT 
problem and invokes DPLL 
when all soft constraints 
are UNSAT (orange box). 

• Accounts for unsatisfiability 
result and consequent -ve 
return value from recursive 
calls (blue box).
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MinSatzEE570
• Uses specialized 

hardUnitPropagateEE570.

• Adds tautological clauses of form 
(x ∨ ¬x) for each x that gets 
eliminated during unit 
propagation. 

• Eg:  usual unit propagation on
(x1) ∧ (x1 ∨ x2 ∨ ... ∨ xn)
returns ⊤(empty), after {x1↦ #t}.

• hardUnitPropagateEE570 returns 
(x2 ∨ ¬x2) ∧ ... ∧ (xn ∨ ¬xn) so 
that MinSatzEE570 can chose 
optimal assignments for x2, .. , xn
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MinSatzEE570 - Implementation
• Both DPLL and MinSatzEE570 were implemented in racket, 

a dialect of scheme - https://github.com/gowthamk/ee570  

• Racket provides exception handling, so failure case (eg: 
UNSAT in a recursive call) can be caught and handled at 
appropriate location (eg: reset LB value).

• Racket is still scheme, so rewrite system from HW-3 was 
reused to perform unit propagation (which is essentially 
boolean-simplify with appropriate rules). Also, HW-2 was 
reused to maintain consistent and non-redundant 
assignments to literals.

• Experiments performed on MaxClique calculation verified 
correctness of implementation. 
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Quantified Boolean Formulas

• Informally, quantified boolean formulas are propositional 
formulas extended with existential and universal quantifiers. 

• Formally, A quantified boolean formula (QBF) is a formula of 
form φ = Q1z1Q2z2 ... Qnzn ϕ, where 

• Qi ∈ {∀,∃}. 

• z1, z2 ... zn are distinct boolean variables. Q1z1Q2z2 ... Qnzn is 
called prefix of  φ,

• ϕ, called matrix of φ, is a propositional formula.

• Without loss of generality, we assume ϕ to be in CNF.
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Semantics of QBFs
• Consider (x ∨ y). Is it SAT? 

• Now, consider ∀x.∀y.(x ∨ y). Is it SAT? -- Contradictory clause.

• Consider (x ∨ ¬x). SAT?

• Now, ∀x. (x ∨ ¬x). SAT?

• What do we observe?

• A universally quantified formula is SAT, if its propositional matrix 
is valid, i.e., if it is true under all possible interpretations of 
universally quantified variables.

• Similarly, for existential quantification, it can be observed that QBF 
is SAT if there exists atleast one interpretation of existentially 
quantified variables for which propositional matrix is true.
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Backtracking Search of QBF

• Semantics of QBF (the process of its evaluation) can be 
represented as an AND-OR tree.

• For eg, AND-OR tree for
 ∀x.∃y.(x ⇔ y) is shown here.

• The tree naturally leads to  
backtracking based search 
procedure.

• Optimizations possible. For eg: Backtrack as soon as search 
encounters a contradictory clause. No need to unroll fully.
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Clause Resolution for QBFs

• General clause resolution rule 
for propositional logic is well 
known.

• Clause resolution rule for 
QBFs is similar, except for

• The literal that occurs with different polarity in both 
clauses (ψ in the fig.) should be an existential literal

• Φi ≠ Θj where0≤i≤n,and0≤j≤m
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STRUQS

• STRUQS is the solver for quantified boolean formulas described 
in the paper [Pulina L, and Tachella A, A Structural Approach to 
Reasoning with Quantified Boolean Formulas, IJCAI, 2009]

• Alternates between backtracking search with optimizations 
(backjumping) and clause resolution.

• But, DPLL already does that for propositional logic. What is the 
novelty, then?

• Unlike propositional logic, clause resolution for QBFs is 
complete![Kleine-Büning et al., 1995]

• Technically, one can construct a solver with only clause 
resolution. But, clause resolution may lead to exponential blowup 
of formulas. So, it is not better than backtracking search.
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STRUQS

• STRUQS alternates between search and resolution based 
on a heuristic.

• The heuristic is a function of structure of the QBF (thence 
the name). Its optimal value was determined using 
experiments.

• Experiments performed on QBFEVAL’08 dataset. STRUQS 
solved 39% of dataset in allotted 600s of CPU time. Would 
have been placed 3rd in QBFEVAL’08. 

• The conclusion is that it is profitable to employ search and 
resolution alternatively rather than relying on any one of 
them.
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Compressing English Sentences

• Third paper [Huang M, Shi X, Jin F, and Zhu X, Using First-
Order Logic to Compress Sentences, AAAI, 2012] uses a 
combination of following to compress English sentences:

• NLP Parser aided Parts-of-speech (POS) tagging,

• Inference rules in first-order logic (FOL),

• Markovian Logic Network (MLN) to learn relative 
weights for rules and carry out compression.

• Main contributions: FOL rules for compressing a sentence 
by word/sentence deletion. Using MLNs to impose those 
rules on a dataset.
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Rules

• Consider sentence “I am positively sure”. Adjective 
“positive” can be removed.
                      adjective(i) ⇒ delete(i) 

• Counterexample : ”the relative velocity of object is 2 km/s”. 
adjective(i) ∧ ( ∃ j.property(words[i, i + i], j)) ⇒ ¬delete(i)

• Premises of 2nd rule subsume those of 1st rule, yet it 
arrives at a contradicting conclusion!

• Dilemma : What rule to apply?

• Solution : Add weights to rules to decide the most-
applicable rule.
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Markovian Logic Network
• The problem of deciding the most-applicable rule, when rules 

have relative weights, is an old one. Markovian Logic 
Network solves the problem for first-order logic.

• A Markovian Logic Network (MLN) is a probabilistic 
deductive system that makes uncertain inference based on 
first-order rules annotated with probabilities.

• Formally, a MLN is a set of pairs (φ, w), where φ is a 
formula in first-order logic and w is a weight for the 
formula, a real number

• For eg, when rules propositional logic are annotated with 
w=1, (assuming any other rule has w=0), an MLN would 
deduce tautology with w=1 and contradiction with w=0.

29

Thursday, November 21, 13



Experiments
• Many rules as described previously were constructed based 

on English grammar and experience. Rules makes use of 
POS tags generated by Stanford NLP Parser.

• Problem : How to annotate those rules with weights? 
Solution : Let MLN learn the weights utilizing a training set.

• Existing software (thebeast) was used to train MLN.  About 
1/3rd of the dataset is used to train MLN, which was used 
to compress the rest (2/3rds) of the dataset.

• One of their evaluations used humans to rank the quality of 
compressed sentences against those generated by others.

• Evaluators ranked new compression model as best for 
written corpus, and worse than others for spoken corpus.

30

Thursday, November 21, 13



Sample Results of Compression
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Conclusion

• SAT problem for propositional logic and quantified boolean 
formulas (QBFs).

• DPLL algorithm for propositional SAT and STRUQS 
approach to QBF SAT.

• Propositional MinSAT problem. MinSatz algorithm, its 
inconsistencies and a corrected MinSatzEE570.

• Applications of SAT and MinSAT

• Compressing English sentences using first-order logic.
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Thank you!

33

Thursday, November 21, 13


