
Bolt-On Convergence in Mergeable Replicated Data
Types

Gowtham Kaki
University of Colorado Boulder

USA

Prasanth Prahladan
University of Colorado Boulder

USA

Nicholas Lewchenko
University of Colorado Boulder

USA

Abstract
Conflict-free Replicated Data Types (CRDTs) are popular
building blocks of distributed applications. CRDTs guarantee
eventual convergence of the replicated state provided that
the updates to the state are defined in terms of commutative
effects. However, non-commutative operations are common
among ordinary data types, and lifting such an ordinary
type to a CRDT involves non-trivial re-engineering of its
internal state and operations to support commutative effects.
Furthermore, substantial proof effort need to be expended
to show that the resultant data type is indeed a CRDT.

In this paper, we describe an alternative approach to pro-
mote ordinary data types to convergent replicated types
without the need for complex re-engineering or type-specific
algebraic reasoning. Our approach extends Mergeable Repli-
cated Data Types (MRDTs) with a runtime that enforces con-
vergence by orchestrating only the well-formed distributed
executions. Notably, such run-time enforcement impacts nei-
ther the latency of data type operations nor the availability
of the overall system. Our approach thus confers the benefits
of CRDTs without the need to constrain implementations to
satisfy algebraic laws such as commutativity. We describe
Quark– an implementation of the aforementioned runtime,
and present an empirical evaluation involving a collaborative
editing case study.

CCSConcepts: •Computingmethodologies→Distributed
programming languages; • Computer systems organi-
zation→ Availability; • Software and its engineering
→ Formal software verification.

Keywords: Replication, MRDTs, CRDTs, Convergence, Run-
time, Git, Version Control

1 Introduction
Distributed applications often define their state in terms
of Conflict-free Replicated Data Types (CRDTs) that are spe-
cially engineered to reconcile conflicting updates. The key
design principle behind CRDTs is commutativity. The idea
is that if the replicated state is only updated by commuta-
tive operations, then updates can be applied in any order
and the replica states are still guaranteed to converge. In

PaPoC, April 2022, Rennes, France
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

general, however, commutativity is not a common occur-
rence among data types. Most common data type definitions
come with at least a pair of operations that do not commute.
For instance an add and a remove operations on a set do
not commute if both are for the same element. Likewise
two insert operations for the same position in a list do
not commute. To promote such a non-commutative data
type to a CRDT, creative re-engineering of its internal rep-
resentation and algorithms is needed. Many CRDTs have
carefully-engineered implementations that keep track of var-
ious kinds of causal dependencies to help them identify and
resolve conflicts. For instance, CRDTs implementing the set
abstract data type rely on vector clocks to identify conflicting
adds and removes [11, 12], Replicated Growable Array (RGA)
– a CRDT for collaborative editing [8], and JSON CRDT – a
CRDT variant of the JSON storage format, both use Lamport
timestamps [6, 8]; and TreeDoc, another CRDT for collab-
orative editing, makes use of dense linear orders [7]. Such
advanced implementations makes it hard to reason about
basic correctness properties of CRDTs, such as convergence.
The case in point is the substantial effort and expertise re-
quired to verify strong eventual consistency of RGA, OR Set,
and counter CRDT implementations [4]. The high cost of
building CRDTs is a deterrent to their practical adoption. The
key to overcome this deterrent is to let developers reuse their
sequential abstractions in a distributed setting with little to
no additional overhead of reasoning about their convergence
properties.

In this paper we describe an alternative approach to build-
ing convergent replicated data types that realizes the afore-
mentioned virtues. Our approach is based on Mergeable
Replicated Data Types (MRDTs) [5] – an alternative take
on RDTs that is inspired by the Git version control system.
MRDTs adopt a state-centric model of replication based on
version-controlled mergeable states instead of an operation-
centric model based on commutative operations. Unlike com-
mutativity, mergeability does not require a data type defini-
tion to be refactored to suit distributed execution. However,
mergeability itself doesn’t guarantee convergence. The key
distinguishing characteristic of our approach is the exten-
sion of MRDTs with a distributed runtime that orchestrates
only the well-formed convergent executions. Consequently,
all MRDT executions are guaranteed to converge regard-
less of the chosen merge semantics. Notably, our runtime
achieves this without impacting per-operation latency and

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PaPoC, April 2022, Rennes, France Gowtham Kaki, Prasanth Prahladan, and Nicholas Lewchenko

system-wide availability. Such a system is possible within
the confines of the CAP theorem as it does not guarantee the
linearizability of MRDT executions; only their convergence.
Sec. 2 motivates our approach and demonstrates the underly-
ing key intuitions Sec. 3 describes our runtime Quark with
help of minimal formalism. We also describe our implemen-
tation of Quark atop Scylla – an off-the-shelf distributed
data store [9]. Sec. 4 presents an evaluation case study that
highlights the tradeoffs of our approach.

2 CRDTs to Convergent MRDTs
Asynchronous replication often leads to divergent executions
as illustrated by Fig. 1 for Set abstract data type with add
and remove operations.

{e} {e}

{}

{e}{e}

R1 R2

{e}

{}

R3

remove(e)

add(e)

{}

(a)

{e} {e}

{}

{e}

{}

R1 R2

remove(e)

add(e)

{}

remove(e)

{}{e}

(b)

Figure 1. Anamolous executions resulting from the Asyn-
chronous replication of Set. Dashed lines denote effect prop-
agation.

Fig. 1a shows a divergent execution with three replicas
– 𝑅1, 𝑅2, and 𝑅3, all of which start with a singleton set con-
taining the element 𝑒 . A client connects to the replica 𝑅3
and executes a remove(𝑒) operation, which is then asyn-
chronously propagated to other replicas. Some time after
applying 𝑅3’s remove at 𝑅2, another client connects to 𝑅2
and re-adds 𝑒 by issuing an add(𝑒) operation. Consequently,
the state at 𝑅2 is again the singleton set {𝑒}. Replica 𝑅3 how-
ever receives 𝑅2’s add ahead of 𝑅1’s remove, applies them in
the same order, and ends upwith an empty set. The execution
thus results in divergent replica states.

The CRDT Approach. It is clear that causal consistency
would preempt the execution in Fig. 1a. The first step of build-
ing a Set CRDT is therefore enforcing causal consistency.
This is done by extending the Set ADT implementation with
vector clocks to keep track of the causal history of each oper-
ation, followed by applying the operations in the causal order
at all replicas. This would eliminate the execution in Fig. 1a,
but a different divergent execution as shown in Fig. 1b is still
possible. Here, replicas 𝑅1 and 𝑅2 both start with a singleton
set {𝑒}. Two distinct clients connect to 𝑅1 and 𝑅2 respectively

and issue two concurrent remove(𝑒) operations. Later, an-
other client connects to 𝑅2 and issues an add(𝑒) operation.
The effects of these operations are asynchronously applied
at remote replicas as shown in the figure, resulting in the
divergent states at 𝑅1 and 𝑅2.
Note that, unlike in the previous execution, the conflict-

ing operations here are not causally related. CRDTs require
an arbitration order to be defined to order such concurrent
conflicting operations. For example, in Fig. 1b, one might
order 𝑅2’s add after 𝑅1’s remove letting the add operation
win. Enforcing arbitration order however requires tracking
element-wise causal dependencies between the removes and
adds by maintaining a vector clock for each element 𝑒 in the
set [11]. A remove operation on element 𝑒 is applied at a
replica 𝑅 only if 𝑅 hasn’t seen a concurrent or later add oper-
ation on 𝑒 (as determined by 𝑒’s vector clock). The resultant
add-wins set CRDT pre-preempts diverging executions of
Fig. 1. However, the infrastructure needed to track and en-
force causal and arbitration orders significantly complicates
its implementation.

The MRDT Approach. Mergeable Replicated Data Types
(MRDTs) implement a state-centric model of replication that
is inspired by the Git version control system. Like in Git, the
state evolves in terms of versions, and concurrent versions of
the state can be merged. The semantics of merge depends on
the type of the state, so eachMRDT is required to be equipped
with a three-way merge function that merges concurrent
versions of that type in presence of their (lowest) common
ancestor version. In our running example, the state is a value
of type Set.t, hence Set.merge function would have the
type signature:

Set.merge : Set.t→ Set.t→ Set.t → Set.t

The three arguments of merge correspond to the lowest com-
mon ancestor (LCA) version and the two concurrent versions
that independently evolved from the LCA version. The LCA
is a causal ancestor of concurrent versions, hence causal
consistency is built into the replication model. The result of
set merge, intuitively, must contain the common elements
in the two concurrent versions along with any newly added
elements in either versions. Concretely:

let merge s(*lca*) s1 s2 =

(s1 ∩ s2) ∪ (s1 - s) ∪ (s2 - s)

Extending Set ADT with the above merge function results
in a Set MRDT.
Let us now reconsider the executions in Fig. 1, this time

on SetMRDT. The equivalent executions are shown in Fig. 2.
Due to causal consistency being built into the model, the
divergent execution of Fig. 1a is preempted in favor of the
convergent execution shown in Fig. 2a. The execution mani-
fests as follows. The initial version (𝑣0) on all three replicas is
the singleton set {𝑒}. Applying operations to replicas creates
new versions, e.g., 𝑣1 on 𝑅3, and 𝑣2 and 𝑣3 on 𝑅2. Changes can

PaPoC, April 2022, Rennes, France

{e} {e}

{}

{e}

{}

R1

R2

{e}

{}
R3

remove(e)

add(e)

{e}

v1

v0

v2

v3
v4

v5

v0 v0
R2 R3

remove(e)

(a)

{e} {e}

{}

{e}

{}

R1 R2

remove(e)

add(e)

{}

remove(e)

{}{e}

v0

v1

v2

v3

v4

v5 v6

(b)

Figure 2. Equivalent executions of Fig. 1 in state-centric
replication model. Dashed lines now denote state merges.

be propagated by merging versions, e.g., version 𝑣2 on 𝑅2 is a
result of merging 𝑣1 into 𝑣0 for which 𝑣0 serves as the lowest
common ancestor (LCA) 1. Likewise 𝑣4 on 𝑅1 is created by
merging 𝑣2 into 𝑣0 in presence of their LCA 𝑣0. The next
version 𝑣5 on 𝑅1 is the result of merging 𝑅2’s 𝑣3 into 𝑅1’s 𝑣4.
The LCA for this merge is 𝑣2. By the end of the execution,
versions 𝑣5 and 𝑣3 on 𝑅1 and 𝑅2 (resp.) have witnessed the
same set of operations, hence are in agreement.

Unfortunately, theMRDT execution in Fig. 2b still diverges.
Here 𝑅1 and 𝑅2 start with version 𝑣0 = {𝑒}. 𝑅2 performs a
remove and and an add making versions 𝑣1 and 𝑣2 respec-
tively. Simultaneously, 𝑅1 performs a remove to make 𝑣3.
Replica 𝑅1 now obtains 𝑅2’s changes by merging versions 𝑣1
and 𝑣2 to make new versions 𝑣4 and 𝑣5 respectively. LCAs
for these merges are 𝑣0 and 𝑣1. Concurrently, 𝑅2 obtains 𝑅1’s
changes by merging 𝑣3 with 𝑣2 (LCA = 𝑣0) to make 𝑣6. Now
𝑅1 and 𝑅2 have same set of changes yet their final versions
differ.

Linearizing Merges. Note that the anamolous execution
in Fig. 2b could have been avoided had the merges between
𝑅1 and 𝑅2 been linearized. Fig. 3a shows an execution that
only slightly differs from the one in Fig. 2b. The difference is
that the merges in Fig. 3a happen linearly: first 𝑅1 is merged
into 𝑅2 (bringing 𝑅1’s remove), then 𝑅2 into 𝑅1 (bringing 𝑅2’s
remove), followed again by 𝑅2 into 𝑅1 (bringing 𝑅2’s add).
As a result of such linearization, the final versions on 𝑅1
and 𝑅2 converge to the singleton set {𝑒}. Note that there
exist other linearizations of merges; for instance, 𝑅1 → 𝑅2
merge could be ordered between the two 𝑅2 → 𝑅1 merges.
However, all linearizations result in the same final state {𝑒}.
Another important point to note is that only the merges
are linearized; not the entire execution. In Fig. 3a, both 𝑅1
and 𝑅2’s removes remove the same element 𝑒 , which is not
possible in a linearized execution. Leaving the execution
1Versions 𝑣0 and 𝑣1 are not concurrent as the former is an ancestor of the
latter. Merging 𝑣1 into 𝑣0 is nonetheless possible as 𝑣1 is ahead of 𝑣0 in
causal order. In Git parlance this is a fast forward merge.

{e} {e}

{}

{e}

{}

R1 R2

remove(e)

add(e)
{}

remove(e)

{e}

v0

v1

v5

v2

v4

v6

{}v3

(a)

{e} {e}

{}

{}

R1

remove(e)

{e}

v0

v1
v1

v4

v5

{e}

{}v2

{e}

remove(e)

add(e)

{e}

{e}

{}

v3
v6

{}

v7

R2 R3 R4

(b)

Figure 3. Executions demonstrating the difference between
linearized (former) and concurrent (latter) merges.

unconstrained is crucial to satisfy the limits imposed by
the CAP theorem on a highly-available partition-tolerant
distributed system.

In the context of Fig. 3a, it is quite clear what linearization
of merges means and how to enforce it via synchronization
(for e.g., wrapping each merge within a global lock). In gen-
eral however, the semantics of merge linearization isn’t as
cut and dried. For instance, consider the execution in Fig. 3b.
The four replicas involved in the execution start with version
𝑣0 = {𝑒}. The replicas perform local operations as shown
in the figure to make versions 𝑣1 to 𝑣3. Next they perform
a series of merges to propagate local changes. The merges
can be ordered in time as following: first 𝑅2 → 𝑅1 (merg-
ing 𝑣1), then 𝑅3 → 𝑅1 twice (merging 𝑣2 and 𝑣3 resp.), then
𝑅3 → 𝑅4 (merging 𝑣3), and finally 𝑅2 → 𝑅4 (merging 𝑣1).
These merges collectively propagate the effects of add and
remove operations to 𝑅1 and 𝑅2. And despite being ordered
in time, the they nonetheless result in a divergent execution
(𝑣5 ≠ 𝑣7). The problem here is that, although merges are
executed linearly, the execution graph does not reflect this
linearity; merges of that end in 𝑅1 in Fig. 3b are effectively
concurrent with those that end in 𝑅4. This shows that simply
synchronizing the execution of merges does not necessarily
result in convergence.

Our key insight to overcome this impasse is awell-formedness
condition on execution graphs that ensures convergence of fi-
nal states. To understand well-formedness, let us contrast the
bad executions in Figs. 2b and 3b against the good execution
in Fig. 3a. Observe that in Fig. 3a, every pair of concurrent
versions on 𝑅1 and 𝑅2 have a unique lowest common ances-
tor (LCA). For instance, LCA of (𝑣5, 𝑣6) is 𝑣5, (𝑣5, 𝑣4) is 𝑣3,
(𝑣1, 𝑣2) is 𝑣0 and so on. By contrast in Fig. 2b, versions 𝑣5
and 𝑣6 have two LCAs, namely 𝑣2 and 𝑣3. Both these ver-
sions are common ancestors of 𝑣5 and 𝑣6, and both are lowest
in the sense that there do not exist versions lower (in the

PaPoC, April 2022, Rennes, France Gowtham Kaki, Prasanth Prahladan, and Nicholas Lewchenko

execution graph) than 𝑣2 and 𝑣3 that are also common an-
cestors of 𝑣5 and 𝑣6. Likewise in Fig. 3b, versions 𝑣7 and 𝑣5
have two LCAs – 𝑣1 and 𝑣3. Multiple LCAs is an indication
that there exist merges prior in the execution graph that are
effectively concurrent. Considering that our approach to con-
vergence in state-centric model crucially relies on linearity
of merges, presence of multiple LCAs opens up the possibil-
ity of divergence. We therefore define well-formed execution
graphs as those where LCAs for every pair of concurrent
versions is unique. We have formally proved that enforcing
this structural well-formedness condition indeed guarantees
the convergence of distributed executions. The next section
covers how this condition is efficiently implemented and en-
forced in a distributed runtime we built called Quark. Such
automatic enforcement of convergence lets us promote ordi-
nary sequential data types to convergent replicated types by
simply equipping them with a merge function.

3 Quark
The aim of Quark runtime is to manifest only the well-
formed distributed executions of MRDTs. As described in
Sec. 2, well-formed executions are precisely those where
every pair of versions have a unique lowest common ances-
tor (LCA). The violation of unique LCA property can only
happen during a merge operation as illustrated by Figs. 2b
and 3b. Quark enforces unique LCA property at run-time
by allowing only the safe merges that do not result in mul-
tiple LCAs. To demonstrate this intuition, we embrace the
analogy with Git, and envision a distributed execution as
a process that progressively builds a version history graph
𝐺 = (𝑉 , 𝐸). Vertices of this graph are versions and edges (→)
denote causal relationships between versions. For versions
𝑣0 and 𝑣1, 𝑣0 →∗ 𝑣1 means that there is a path from 𝑣0 to
𝑣1 in the version history graph, which in-turn means that
𝑣0 causally precedes 𝑣1. A branch 𝑏 is a linear sequence of
edges that denote the evolution of state at a replica 𝑅𝑏 . In
other words, there is a one-to-one correspondence between
branches and replicas. We let 𝐻 (𝑏) denote the “head” of a
branch 𝑏, i.e., the latest version on replica 𝑅𝑏 . For simplicity
in the formal model, we only allow latest versions on replicas
(i.e., the branch heads) to be merged. Let 𝐿(𝑣, 𝑣 ′) denote the
LCA of versions 𝑣 and 𝑣 ′. We trivially lift the notion of LCA
from versions to branches by defining the LCA of branches
𝑏 and 𝑏 ′, denoted 𝐿(𝑏,𝑏 ′), to be the LCA of their heads, i.e.,
𝐿(𝐻 (𝑏), 𝐻 (𝑏 ′)). With these definitions in place, we can now
explain how unique LCA property can be enforced.
Fig. 4 captures the scenario of merging (the head of) a

branch 𝑏 ′ into 𝑏. Let 𝑏 ′′ be another branch. We consider the
most general case when (i). Branches𝑏,𝑏 ′, and𝑏 ′′ are distinct,
and (ii). Their LCAs 𝐿(𝑏, 𝑏 ′′) and 𝐿(𝑏 ′, 𝑏 ′′) lie on a distinct
pair of branches not equal to 𝑏, 𝑏 ′, and 𝑏 ′′. In the figure, once
you merge 𝑏 ′ into 𝑏, every version 𝑣 that is an ancestor of
𝐿(𝑏 ′, 𝑏 ′′), i.e., 𝑣 →∗ 𝐿(𝑏 ′, 𝑏 ′′), will be a common ancestor of

b b’ b’’

L(b,b'')

L(b’,b’’)

Figure 4. Merge of branch 𝑏 ′ into 𝑏 is considered safe iff
for every other branch 𝑏 ′′, it is the case that 𝐿(𝑏,𝑏 ′′) →∗

𝐿(𝑏 ′, 𝑏 ′′) ∨ 𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′).

𝐻 (𝑏) and𝐻 (𝑏 ′′). Clearly, 𝐿(𝑏 ′, 𝑏 ′′) is the lowest among such
common ancestors. But the current lowest common ancestor
of 𝑏 and 𝑏 ′′ is 𝐿(𝑏, 𝑏 ′′). We therefore end up with two lowest
common ancestors – 𝐿(𝑏 ′, 𝑏 ′′) and 𝐿(𝑏,𝑏 ′′), unless both are
ancestrally related. It follows that for this merge to be safe
it must be the case that either 𝐿(𝑏,𝑏 ′′) →∗ 𝐿(𝑏 ′, 𝑏 ′′), or
𝐿(𝑏 ′, 𝑏 ′′) →∗ 𝐿(𝑏, 𝑏 ′′).Quark checks for this condition each
time a merge is attempted during the execution. It allows the
merge only if the condition is satisfied, thereby enforcing
the unique LCA property, and in-turn convergence.

GarbageCollection. One downside of the aforementioned
approach is that the version history grow monotonically as
the execution progresses and new versions are created. For-
tunately, this is easy to address as the execution only needs
finite version history to compute LCAs. Our implementation
assigns a version vector to each unique version. The version
vector of the result of a merge operation is computed as the
least upper bound (⊔) of merging versions. Conversely, the
version vector of their LCA is computed as their greatest
lower bound (⊓). We prove that LCA version vectors mono-
tonically increase, which means that older versions with
vectors less than the least known LCA vector can simply be
garbage-collected. Moreover, a replica can make this deci-
sion locally without having to synchronize with its peers. In
practice, applications may prefer to flush out older version
history to a stable storage from where it can be re-created
as necessary.

Implementation. We implemented a prototype ofQuark
runtime as a lightweight shim layer on top of Scylla – an
off-the-shelf distributed data store [9]. We rely on Scylla for
inter-replica communication, data replication, persistence,
and fault tolerance. Quark translates the high-level merge-
able data type implementations in OCaml to their low-level
representations in the backing store and organizes their well-
formed distributed executions. The synchronization needed
to linearize merges is implemented with help of Scylla’s sup-
port for conditional updates (CAS operations) and expiring
columns. The total order amongmerges is enforced with help

PaPoC, April 2022, Rennes, France

of Quorum reads and writes. Each user process is assigned
its own replica of the RDT. Version vectors are realized as
associative lists and stored in Scylla as blobs.

4 Evaluation
We present an evaluation study of our runtime-assisted
approach to convergent RDTs with help of our prototype
Quark implementation. The benchmark we chose for the
study is a collaborative document editing application – a
common usecase addressed by several CRDT proposals [7,
8, 10]. However, unlike these other approaches, we did not
have to build a dedicated replicated data type to represent
collaboratively-edited documents; an ordinary document for-
mat extended with a merge operation would suffice. While
many data structures exist to represent text documents (e.g.,
ropes [1]), we decided to adopt the simplest representation
of a document as a list of characters.

type doc = char list

While being simple, the advantage of this presentation is that
we can simply reuse the three-way List.merge function of
the list data type to merge documents. List.merge is a sim-
ple implementation of the GNU diff3 algorithm [3] in 60
lines of OCaml. We thus adopt a straightforward approach
to building a collaborative document editor with the inten-
tion to keep the development effort low enough to be easily
replicated. The convergence guarantee of Quark ensures
that the simplicity of our implementation doesn’t come at
the expense of correctness. We now describe an evaluation
that demonstrates that it also doesn’t come at the expense
of the editor performance.
Our experiment setup consists of multiple collaborators

simultaneously editing a 10000+ line document obtained
from the Canterbury Corpus [2]. Each user holds a replica of
the document and is assumed to be editing the document at
the speed of 240 characters per minute or 1 character every
0.25s. At 6 characters per word, this amounts to 40 words
per minute, which is the average typing speed of humans.
Each edit is immediately persisted to the disk by creating
a new version in the backing store. Thus there are at least
as many versions of the document as there are edits. Such
extensive versioning may be considered excessive in prac-
tice and could be disabled. Each user process runs aQuark
thread that commits user-generated document versions to
the local branch, while merging with the concurrent versions
from the remote branches in the background. Each merge is
synchronized as described in previous sections.
Quark’s background merges however pose a new prob-

lem as they create new versions on the local branch in the
background while the user is busy editing an older version.
When the user attempts to write their version of the doc-
ument to the store, simply committing it would effectively
override the concurrent updates from other users obtained

via background merges. The solution, fortunately, is straight-
forward: we merge the user-submitted value with the (value
of) the latest version on the local branch to create a new
version that includes the updates from either direction. Well-
formedness check is not needed for this merge as it is guar-
anteed by construction. Thus, Quark’s write is a function
of type Value → Value, where Value is doc in the current
application.

Figure 5. Latency of collaborative editing operations under
Quark vs executing them with strong consistency (SC).

To measure the impact of Quark runtime on user writes,
we measure the latency of the write operation, which in-
cludes for the time spent merging the user version with the
current version, and persisting the resultant version to the
store. We conduct the experiments on a three-node cluster of
i3.large machines in Amazon us-west2 data center. Each
user connects to one of the machines and performs 1000
edits in succession, saving the document after each edit. We
progressively increase the number of concurrent users edit-
ing the document from 3 to 60 and measure the impact of
the increased concurrency on write latency. Fig. 5 shows
the median latency values. As evident from the figure, la-
tency of Quark writes remain more-or-less constant with
the median latency around 0.008s. The maximum latency
ever measured for aQuark writes is 0.016s. Notably, latency
remains an order of magnitude less than the time between
consecutive edits (0.25s), making it hard to perceive. Fig. 5
also plots the latency values for the baseline “SC” approach
which achieves convergence by synchronizing each opera-
tion, i.e., executing under strong consistency (SC). The SC
write latency increases super-linearly with the median value
of 1.76s for 60 concurrent editors. The maximum latency
measured for an SC write is 9.02s, which is considerably
more than the inter-edit latency of 0.25s. The experiment
confirms the theory that convergence does not come at the
cost of latency in Quark.
Quark system replicates the contents of each branch

across all the replicas as fast as the network allows. However,

PaPoC, April 2022, Rennes, France Gowtham Kaki, Prasanth Prahladan, and Nicholas Lewchenko

Figure 6. Staleness increases as the number of concurrent
editors increase.
for a user𝐴 to see the changes made by the other user 𝐵, the
changes have to be reflected in 𝐴’s local version, which can
only happen through a merge operation. SinceQuark syn-
chronizes merge operations globally, it induces additional
delay before 𝐴 can see 𝐵’s changes. We call this additional
delay staleness as with the progression of time, 𝐵’s version
known to 𝐴 becomes increasingly stale. At the system-level,
an increase in staleness effectively delays the convergence
(but doesn’t preempt it). To understand the staleness behav-
ior inQuark, we repeat the collaborative editing experiment,
this time measuring the staleness value at every merge. We
do this by annotating every version 𝑣 with the timestamp
𝑡 of its creation time. When 𝑣 is is merged into a remote
branch 𝑏 at a later time 𝑡 ′, the difference 𝑡 ′ − 𝑡 denotes the
staleness of 𝑣 w.r.t the new version on 𝑏. Multiple such stal-
eness measurements are recorded for each experiment to
compute the 10th, 50th, and 90th percentile values. Fig. 6
shows the results. While staleness remains in the order of
milliseconds with fewer (≤ 9) concurrent users, it increases
super-linearly as we increase the number of collaborators
in the multiples of 3 until 30. While increased staleness is
inevitable in our approach due to synchronized merges, we
believe the increase can be contained by choosing the or-
der of merges to avoid the “starvation” of some branches.
Note that relaxing the linearizability constraint on merges
would completely eliminate the staleness overhead, but the
resultant Git-like system fails to converge due to anomalous
executions described in Sec. 22.
Our experiments bring to the fore an inherent tradeoff

among the competing concerns of RDTs, namely (i). The ease
of programming convergence, (ii) Latency, and (iii). Staleness.
While CRDTs try to optimize for latency and staleness, they
require a significant amount of development and verification
effort to be expended to ensure convergence [4]. In contrast,
2Git admits anamolous version history graphs where two branches can have
the same set of commits and yet differ in their final version. Supplementary
material describes two such cases we observed on Github.

Quark lets developers derive convergent-by-construction
RDTs from ordinary data data types that are optimized for
latency, but incur a staleness overhead that delays the time
to convergence.

References
[1] Hans-J. Boehm, Russ Atkinson, and Michael Plass. 1995. Ropes: An

Alternative to Strings. Softw. Pract. Exper. 25, 12 (Dec. 1995), 1315–1330.
https://doi.org/10.1002/spe.4380251203

[2] Canterbury 2021. The Canterbury Corpus. https://corpus.canterbury.
ac.nz/descriptions/ Accessed: 2021-11-18 13:21:00.

[3] GNU Diffutils 2021. GNU Diffutils. https://www.gnu.org/software/
diffutils/ Accessed: 2021-11-18 13:21:00.

[4] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and
Alastair R. Beresford. 2017. Verifying Strong Eventual Consistency in
Distributed Systems. Proc. ACM Program. Lang. 1, OOPSLA, Article
109 (oct 2017), 28 pages. https://doi.org/10.1145/3133933

[5] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagan-
nathan. 2019. Mergeable Replicated Data Types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (oct 2019), 29 pages. https:
//doi.org/10.1145/3360580

[6] Martin Kleppmann and Alastair R. Beresford. 2017. A Conflict-Free
Replicated JSON Datatype. IEEE Transactions on Parallel and Dis-
tributed Systems 28, 10 (Oct 2017), 2733–2746. https://doi.org/10.1109/
tpds.2017.2697382

[7] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia.
2009. A Commutative Replicated Data Type for Cooperative Editing. In
Proceedings of the 2009 29th IEEE International Conference on Distributed
Computing Systems (ICDCS ’09). IEEE Computer Society, Washington,
DC, USA, 395–403. https://doi.org/10.1109/ICDCS.2009.20

[8] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.
Replicated Abstract Data Types: Building Blocks for Collaborative
Applications. J. Parallel Distrib. Comput. 71, 3 (mar 2011), 354–368.
https://doi.org/10.1016/j.jpdc.2010.12.006

[9] Scylla 2021. A Real-Time Big Data Database. https://www.scylladb.
com/ Accessed: 2021-11-18 13:21:00.

[10] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-free Replicated Data Types. In Proceedings of the 13th
International Conference on Stabilization, Safety, and Security of Dis-
tributed Systems (Grenoble, France) (SSS’11). Springer-Verlag, Berlin,
Heidelberg, 386–400. http://dl.acm.org/citation.cfm?id=2050613.
2050642

[11] Marek Zawirski. 2015. Dependable Eventual Consistency with Replicated
Data Types. Ph.D. Dissertation.

[12] Yuqi Zhang, Yu Huang, Hengfeng Wei, and Jian Lu. 2019. Remove-
Win: a Design Framework for Conflict-free Replicated Data Collections.
arXiv:1905.01403 [cs.DC]

https://doi.org/10.1002/spe.4380251203
https://corpus.canterbury.ac.nz/descriptions/
https://corpus.canterbury.ac.nz/descriptions/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/diffutils/
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1109/ICDCS.2009.20
https://doi.org/10.1016/j.jpdc.2010.12.006
https://www.scylladb.com/
https://www.scylladb.com/
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://arxiv.org/abs/1905.01403

	Abstract
	1 Introduction
	2 CRDTs to Convergent MRDTs
	3 Quark
	4 Evaluation
	References

