
Distributed Consensus Algorithms
as Replicated State Applications

Nicholas V. Lewchenko
University of Colorado Boulder

USA
nicholas.lewchenko@colorado.edu

Gowtham Kaki
University of Colorado Boulder

USA
Gowtham.Kaki@colorado.edu

Abstract
To verify implementations of distributed consensus algo-
rithms, such as Raft and Paxos, developers must identify and
express complex inductive invariants. Much of this complex-
ity is due to explicit message-passing—the states of nodes and
the history of messages they have sent must be exhaustively
correlated.

In this paper, we show that verification artifacts can be sim-
plified by implementing consensus algorithms in a weakly-
consistent replicated state model that omits explicit message-
passing. Based on this model, we define a novel proof theory
based on interference contracts and find that distributed log
consensus is partly a consequence of eventual consistency
in this setting. We use our programming model and proof
theory to explore the implemention and verification of the
Raft consensus protocol.

1 Introduction
Distributed consensus algorithms allow nodes in a distributed
system to agree on actions—such as committing a bank
transaction—without expensive synchronous communica-
tion [6, 8]. Implementing distributed consensus is an error-
prone process. Bugs that arise from concurrent behavior are
hard to intuitively predict, and testing is of limited use in the
highly non-deterministic network setting. For these reasons,
formal verification for distributed consensus implementa-
tions has been a project of great interest [5, 10, 12, 13].
Unfortunately, consensus implementations are tradition-

ally written using explicit, asynchronous message-passing,
which adds work to the verification process. In the stan-
dard transition system verification approach, messages are
tracked as ghost state, which must be painstakingly con-
strained by inductive invariants to conformwith the concrete
states of system nodes [12, 13]. If automated verification is re-
quired, this ghost state must be creatively designed to avoid
undecidable logic fragments [10].
In this paper, we explore the implementation and verifi-

cation of distributed consensus algorithms using replicated
state, a programming model that excludes explicit message-
passing. Typically, consensus algorithms are used as an un-
derlying system to support a strongly-consistent replicated
state environment for higher-level application code. We take

∅(𝑟1)

∅(𝑟2)

{⟨𝑟1, 𝑟2⟩}

{⟨𝑟2, 𝑟2⟩} {⟨𝑟1, 𝑟2⟩ , ⟨𝑟2, 𝑟2⟩}

{⟨𝑟1, 𝑟2⟩ , ⟨𝑟2, 𝑟2⟩}
𝑒1 = voteFor(𝑟2)

𝑒∗1
𝑒2

𝑒1

𝑒2 = voteFor(𝑟2)

𝑒∗2

Figure 1. A leader election execution with two replicas.
Replica 𝑟1 creates event 𝑒1 by voting for 𝑟2—this event mod-
ifies both 𝑟1’s state (immediately) and 𝑟2’s state (after an
update message is delivered). Both 𝑒1 and 𝑒2 are present in
the traces of both 𝑟1 and 𝑟2, but take effect in different orders.

replicated state further by showing that consensus algo-
rithms themselves can be efficiently implemented in a weakly-
consistent replicated state model—and that those implemen-
tations are easier to verify than traditional message-passing
equivalents.

To do so, we define the Identity-aware, Causally-consistent
Replicated State (ICRS) programmingmodel and a novel proof
theory for verifying properties of ICRS applications. We ex-
plain how our proof theory expresses distributed log consen-
sus in a newway, by leveraging generic eventual consistency,
and we apply these concepts to a work-in-progress imple-
mentation and verification of the Raft consensus protocol.

2 Example: Leader Election
In this section, we explain the key details of our program-
ming and verification approach using leader election as an
example application. Leader election, a standard component
of consensus algorithms, consists of nodes voting for a leader
to perform some role. Complete consensus algorithms elect
leaders for a series of terms, avoiding tied-election deadlock,
but for simplicity our example will only concern safety for a
single election term.

2.1 Leader Election Algorithm in Replicated State
Fig. 1 illustrates an execution of our simple leader election
algorithm. Each participating node maintains a set of votes
(for itself and its peers) as local state. When node 𝑟1 votes for

1

PaPoC ’23, May 8, 2023, Rome, Italy Nicholas V. Lewchenko and Gowtham Kaki

itself, it adds the vote ⟨𝑟1, 𝑟1⟩ to its state, and also broadcasts
the vote to 𝑟2, causing 𝑟2 to add the vote to its own state.

In general, a replicated state application consists of nodes—
which we call replicas—that each store a complete copy of
the application state. When a replica updates its state copy,
it reports this to its peers via broadcast message, causing
them to make equivalent changes to their copies. Eventual
consistency is a common property that requires replica states
to match whenever all messages have been delivered. The
execution in Fig. 1 exhibits eventual consistency: the states
of 𝑟1 and 𝑟2 match at the beginning (when no messages have
been sent) and the end (when both the 𝑒1 and 𝑒2 messages
have been delivered).

When a leader election replica’s state contains a quorum of
votes for a single candidate (itself or a peer), it considers that
candidate to be the leader. We formalize this as the following
predicate on states 𝑠 , using a preconfigured majority size Q.

Leader(𝑠, 𝑟) ⇐⇒
Quorum(𝑠, 𝑟) ∧ ¬DoubleQuorum(𝑠)

Quorum(𝑠, 𝑟) ⇐⇒
| { 𝑟1 | ⟨𝑟1, 𝑟 ⟩ ∈ 𝑠 } | ≥ Q

DoubleQuorum(𝑠) ⇐⇒
∃𝑟1, 𝑟2. 𝑟1 ≠ 𝑟2 ∧ Quorum(𝑠, 𝑟1) ∧ Quorum(𝑠, 𝑟2)

Note that a candidate is only recognized as the leader when
no quorums for other candidates have been witnessed. There-
fore, by definition:

𝑟1 ≠ 𝑟2 =⇒ ¬Leader(𝑠, 𝑟1) ∨ ¬Leader(𝑠, 𝑟2).

The execution in Fig. 1 concludes with both replica states
recognizing 𝑟2 as the leader:

Leader({⟨𝑟1, 𝑟2⟩ , ⟨𝑟2, 𝑟2⟩}, 𝑟2).

2.2 Agreement from Single-Replica Safety Property
Before we consider the implementation of this leader election
algorithm, we formalize our required safety properties.
The primary safety property for leader election is agree-

ment: if one replica sees 𝑟1 as the leader, no other replica
should see a different candidate 𝑟2 as the leader. This prop-
erty is an invariant on the whole network state, rather than
a single replica’s state. Our verification approach avoids rea-
soning directly about whole-network invariants like this—
instead, we will indirectly ensure agreement as a conse-
quence of single-replica finality and generic eventual consis-
tency for replicated applications.

By finality, we mean the property that election outcomes
cannot be revoked or invalidated. This is not awhole-network
invariant like agreement—rather, it is a temporal property
on individual replica states. We formalize finality as 𝐼𝑓 , a

preorder on replica states:

⟨𝑠1, 𝑠2⟩ ∈ 𝐼𝑓 ⇐⇒
∀𝑟 . Leader(𝑠1, 𝑟) =⇒ Leader(𝑠2, 𝑟)

If each replica’s state monotonically increases according to
𝐼𝑓 , then the complete network maintains finality—no wit-
nessed leader is forgotten. We call 𝐼𝑓 a replica trace invariant
when it is satisfied by an execution in this way. Our example
execution in Fig. 1 satisfies 𝐼𝑓 : neither replica transitions to
a non-leader state after witnessing the quorum for 𝑟2.

Notice that our example execution also satisfies agreement—
in fact, this is guaranteed since it satisfies both finality and
eventual consistency. Why? Consider two replicas that break
agreement, by witnessing two different leaders. If both repli-
cas maintain finality—their states continue to witness the
same divergent leaders—then their states cannot possibly
match in the future, contradicting eventual consistency.
Therefore, we can safely focus our leader election verifi-

cation task on two goals: finality as represented by 𝐼𝑓 , and
generic eventual consistency.
In Sec. 5, we will show how distributed log consensus—

the goal of complete consensus algorithms—can be similarly
captured as a consequence of eventual consistency and log-
index finality.

2.3 Implementation by Replicated State Update
The core of our leader election implementation—and the
sole object of verification—is the voteFor(𝑟) transaction,
invoked by a replica in order to cast a vote for 𝑟 . We leave
the safety-irrelevant detail of choosing candidates abstract.

voteFor(𝑟) := (1)
_(self). _(state). (2)
assert nonVoter(self, state). (3)
update Insert(⟨self, 𝑟 ⟩). (4)

nonVoter(𝑟, 𝑠) ⇐⇒ ∀𝑟1. ⟨𝑟, 𝑟1⟩ ∉ 𝑠

Insert(𝑣) := _𝑠. 𝑠 ∪ {𝑣}
Once invoked, this transaction receives two runtime-provided
arguments (line 2): the invoking replica’s ID self, and its
local state copy state. This access to a unique replica ID is
the identity-aware feature of our ICRS model, used here to
prevent double-voting.

On line 3, the local replica state is checked, asserting that
the voting replica has not previously cast a vote (and safely
aborting the transaction if the assertion fails).
Finally line 4 updates the replicated state by adding the

new vote for 𝑟 , cast by self. More precisely, this statement
performs three actions that a developer would need to im-
plement individually in the traditional approach:

1. Insert the vote ⟨self, 𝑟 ⟩ into the local state of self.
2. Broadcast a message to self’s peers, announcing that

it has voted for 𝑟 .
2

Consensus Algorithms as Replicated Applications PaPoC ’23, May 8, 2023, Rome, Italy

3. Run a handler on each peer that recieves the message,
which adds ⟨self, 𝑟 ⟩ to their local states.

This unification of three operational details into a sin-
gle program statement (update) is the key advantage of
our election implementation, from a verification standpoint.
Verification for the traditional message-passing equivalent
involves proving that a vote message is only sent when the
voting node has actually added the vote to its own state,
and likewise that a receiving node only adds a vote to its
own state in response to a matching vote message [10, 13].
In the replicated state programming model, the model itself
enforces this correspondence, reducing the number of details
that must be expressed and verified by the developer.

2.4 Verification by Interference Contract
At a high level, maintaining leader election finality depends
on not double-voting. Casting two different votes in the name
of a single replica may create a double-quorum, which would
nullify the Leader(𝑠, 𝑟) predicate, and thus violate 𝐼𝑓 .
Can voteFor(𝑟) create a double-vote? When 𝑟1 executes

voteFor(𝑟), it asserts that there are no preexisting votes
from 𝑟1 in its local state. But what if another replica 𝑟2 voted
in 𝑟1’s name? Then, when 𝑟2 receives 𝑟1’s legitimate vote, the
state of 𝑟2 could contain a double-vote. Fig. 2 illustrates this
scenario, in which 𝐼𝑓 is violated by 𝑟2’s trace.
Of course, we know that 𝑟2 cannot actually vote in 𝑟1’s

name—the voteFor(𝑟) transaction only votes using self.
We capture this intuition for verification purposes by defin-
ing the following interference contract 𝐶𝑒 , a parameterized
preorder which generalizes the notion of an inductive invari-
ant and serves a similar purpose.

⟨𝑠1, 𝑠2⟩ ∈ 𝐶𝑒 (𝑟) ⇐⇒
(¬DoubleVote(𝑠1) =⇒ ¬DoubleVote(𝑠2))
∧ (nonVoter(𝑟, 𝑠1) =⇒ nonVoter(𝑟, 𝑠2))

DoubleVote(𝑠) ⇐⇒
∃𝑟1, 𝑟2, 𝑟3. 𝑟2 ≠ 𝑟3 ∧ ⟨𝑟1, 𝑟2⟩ ∈ 𝑠 ∧ ⟨𝑟1, 𝑟3⟩ ∈ 𝑠

As an interference contract, 𝐶𝑒 constrains the state changes
that can be made concurrently to a named replica’s transac-
tions. When replica 𝑟1 performs a transaction on local state
𝑠1, it is guaranteed that every state 𝑠2 that its update is ap-
plied to—including both 𝑟1’s local state and the states of 𝑟1’s
remote peers—will satisfy ⟨𝑠1, 𝑠2⟩ ∈ 𝐶𝑒 (𝑟1).

Essentially, 𝐶𝑒 is a rely-condition that is parameterized by
replica IDs, in the sense of rely/guarantee reasoning.
𝐶𝑒 disallows double-voting by any replica, and voting

by any replica using another replica’s ID. In Fig. 2, we can
see that ¬𝐶𝑒 (𝑟1, 𝑠1, 𝑠2)—therefore, we can dismiss Fig. 2 as a
counterexample to safety of voteFor(𝑟).

Like an inductive invariant, our interference contract im-
poses more verification goals on our application: we must

show that 𝑟1 preserves 𝐶𝑒 (𝑟2), for any other replica 𝑟2, in
addition to 𝐼𝑓 . But it also gives us stronger assumptions for
proving those goals: we may assume that concurrent updates
preserve 𝐶𝑒 (𝑟1).

For example, the following proof sketch shows that, when
𝑟1 executes voteFor(𝑟), the resulting update does not double-
vote when applied to a remote state 𝑠2, as required by𝐶𝑒 (𝑟2):

1. The assert in voteFor(𝑟1) gives nonVoter(𝑟1, state).
2. nonVoter(𝑟1, state) ∧ ⟨state, 𝑠2⟩ ∈ 𝐶𝑒 (𝑟1) implies

that nonVoter(𝑟1, 𝑠2).
3. 𝑠2 contains no votes cast by 𝑟1, thus the post-update

state 𝑠2 ∪ ⟨𝑟1, 𝑟 ⟩ contains only one vote cast by 𝑟1.

We can extend the proof sketch to show that 𝐼𝑓 is also
preserved by relying on the interference contract. 𝐼𝑓 is only
violated if Leader(𝑠2, 𝑟𝑙), for some candidate 𝑟𝑙 , and
¬Leader(𝑠2 ∪ ⟨𝑟1, 𝑟 ⟩, 𝑟𝑙). This could be the case if the ⟨𝑟1, 𝑟 ⟩
vote creates a double-quorum. However, a double-quorum re-
quires some replica to have voted twice, and we have shown
that 𝑠2 ∪ ⟨𝑟1, 𝑟 ⟩ does not introduce a double-vote.

By avoiding explicit message-passing (fusing it with local
state updates), we have reduced the size of the necessary veri-
fication artifacts. The𝐶𝑒 interference contract is smaller than
the inductive invariant needed for an equivalent message-
passing implementation.

Finally, eventual consistency for leader election does not
depend on the interference contract—it follows from the fact
that all updates are set-insertions, which perfectly commute
with one another. Combining eventual consistency with the
𝐼𝑓 trace invariant ensures our desired leader election agree-
ment property.

3 The ICRS Programming Model
Replicated state programming models have been formalized
and implemented to provide a variety of guarantees suitable
to a variety of applications. Many models provide config-
urable strong consistency guarantees, enforced at runtime by
blocking coordination [2, 4, 7, 9].

Our goal is to implement consensus algorithms with run-
time performance comparable to existing non-replicated im-
plementations. Therefore, our programming model, identity-
aware, causally-consistent replicated state (ICRS), is limited
to non-blocking consistency guarantees.

3.1 Consistency Guarantees
The first consistency guarantee of ICRS, identity-awareness,
allows application code running on a replica to access a
replica ID that is guaranteed to be unique—the same replica
ID will not be given to another replica’s application code. As
a form of unique ID service, this feature represents a light-
weight coordination mechanism that can be implemented
in a non-blocking manner (by pre-configuring replicas with
static IDs) [2].

3

PaPoC ’23, May 8, 2023, Rome, Italy Nicholas V. Lewchenko and Gowtham Kaki

𝑠1 = {⟨𝑟2, 𝑟1⟩}(𝑟1)

{⟨𝑟2, 𝑟1⟩}(𝑟2)

{⟨𝑟1, 𝑟1⟩ , ⟨𝑟2, 𝑟1⟩}

𝑠2 = {⟨𝑟1, 𝑟2⟩ , ⟨𝑟2, 𝑟1⟩ , ⟨𝑟2, 𝑟2⟩}

Leader(𝑠2, 𝑟2) ∧ ¬Leader(𝑠3, 𝑟2) =⇒ ⟨𝑠2, 𝑠3⟩ ∉ 𝐼𝑓

𝑠3 = {⟨𝑟1, 𝑟1⟩ , ⟨𝑟1, 𝑟2⟩ , ⟨𝑟2, 𝑟1⟩ , ⟨𝑟2, 𝑟2⟩}

𝑒1 = vote(𝑟1, 𝑟1)

𝑒∗1

𝑒1

𝑒2 = ???

𝑒∗2

Figure 2. This partial execution demonstrates the role of the interference contract in our proof system. The 𝑒1 vote asserts that
𝑟1 has not voted in 𝑠1, but the update it creates is eventually applied to 𝑟2’s state 𝑠2, where the assertion no-longer holds. The
behavior of 𝑒2 does not match any real transaction in our application, so we will use an interference contract that rules it out.

Identity awareness is crucial to consensus algorithm im-
plementations. As demonstrated in Sec. 2.4, quorum-based
reasoning depends on replica ID uniqueness.

The second guarantee of ICRS, causal consistency, is stan-
dard for replicated state programming models [2, 4, 9]. Like
identity-awareness, causal consistency can be implemented
in a non-blocking manner [1] that does not interfere with
availability in the CAP [3] sense.
We use causal consistency to ensure that replica states

are correctly constrained by interference contracts. An in-
terference contract captures the differences between states
that may arise when adding updates. The ICRS model does
not inherently guarantee eventual consistency—rather, that
property that must be verified for specific applications.

3.2 Formal Execution Model
We formally model executions of ICRS applications execu-
tions as replica trace executions, as depicted in Fig. 1 and
Fig. 2. A replica trace execution consists of a mapping of
replica IDs to traces—sequences of update events that modify
the replicas’ states.
An event 𝑒 in a replica’s trace corresponds to either a

transaction executed locally by that replica, or an update
message sent by another replica’s transaction. For exam-
ple, in Fig. 1, the 𝑒1 found in 𝑟1’s trace corresponds to the
voteFor(𝑟2) transaction executed locally by 𝑟1, while the
matching 𝑒1 found in 𝑟2’s trace corresponds to the delivery
of the update message sent by the that transaction. In ei-
ther case, the event’s pre- and post-states correspond to the
update produced by the relevant transaction.
When events in two different traces arise from the same

transaction—as with 𝑒1 in 𝑟1’s trace and 𝑒1 in 𝑟2’s trace—we
give them the same label. We say that 𝑟1 is 𝑒1 originating trace.
We assume that ICRS applications only produce replica trace
executions that satisfy causal consistency.
Definition 3.1 (Causal consistency). An execution 𝑋 is
causally consistent iff, for every event 𝑒1 that preceeds an
event 𝑒2 in 𝑒2’s originating trace, it is the case that 𝑒1 preceeds
𝑒2 in every trace.

Eventual consistency, in contrast, is a verification goal for
ICRS applications.

Definition 3.2 (Eventual consistency). An execution 𝑋 is
eventually consistent iff every trace’s state sequence ends
with the same state.

3.3 Replica Trace Invariant
We represent application-specific safety properties of ICRS
applications as state-preorders called replica trace invariants.
Given a replica trace invariant 𝐼 , a replica that sees state 𝑠1
is guaranteed to only see 𝑠2 in the future if ⟨𝑠1, 𝑠2⟩ ∈ 𝐼 .

Definition 3.3 (Replica trace invariant). An execution 𝑋

satisfies state-preorder 𝐼 as a replica trace invariant iff every
replica trace in 𝑋 has a state sequence that monotonically
increases according to 𝐼 .

Replica trace invariants are temporal properties, but they
generalize non-temporal single-state invariants. For example,
the leader election property that no state ever witnesses a
double-vote can be captured as a replica trace invariant:

{ ⟨𝑠1, 𝑠2⟩ | ¬DoubleVote(𝑠1) =⇒ ¬DoubleVote(𝑠2) } .

4 Verifiying ICRS Applications
To verify an ICRS application, the developer provides an
interference contract that restricts replica abilities according
to their IDs. For each replica ID 𝑟1, the interference contract
𝐶 defines a state-preorder 𝐶 (𝑟1). If 𝑟1 executes a transaction
using local state 𝑠1, every remote state 𝑠2 that the resulting
update applies to is guaranteed to satisfy ⟨𝑠1, 𝑠2⟩ ∈ 𝐶 (𝑟1). At
the same time, 𝑟1 must respect the contract for any other
replica 𝑟2—the 𝑟1 update must preserve 𝐶 (𝑟2) when applied
to 𝑠2, in case 𝑟2 is executing a concurrent transaction of its
own.
Verification proceeds by checking that every transaction

𝑇 safely preserves the interference contract, according to the
following rule, where 𝑆 is the set of all application states and

4

Consensus Algorithms as Replicated Applications PaPoC ’23, May 8, 2023, Rome, Italy

𝐷 is the set of all pairs of distinct replica IDs:

∀𝑠1, 𝑠2 ∈ 𝑆. ∀ ⟨𝑟1, 𝑟2⟩ ∈ 𝐷.

(𝑇 (𝑟1, 𝑠1) ⇝ 𝑢 ∧ ⟨𝑠1, 𝑠2⟩ ∈ 𝐶 (𝑟1))
=⇒

⟨𝑠2, 𝑢 (𝑠2)⟩ ∈ (𝐶 (𝑟2) ∩ 𝐼)
𝐶 ⊢ Safe(𝑇, 𝐼)

The notation 𝑇 (𝑟1, 𝑠1) ⇝ 𝑢 means that transaction 𝑇 , when
self is set to 𝑟1 and state is set to 𝑠1, passes all assertions
and issues state update𝑢 ∈ 𝑆 → 𝑆 . In this rule, 𝑟1 is the trans-
action’s local replica, and 𝑟2 is any remote replica. Therefore,
we may rely on 𝐶 (𝑟1), and we must guarantee 𝐶 (𝑟2) in addi-
tion to 𝐼 . Note that 𝑠2 in the rule represents both 𝑟1’s local
state (when 𝑠2 = 𝑠1) and the states of 𝑟1’s remote peers.

Theorem 4.1 (Verification soundness). Given causally con-
sistent execution 𝑋 generated by application {𝑇1, . . . ,𝑇𝑛}, and
interference contract 𝐶 such that 𝐶 ⊢ Safe(𝑇1, 𝐼) ∧ · · · ∧𝐶 ⊢
Safe(𝑇𝑛, 𝐼), it is the case that 𝑋 satisfies 𝐼 as a replica trace
invariant.

5 Case Study: Raft
Raft [8] is a widely used consensus protocol that, like its
older variant Paxos [6], has been a target of many formal
verification efforts [10, 11, 13]. One such effort, using the
Verdi framework, required discovering and proving 90 sys-
tem invariants [13].
Our goal is to verify an implementation of the Raft pro-

tocol while reducing the size of the necessary verification
artifacts, by restricting the implementation to the ICRS pro-
gramming model. This effort is a work-in-progress; while
we have an informal proof, the exhaustive formalization is
still pending.

The original presentation of Raft uses a remote proceedure
call model, in which nodes update their local states in step
with synchronous call-and-response message exchanges be-
tween pairs of nodes. Creative design work was needed to
adapt this protocol to the replicated state model. The result
is a replicated state with four components, acted on by three
transactions.

5.1 State Model
The state has the following components:

votes ∈ P(Rid × Rid × Nat) The set of votes. An ele-
ment ⟨𝑟𝑣, 𝑟𝑐 , 𝑡⟩ represents 𝑟𝑣 voting for 𝑟𝑐 to be leader
of 𝑡 . A replica 𝑟 becomes the leader for term 𝑡 when a
quorum of votes for 𝑟 in 𝑡 is present.

term ∈ Nat The latest term in which the log has been
modified.

accepts ∈ P(Rid × Nat × Nat) A record of what prefix
of the log has been accepted (i.e. witnessed) by each
replica in each term. The entry ⟨𝑟, 𝑡, 𝑖⟩ means that 𝑟
has accepted the 𝑖-length prefix of the log written in
term 𝑡 .

log ∈ Log The current proposed log. The accepts set
determines which prefix of this log is committed. The
rest is subject to change.

As in Sec. 2, we use Q to denote the quorum size for the
set of participating replica IDs.
There are two key predicates on the state. Leader(𝑠, 𝑟, 𝑡)

states that a given replica ID is the (only) elected leader for a
term 𝑡—the definition is similar to that of Leader(𝑠, 𝑟) from
Sec. 2. Committed determines whether the given index is
committed in the given term, according to the given state.
When an index is committed in one term, it is also considered
committed in all later terms.

Committed(𝑠 ∈ State, 𝑡 ∈ Nat, 𝑖 ∈ Nat) ⇐⇒
∃𝑡1 ∈ Nat. 𝑡1 ≤ 𝑡

∧ | { 𝑟 | ∃𝑖1. 𝑖 ≤ 𝑖1 ∧ ⟨𝑟, 𝑡1, 𝑖1⟩ ∈ 𝑠 .accepts } | ≥ Q

5.2 Distributed Log Consensus
Our key safety condition 𝐼𝑐 , corresponding to Raft’s state
machine safety property, requires that a log index, once
witnessed as committed, does not change in the future.

⟨𝑠1, 𝑠2⟩ ∈ 𝐼𝑐 ⇐⇒
∀𝑖 ∈ Nat. ∀𝑡 ∈ Nat.

Committed(𝑠1 .accepts, 𝑡, 𝑖)
=⇒ PrefixMatch(𝑖, 𝑠1.log, 𝑠2.log)

Like our example in Sec. 2, the 𝐼𝑐 trace invariant only explic-
itly represents the finality aspect of log consensus, but implic-
itly guarantees agreement between replicas when eventual
consistency is maintained.

5.3 Implementation
Fig. 3 defines the transactions and updates of our replicated
state Raft implementation. The vote(𝑟, 𝑡) transaction is anal-
ogous to the voteFor(𝑟) transaction in Sec. 2, but in this
case leaders are elected for particular terms.
Elected leaders use the propose(𝑙, 𝑡) transaction to pro-

pose new log entries, tagged with their elected term. We
assert that the local replica is indeed the elected leader for
𝑡 , and that the log it proposes is strictly an extension of the
log it has so-far seen.
When these assertions hold, propose(𝑙, 𝑡) issues the up-

date NewLog(𝑙, 𝑡), which sets the log to 𝑙 and the term to
𝑡—but only on replica states where the term has not already
increased beyond 𝑡 . Note that two NewLog updates for the
same term would not commute with each other. To verify
that eventual consistency is still maintained, we must ensure
that two such updates never actually occur concurrently in
our application (Sec. 5.4).

The accept(𝑖) transaction is used a by replica to announce
that it has seen the 𝑖-length prefix of the log in the replica’s
current term. This action is only allowed when the replica
has not already voted in any greater term. When a quorum

5

PaPoC ’23, May 8, 2023, Rome, Italy Nicholas V. Lewchenko and Gowtham Kaki

vote(𝑟, 𝑡) :=
_(self). _(state).
assert nonVoter(state, self, 𝑡).
update votes.Insert(⟨self, 𝑟 , 𝑡⟩)

propose(𝑙, 𝑡) :=
_(self). _(state).
assert Leader(state, self, 𝑡).
assert logPrefix(state.log, 𝑙).
update NewLog(𝑙, 𝑡)

accept(𝑖) :=
_(self). _(state).
assert nonVoterOver(state, self, state.term)
assert HasSize(state.log, 𝑖).
update accepts.Insert(⟨self, state.term, 𝑖⟩)

NewLog(𝑙, 𝑡) := _𝑠.

case (𝑡 ≥ 𝑠 .term) → 𝑠{term = 𝑡, log = 𝑙}
case (𝑡 < 𝑠 .term) → 𝑠

Figure 3. Transactions and updates for the Raft implemen-
tation.

of accepts for a single term meet or exceed an index 𝑖 , that
index is automatically recognized by any observing replica
as committed.

5.4 Verifying Eventual Consistency
In cases where updates do not universally commute, as with
the NewLog(𝑙, 𝑡) update, we verify eventual consistency by
providing an update guard: a single-state predicate parame-
terized by updates:

𝑠 ∈ 𝐺 (NewLog(𝑙, 𝑡)) ⇐⇒
𝑠 .term ≠ 𝑡 ∨ logPrefix(𝑠 .log, 𝑙)

The update guard represents an assertion that every state
the given update can encounter will satisfy the given prop-
erty. We will not check this condition at runtime—rather, we
statically verify that it is a consequence of our interference
contract, just like the replica trace invariant.
We are able to verify 𝐺 in this way because only one

replica—the elected leader—ever proposes for a given term,
and a single replica’s updates are not concurrent to each
other. This allows us to ignore the non-commuting pair of
NewLog(𝑙1, 𝑡) and NewLog(𝑙2, 𝑡), where 𝑙1 ≠ 𝑙2.

𝐶1 (𝑟, 𝑠1, 𝑠2) ⇐⇒ (Vote Safety)
VoteFreeze(𝑟, 𝑠1.votes, 𝑠2.votes)
¬DoubleVote(𝑠1.votes) =⇒ ¬DoubleVote(𝑠2 .votes)
∧ 𝑠1.votes ⊆ 𝑠2 .votes

𝐶2 (𝑟, 𝑠1, 𝑠2) ⇐⇒ (Accept Safety)
AcceptFreeze(𝑟, 𝑠1 .accepts, 𝑠2.accepts)
∧ VoterRestrict(𝑠1.votes, 𝑠1.accepts, 𝑠2.accepts)
∧ 𝑠1.accepts ⊆ 𝑠2.accepts

∧ AcceptTerm(𝑠1.accepts, 𝑠1.term)
=⇒ AcceptTerm(𝑠2.accepts, 𝑠2 .term)

𝐶3 (𝑟, 𝑠1, 𝑠2) ⇐⇒ (Log Safety)
LiveMatch(𝑠2.votes, 𝑠2.accepts, 𝑠1 .term, 𝑠1.log, 𝑠2 .log)
∧ 𝑠1.term ≤ 𝑠2 .term

∧ LiveBound(𝑠1.votes, 𝑠1.accepts, 𝑠1.log)
=⇒ LiveBound(𝑠2.votes, 𝑠2.accepts, 𝑠2.log)

𝐶4 (𝑟, 𝑠1, 𝑠2) ⇐⇒ (Leader Log)
Leader(𝑠1, 𝑟 , 𝑠2 .term)
=⇒ 𝑠1.term = 𝑠2.term ∧ 𝑠1.log = 𝑠2.log

Figure 4. Interference contract for verifying that the Raft
implementation satisfies 𝐼𝑐 as a replica trace invariant.

5.5 Verifying Distributed Log Consensus
The interference contract for verifying that Raft satisfies the
𝐼𝑐 trace invariant is shown in Fig 4.
The VoteFreeze(𝑟, 𝑣1, 𝑣2) and AcceptFreeze(𝑟,𝑚1,𝑚2)

rules express that remote replicas will not vote or accept, re-
spectively, using 𝑟 ’s ID. The VoterRestrict(𝑟,𝑚1,𝑚2) rule
in 𝐶2 expresses the rule that a replica cannot accept on a 𝑡1
when it has already voted in a greater term 𝑡2 (as ensured
by the nonVoterOver assertion in accept(𝑖)). AcceptTerm
forbids entries from exceeding the current latest log term.

The key element of the contract is the LiveMatch rule in
𝐶3, which demands that any change to the log must preserve
all indices that are alive in the existing log’s term. An index
is alive for a given term if it is still possible for it to become
committed in that term. If a quorum of replicas have all not
accepted 𝑖 in 𝑡1, and those replicas all vote in a greater term 𝑡2,
then 𝑖 becomes dead in 𝑡1 and may be overwritten. Propose
is safe because an elected leader knows that all lower-term
log entries that it has not seen accepted are dead, because
its quorum of voters did not accept them.

6

Consensus Algorithms as Replicated Applications PaPoC ’23, May 8, 2023, Rome, Italy

References
[1] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on

causal consistency. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’13, pages 761–772,
New York, NY, USA, 2013. ACM.

[2] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency
back into eventual consistency. In Proceedings of the Tenth European
Conference on Computer Systems, EuroSys ’15, pages 6:1–6:16, New
York, NY, USA, 2015. ACM.

[3] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[4] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. ’cause i’m strong enough: Reasoning about con-
sistency choices in distributed systems. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’16, pages 371–384, New York, NY, USA, 2016.
ACM.

[5] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet:
Proving practical distributed systems correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, pages 1–17,
New York, NY, USA, 2015. ACM.

[6] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, may 1998.

[7] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno
Preguiça, and Rodrigo Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

[8] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, page 305–320,
USA, 2014. USENIX Association.

[9] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan.
Declarative programming over eventually consistent data stores. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pages 413–424, New
York, NY, USA, 2015. ACM.

[10] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon,
Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos. Mod-
ularity for decidability of deductive verification with applications to
distributed systems. In Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2018,
page 662–677, New York, NY, USA, 2018. Association for Computing
Machinery.

[11] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian
Stefan, and Ranjit Jhala. Pretend synchrony: Synchronous verification
of asynchronous distributed programs. Proc. ACM Program. Lang.,
3(POPL), jan 2019.

[12] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas Anderson. Verdi: A frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, page 357–368, New
York, NY, USA, 2015. Association for Computing Machinery.

[13] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.
Ernst, and Thomas Anderson. Planning for change in a formal verifi-
cation of the raft consensus protocol. In Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP 2016, page
154–165, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

7

	Abstract
	1 Introduction
	2 Example: Leader Election
	2.1 Leader Election Algorithm in Replicated State
	2.2 Agreement from Single-Replica Safety Property
	2.3 Implementation by Replicated State Update
	2.4 Verification by Interference Contract

	3 The ICRS Programming Model
	3.1 Consistency Guarantees
	3.2 Formal Execution Model
	3.3 Replica Trace Invariant

	4 Verifiying ICRS Applications
	5 Case Study: Raft
	5.1 State Model
	5.2 Distributed Log Consensus
	5.3 Implementation
	5.4 Verifying Eventual Consistency
	5.5 Verifying Distributed Log Consensus

	References

