
A Relational Framework for Higher-Order Shape Analysis

Gowtham Kaki Suresh Jagannathan
Purdue University

{gkaki,suresh}@cs.purdue.edu

Abstract
We propose the integration of a relational specification framework
within a dependent type system capable of verifying complex in-
variants over the shapes of algebraic datatypes. Our approach is
based on the observation that structural properties of such datatypes
can often be naturally expressed as inductively-defined relations
over the recursive structure evident in their definitions. By inter-
preting constructor applications (abstractly) in a relational domain,
we can define expressive relational abstractions for a variety of
complex data structures, whose structural and shape invariants can
be automatically verified. Our specification language also allows
for definitions of parametric relations for polymorphic data types
that enable highly composable specifications and naturally gener-
alizes to higher-order polymorphic functions.

We describe an algorithm that translates relational specifications
into a decidable fragment of first-order logic that can be efficiently
discharged by an SMT solver. We have implemented these ideas
in a type checker called CATALYST that is incorporated within
the MLton SML compiler. Experimental results and case studies
indicate that our verification strategy is both practical and effective.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Applicative (Functional) Languages; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; D.2.4 [Software Engineering]: Software/Pro-
gram Verification

Keywords Relational Specifications; Inductive Relations; Para-
metric Relations; Dependent Types; Decidability; Standard ML

1. Introduction
Dependent types are well-studied vehicles capable of expressing
rich program invariants. A prototypical example is the type of
a list that is indexed by a natural number denoting its length.
Length-indexed lists can be written in several mainstream lan-
guages that support some form of dependent typing, including
GHC Haskell [24], F* [21, 23], and OCaml [16]. For example, the
following Haskell signatures specify how the length of the result
list for append and rev relate to their arguments:

append :: List a n -> List a m -> List a (Plus n m)
rev :: List a n -> List a n

While length-indexed lists capture stronger invariants over append ,
and rev than possible with just simple types, they still under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-2873-9 /14/09. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2628136.2628159

specify the intended behavior of these operations. For example, a
correctly written append function must additionally preserve the
order of its input lists; a function that incorrectly produces an out-
put list that is a permutation of its inputs would nonetheless satisfy
append ’s type as written above. Similarly, the identity function
would clearly satisfy the type given for rev ; a type that fully cap-
tures rev ’s behavior would also have to specify that the order of
elements in rev ’s output list is the inverse of the order of its input.
Is it possible to ascribe such expressive types to capture these kinds
of important shape properties, which can nonetheless be easily
stated, and efficiently checked?

One approach is to directly state desired behavior in type refine-
ments, as in the following signature:
rev : {l : ’a list} −→ {ν: ’a list | ν = rev’(l)}
Here, rev’ represents some reference implementation of rev .
Checking rev ’s implementation against this refinement is tanta-
mount to proving the equivalence of rev and rev’ . Given the
undecidability of the general problem, expecting these types to be
machine checkable would require the definition of rev’ to closely
resemble rev ’s. For all but the most trivial of definitions, this ap-
proach is unlikely to be fruitful. An alternative approach is to de-
fine rev within a theorem prover, and directly assert and prove
properties on it - for example, that rev is involutive. Although
modern theorem provers support rich theories over datatypes like
lists, this strategy nonetheless requires that the program be fully
described in logic, and reasoned about by the solver in its entirety.
Thus, defining rev in this way also requires an equational defi-
nition of append , assuming the former is defined in terms of the
latter. For non-trivial programs, this may require equipping provers
with arbitrarily complex theories, whose combination may not be
decidable. Such a methodology also does not obviously address our
original goal of specifying rev ’s functional correctness, indepen-
dent of its definition; note that in the case of rev , involution does
not imply functional correctness. Clearly, the challenges in building
suitably typed definitions that let us reason about interesting shape
properties of a data structure are substantial.

Nonetheless, the way the length of a list is tracked using its
length-indexed type offers a useful hint about how we can reason
about its shape. Akin to the Nat domain that indexes a list type
with a length abstraction, we need an appropriate abstract domain
that we can use to help us reason about a list’s shape properties.
For instance, in the case of list reversal, the abstract domain should
allow us to structurally reason about the order of elements in the
input and output lists. A useful interpretation of a list order that
satisfies this requirement would be one that relates every element
in a list with every another element based on an ordering predicate
(e.g., occurs-before or occurs-after). By defining an exhaustive
enumeration of the set of all such pairs under this ordering, we
can effectively specify the total order of all elements in the list.
More precisely, observe that the notion of order can be broken down
to the level of a binary relation over elements in the list, with the

transitive closure of such a relation effectively serving as a faithful
representation.

For example, consider a relationRob that relates a list to a pair if
the first element in the pair occurs before the second in the list. For
a concrete list l=[x1,x2,x3] , the relation’s closure R∗ob would
be:

{〈 l , 〈x1, x2〉〉 , 〈 l , 〈x1, x3〉〉 , 〈 l , 〈x2, x3〉〉} 1

Conversely, an occurs-after (Roa) relation serves as the semantic
inverse of occurs-before; given these two relations, we can specify
the following type for rev :
rev : { l : ’a list} −→ {ν: ’a list | R∗ob(l) = R∗oa(ν)}
Since R∗ob(l) represents the set of pairs whose elements exhibit
the occurs-before property in the input list, and R∗oa(ν) represents
the set of pairs whose elements exhibit the occurs-after property
in the output list, the above specification effectively asserts that for
every pair of elements x and y in the input list l , if x occurs before
y in l , then x has to occur after y in the result list ν.

This property succinctly captures the fact that the result list is
the same as the original list in reverse order without appealing to the
operational definition of how the result list is constructed from the
input. By using a relational domain to reason about the shape of the
list, we avoid having to construct a statically checkable reference
implementation of rev .

We refer to operators like Rob and Roa as structural rela-
tions because they explicitly describe structural properties of a data
structure. Such relations can be used as appropriate abstract do-
mains to reason about the shapes of structures generated by con-
structor applications in algebraic data types. Given that relations
naturally translate to sets of tuples, standard set operations such
as union and cross-product are typically sufficient to build useful
relational abstractions from any concrete domain. This simplicity
makes relational specifications highly amenable for automatic ver-
ification.

The type of rev given above captures its functional behavior
by referring to the order of elements in its argument and result lists.
However, the notion of order as a relation between elements of the
list is not always sufficient. For example, consider the function,

dup : ’a list → (’a*’a) list

that duplicates the elements in its input list. An invariant that we
can expect of any correct implementation is that the order of left
components of pairs in the output list is the same as the order of its
right components, and both are equal to the order of elements in the
input list. Clearly, our definitions of Rob and Roa as relations over
elements in a list are insufficient to express the order of individual
components of pairs in a list of pairs. How do we construct general
definitions that let us capture ordering invariants over different
kinds of lists without generating distinct relations for each kind?

We address this issue by allowing structural relations defined
over a polymorphic data type to be parameterized by relations
over type variables in the data type. For instance, the Rob relation
defined over a ’a list can be parameterized by a polymorphic
relation R over ’a . Instead of directly relating the order of two
elements x and y in a polymorphic list, a parametric occurs-before
relation generically relates the ordering of R(x) and R(y); R’s
specific instantiation would draw from the set of relations defined
over the data type that instantiates the type variable (’a). In the

1 Given a relation R = {〈x, y1〉 , 〈x, y2〉 , . . . , 〈x, yn〉} where x is an
instance of some datatype, and the yi are tuples that capture some shape
property of interest, we write R(x) as shorthand for {y1, y2, . . . , yn}.
Thus,

R∗ob(l) = {〈x1, x2〉 , 〈x1, x3〉 , 〈x2, x3〉}

case of dup , Rob could be instantiated with relations like Rfst

and Rsnd that project the first and second elements of the pairs in
dup ’s output list. The ability to parameterize relations in this way
allows structural relations to be used seamlessly with higher-order
polymorphic functions, and enables composable specifications over
defined relations.

In this paper, we present an automated verification framework
integrated within a refinement type system to express and check
specifications of the kind given above. We describe a specification
language based on relational algebra to define and compose struc-
tural relations for any algebraic data type. These definitions are
only as complex as the data type definition itself in the sense that it
is possible to construct equivalent relational definitions directly su-
perimposed on the data type. Relations thus defined, including their
automatically generated inductive variants, can be used to specify
shape invariants and other relational properties. Our typechecking
procedure verifies specifications by interpreting constructor appli-
cations as set operations within these abstract relational domains.
Typechecking in our system is decidable, a result which follows
from the completeness of encoding our specification language in a
decidable logic.

The paper makes the following contributions:

1. We present a rich specification language for expressing refine-
ments that are given in terms of relational expressions and fa-
miliar relational algebraic operations. The language is equipped
with pattern-matching operations over constructors of algebraic
data types, thus allowing the definition of useful shape proper-
ties in terms of relational constraints.

2. To allow relational refinements to express shape properties over
complex data structures, and to be effective in defining such
properties on higher-order programs, we allow the inductive re-
lations found in type refinements to be parameterized over other
inductively defined relations. While the semantics of a relation-
ally parametric specification can be understood intuitively in
second-order logic, we show that it can be equivalently encoded
in a decidable fragment of first-order logic, leading to a practi-
cal and efficient type-checking algorithm.

3. We present a formalization of our ideas, including a static
semantics, meta-theory that establishes the soundness of well-
typed programs, a translation mechanism that maps well-typed
relational expressions and refinements to a decidable many-
sorted first-order logic, and a decidability result that justifies
the translation scheme.

4. We describe an implementation of these ideas in a type checker
called CATALYST that is incorporated within the MLton Stan-
dard ML compiler, and demonstrate the utility of these ideas
through a series of examples, including a detailed case study
that automatically verifies the correctness of α-conversion and
capture-avoiding substitution operations of the untyped lambda
calculus, whose types are expressed using relational expres-
sions.

The remainder of the paper is structured as follows. In the next
section, we present additional motivation and examples for our
ideas. Sec. 3 formalizes the syntax and static semantics of relational
refinements in the context of a simply-typed core language. Sec. 4
extends the formalization to support parametric refinements within
a polymorphic core language. Our formalization also presents a
translation scheme from relational refinements to a decidable first-
order logic. Details about the implementation are given in Sec. 5.
Sec. 6 presents a case study. Secs. 7, 8 and 9 present related work,
directions for future work, and conclusions, respectively.

2. Structural Relations
Our specification language is primarily the language of relational
expressions composed using familiar relational algebraic operators.
This language is additionally equipped with pattern matching over
constructors of algebraic types to define shape properties in terms
of these expressions. A number of built-in polymorphic relations
are provided, the most important of which are listed below:

Rid (x) = {〈 x 〉}
Rdup (x) = {〈 x , x 〉}
RnotEqk

(x) = {〈 x 〉} − {〈 k 〉}
Reqk (x) = {〈 x 〉} − ({〈 x 〉} − {〈 k 〉})

Rid is the identity relation, Rdup is a relation that associates a
value with a pair that duplicates that value, RnotEqk

is a relation
indexed by a constant k (of some base type) that relates x to itself,
provided x is not equal to k , and Reqk

is defined similarly, except
it relates x to itself exactly when x is equal to k . Apart from the
relations defined above, the language also includes the primitive
relation ∅ that denotes the empty set.

To see how new structural relations can be built using relational
operators, primitive relations, and pattern-match syntax, consider
the specification of the list-head relation that relates a list to its
head element:

relation Rhd (x::xs) = {〈 x 〉}
| Rhd [] = ∅

For a concrete list l , Rhd(l) produces the set of unary tuples
whose elements are in the head relation with l . This set is clearly
a singleton when the list is non-empty and empty otherwise. The
above definition states that for any list pattern constructed using “::”
whose head is represented by pattern variable x and whose tail is
represented by pattern variable xs , (1) 〈x :: xs, x〉 ∈ Rhd , and (2)
there does not exist an x’ such that x′ 6= x and 〈x :: xs, x′〉 ∈
Rhd . The declarative syntax of the kind shown above is the primary
means of defining structural relations in our system.

2.1 Relational Composition
Simple structural relations such as Rhd have fixed cardinality , i.e.,
they have a fixed number of tuples regardless of the concrete size
of the data structure on which they are defined. However, practical
verification problems require relations over algebraic datatypes to
have cardinality comparable to the size of the data structure, which
may be recursive.

For example, the problem of verifying that an implementation
of rev reverses the ordering of its input requires specifying a
membership relation (Rmem) that relates a list l to every element
in l (regardless of l ’s size). This relation would allow us to
define an ordering property such as occurs-before or occurs-after
on precisely those elements that comprise rev ’s input and output
lists. A recursive definition of Rmem looks like 2:

Rmem (x :: xs) = {〈 x 〉} ∪ Rmem (xs)

We can equivalently express Rmem as an inductive extension of the
head relation Rhd defined above. Suppose R is a structural relation
that relates a list l of type ’a list with elements v of type ’a .
Then, the inductive extension ofR (writtenR∗) is the least relation
that satisfies the following conditions:

• if 〈l, v〉 ∈ R, then 〈l, v〉 ∈ R∗

• if l = x :: xs and 〈xs, v〉 ∈ R then 〈l, v〉 ∈ R∗

2 In some our examples, we elide the case for the empty list, which defaults
to the empty set.

Thus, Rmem = R∗hd . We can think of the induction operator as a
controlled abstraction for structural recursion. Based on the recur-
sive structure of an algebraic data type, sophisticated inductive def-
initions can be generated from simple structural relations defined
for that data type.

Equipped with Rmem , we can now precisely define the occurs-
before relation defined earlier. Because Rob relates a list to a pair
whose first element is the head of the list, and whose second
element is a member of its tail, it can be expressed in terms of
Rmem thus:

relation Rob (x :: xs) = {〈 x 〉} × Rmem (xs)

The transitive closure of this relation R∗ob expresses the occurs-
before property on every element in the list. The occurs-after rela-
tion can be defined similarly:

relation Roa (x :: xs) = Rmem (xs) × {〈 x 〉}

2.2 Parametric Relations
Consider how we might specify a zip function over lists, with the
following type:

zip : ’a list→ ’b list→ (’a * ’b) list

Any correct implementation of zip must guarantee that the ele-
ments of the output list are pairs of elements drawn from both ar-
gument lists. The Rmem relation defined above provides much of
the functionality we require to specify this invariant; intuitively, the
specification should indicate that the first (resp. second) element of
every pair in the output list is in a membership relation with zip ’s
first (resp. second) argument. Unfortunately, as currently defined,
Rmem operates directly on the pair elements of the output, not the
pair’s individual components. What we require is a mechanism that
allows Rmem to assert the membership property on the pair’s com-
ponents (rather than the pair directly).

To do this, we allow structural relations to be parameterized
over other relations. In the case of zip , the parameterized member-
ship relation can be instantiated with the appropriate relationally-
defined projections on a pair type. Concretely, given new param-
eterized definitions of Rhd and Rmem , and related auxiliary rela-
tions:

relation (Rhd R) (x::xs) = R (x)
| (Rhd R) [] = ∅

relation (Rmem R) = (Rhd R)∗

relation Rfst (x , y) = {〈 x 〉}
relation Rsnd (x , y) = {〈 y 〉}

zip can now be assigned the following type that faithfully captures
the membership relation between its input lists and its output:3

zip : l1 → l2 →
{ ν | ((Rmem Rfst) ν) = ((Rmem Rid) l1)
∧ ((Rmem Rsnd) ν) = ((Rmem Rid) l2) }

Similarly, we can define parametric versions of Rob and Roa :

relation (Rob R) (x:xs)= R (x) × ((Rmem R) xs)
relation (Roa R) (x:xs)= ((Rmem R) xs) × R (x)

Using this parametric version of Rob , the dup function described
in the previous section can now be specified thus:

dup : l → { ν | ((Rob Rfst)
∗ ν) = ((Rob Rid)∗ l)

∧ ((Rob Rsnd)∗ ν) = ((Rob Rid)∗ l) }

3 We drop ML types from dependent type specifications when obvious from
context.

2.3 Parametric Dependent Types
Our specification language also allows dependent types to be pa-
rameterized over relations used in type refinements. In the spirit of
type variables, we use relation variables to denote parameterized
relations in a type. To illustrate why such parameterization is use-
ful, consider the following signature for foldl :

(′Rbm) foldl :
{l : ’a list} → {b : ’b} →

({f: {x :’a} → {acc : ’b} →
{ z : ’b | ′Rbm(z) = {〈 x 〉} ∪ ′Rbm(acc) }})→

{ ν | ′Rbm (ν) = Rmem (l) ∪ ′Rbm(b)}

This type relates membership properties on foldl ’s input list, ex-
pressed in terms of a non-parametric Rmem relation, to an abstract
notion of membership over its result type (’b) captured using a re-
lation variable (′Rbm). This signature constrains foldl to produce
a result for which a membership property is a sensible notion. For
instance, if foldl were applied to arguments in which b was of
some list type (e.g., []) because it is used as a list transform opera-
tor, then ′Rbm could be trivially instantiated with Rmem . However,
allowing types to be parameterized over relation variables enable
richer properties to be expressed. For example, consider the func-
tion makeTree that uses foldl to generate a binary tree using
function treeInsert (not shown):

datatype ’a tree = Leaf
| Tree of ’a * (’a Tree) * (’a Tree)

relationRthd Leaf = ∅
| Rthd (Tree (x , t1 , t2)) = {〈 x 〉}

relation Rtmem = R∗thd

makeTree : { l : ’a list} →
{ν : ’a tree | Rtmem(ν) = Rmem(l)}

val makeTree = fn l =>
foldl (Rtmem) l Leaf treeInsert

Function makeTree uses foldl by first instantiating the relation
variable ′Rbm in the type of foldl to Rtmem . The resultant type
of foldl requires its higher-order argument to construct a tree
using members of its tree argument (acc), and the list element
(x) to which it is applied. In return, foldl guarantees to produce
a tree, which contains all the members of its list argument. It
should be noted that a correct implementation of treeInsert will
have the required type of foldl ’s higher-order argument, after
instantiating ′Rbm to Rtmem . Thus, the application of foldl in
the above example typechecks, producing the required invariant of
makeTree .

Foldl ’s type can also be parameterized over an abstract notion
of membership for type variable ’a , captured by another relation
variable (′Ram) to state a more general membership invariant. Con-
cretely, this requires that the tuple ({〈 x 〉}) in the type refinement
of higher-order argument (f) be replaced with ′Ram (x)), and the
non-parametric Rmem relation in the result type refinement be sub-
stituted with a parametric (Rmem

′Ram) relation. In cases when
there does not exist any useful notion of membership for types that
instantiate ’a and ’b , relation variables ′Ram and Rbm can be
instantiated with ∅ to yield tautological type refinements.

An alternative type for foldl could relate the order of elements
in the argument list to some order of the result. The intuition is
as follows: suppose the result type (’b) has some notion of order
captured by a relation such that the result of foldl ’s higher-order
argument (f) has a refinement given in terms of this relation; i.e., it
says something about how the order relation of its result (z) relates
to its arguments (x and acc). But, x comes from the list being
folded, and f is applied over elements of this list in a pre-defined

Calculus λR

x, y, z, ν ∈ variables n ∈ integers

c ::= Cons | Nil | n constants
v ::= x | λ(x : τ). e | c | Cons v | Cons v v value
e ::= v | e v | let x = e in e |

match v with Cons x y ⇒ e else e expression
T ::= int | intlist datatypes
τ ::= {ν : T |φ} | x : τ → τ dep. types

Specification Language
R ∈ relation names

r ::= R(v) | r ∪ r | r × r relational exp.
φ ::= r = r | r ⊆ r | φ ∧ φ | φ ∨ φ | true type refinement
∆R ::= 〈R, τR, Consx y ⇒ r |Nil⇒ r〉 relation def .

| 〈R, τR, R∗〉

θ ::= T | T ∗ θ tuple sort
τR ::= intlist :→ {θ} | int :→ {θ} relation sort

Figure 1: Language

order. Therefore, we can express invariants that relate the order of
the input list to the order of the result type, given that we know the
order in which f is applied over the list. The type of foldl that
tries to match the abstract order (’Rbo) on the result type (’b) to an
occurs-after order on the input list is shown below. For brevity, we
avoid reproducing membership invariants from the type of foldl
from the previous example, using ellipses in their place:

(’Rbm ,’Rbo) foldl : {l : ’a list} → {b : ’b} →
({f : { x : ’a } → { acc : ’b } →

{ z | ’Rbo(z) = ({〈 x 〉} × ’Rbm (acc)) ∪
’Rbo(acc) ∧ ...})→

{ν | ’Rbo(ν) = R∗oa (l) ∪ ’Rbo(b)) ∪
((Rmem (l)) × ’Rbm (b)) ∧ ...}

An implementation of rev that uses foldl is given below:

rev : {l : ’a list} → {ν : ’a list | R∗ob(ν) = R∗oa(l)}
val Cons = fn x => fn xs => x::xs
val rev = fn l => foldl (Rmem,R∗ob) l [] Cons

Our type checker successfully typechecks the above program, given
the standard definition of foldl . Note that, due to the difference
in the order in which the higher-order argument is applied over
the input list, the type of foldr will be necessarily different from
foldl . Consequently, using foldr instead of foldl in the above
program fails type checking, as would be expected.

3. Core language
3.1 Syntax
We formalize our ideas using a core calculus (λR) shown in Fig. 1,
an A-normalized extension of the simply-typed lambda calculus.
The language supports a primitive type (int), a recursive data type
(intlist), along with dependent base and function types. Because
the mechanisms and syntax to define and elaborate recursive data
types are kept separate from the core, λR is only provided with two
constructors, Nil and Cons used to build lists. The language has a
standard call-by-value operational semantics, details of which can
be found in an accompanying technical report [10].4

Dependent type refinements (φ) in λR are assertions over re-
lational expressions (r); these expressions, which are themselves

4 Proofs for all lemmas and theorems given in this paper are also provided
in the report.

Sort Checking Specification Language Γ ` r :: {θ}, Γ ` R :: T :→ {θ}

S-REL

R , 〈Nil⇒ r1, Consx y ⇒ r2〉
· ` r1 :: {θ} ·, x : int, y : intlist ` r2 :: {θ}

· ` R :: intlist :→ {θ}

S-REL-STAR

R1 , R∗2 · ` R2 :: τR

· ` R1 :: τR

S-APP

‖Γ‖ v : T
· ` R :: T :→ {θ}
Γ ` R(v) :: {θ}

S-REL-ID

· ` Rid :: int :→ {int}

S-UNION

Γ ` r1 :: {θ} Γ ` r2 :: {θ}
Γ ` r1 ∪ r2 :: {θ}

S-CROSS

Γ ` r1 :: {θ1} Γ ` r2 :: {θ2}
Γ ` r1 × r2 :: {θ1 ∗ θ2}

Well-Formedness Γ ` φ, Γ ` τ

WF-RPRED

� ∈ {=,⊂}
Γ ` r1 :: {θ} Γ ` r2 :: {θ}

Γ ` r1 � r2

WF-REF

� ∈ {∧,∨}
Γ ` φ1 Γ ` φ2

Γ ` φ1 � φ2

WF-BASE

Γ, ν : T ` φ
Γ ` {ν : T |φ}

WF-FUN

Γ ` τ1 Γ, x : τ1 ` τ2
Γ ` x : τ1 → τ2

Subtyping Γ ` τ1 <: τ2

SUBT-BASE

Γ ` {ν : T |φ1} Γ ` {ν : T |φ2}
JΓRK |= JΓ, ν : T K⇒ Jφ1K⇒ Jφ2K

Γ ` {ν : T |φ1} <: {ν : T |φ2}

SUBT-ARROW

Γ ` τ21 <: τ11 Γ, x : τ21 ` τ12 <: τ22

Γ ` (x : τ11)→ τ12 <: (x : τ21)→ τ22

Type Checking Expression Language Γ ` e : τ

T-VAR

(x : τ) ∈ Γ

Γ ` x : τ

T-ABS

Γ ` τ1 Γ, x : τ1 ` e : τ2
Γ ` λ(x : τ1). e : (x : τ1)→ τ2

T-CONST

· ` ty(c)

Γ ` c : ty(c)

T-SUB

Γ ` e : τ1 Γ ` τ1 <: τ2
Γ ` e : τ2

T-MATCH

Γ ` v : intlist Γ ` Nil : {ν : intlist |φn}
Γ ` Cons : x : int→ y : intlist→ {ν : intlist |φc}
Γc = x : int, y : intlist, [v/ν]φc Γn = [v/ν]φn

Γ ` τ Γ,Γc ` e1 : τ Γ,Γn ` e2 : τ

Γ ` match v with Cons x y ⇒ e1 else e2 : τ

T-APP

Γ ` e : (x : τ1)→ τ2 Γ ` v : τ1
Γ ` e v : [v/x]τ2

T-LET

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2 Γ ` τ2
Γ ` let x = e1 in e2 : τ2

Figure 3: Static semantics of λR

typed, constitute the syntactic class of expressions in our specifi-
cation language. We refer to the types of relational expressions as
sorts, in order to distinguish them from λR types. We write r :: s
to denote that a relational expression r has sort s. A structural re-
lation is a triple, consisting of a unique relation name, its sort, and
its definition as (a) a pattern-match sequence that relates construc-
tors of an algebraic data type to a relation expression, or (b) an
inductive extension of an existing relation, captured using the clo-
sure operator (∗). We write R , δ to denote that a relation R has a
(pattern-match or inductive) definition δ.

A structural relation maps a value to a set of tuples (θ). We
use “:→” to distinguish such maps from the mapping expressed by
dependent function types. For example, the notation:

Rob :: intlist :→ {int * int}
indicates that the sort of relation Rob is a map from integer lists
to pairs. As reflected by the syntactic class of relation sorts (τR),
the domain of a λR relation is either intlist or int. For the purposes
of the formalization, we assume the existence of a single primitive

relationRid whose sort is int :→ {int} that defines an identity
relation on integers.

3.2 Sorts, Types and Well-formedness
Fig. 3 defines rules to check sorts of structural relations and re-
lational expressions, establish well-formedness conditions of type
refinements, and type-check expressions. The judgments defined by
these rules make use of environment Γ, defined as follows:

Γ ::= · | Γ, x : τ | Γ, φ

Environments are ordered sets of assertions that make up a typing
context. Assertions are either (a) type bindings for variables, or
(b) type refinements that reflect branch conditions collected from
match expressions. We assume that any variable is bound only
once in Γ.

Structural relations are sort checked under an empty type envi-
ronment. The rule S-REL type checks a relation definition by en-
suring that relational expressions associated with the constructors
that comprise the definition all have the same sort. The rule S-REL-

MSFOL

x ∈ λR variable i, k, j ∈ bound variable
R ∈ uninterpreted relation A ∈ uninterpreted sort

φF ::= v | v = v | φF φF | φF ⇔ φF quantifier − free
| φF ⇒ φF | φF ∨ φF | φF ∧ φF proposition
| v : τF

φL ::= ∀(k : TF). φL | φF | φL ∧ φL quantified
| φL ∨ φL proposition

v ::= x | k | j | R variable
TF ::= A | bool sort

τF ::= bool | TF → τF sort of φF

Auxiliary Definitions

F : T → A
Inst : φL × v → φL

Inst(∀(k : TF).φL, y) = [y/k]φL

ηwrap : φF × τF → φL

ηwrap(φF , TF → τF) = ∀(k : TF).ηwrap(φF k, τF)
ηwrap(φF , bool) = φF

Semantics of Relational Expressions JrK

JR(Cons v1 v2)K = JΣR(R)(Cons v1 v2)K
JR(Nil)K = JΣR(R)(Nil)K
JT K = F(T)
J{T}K = JT K→ bool
J{T ∗ θ}K = JT K→ J{θ}K
JT :→ {θ}K = JT K→ J{θ}K
JRid K = ∀(j : J int K).

∀(k : J int K).j = k

JRK = ηwrap(R, JΓR(R)K)
JR(x)K = Inst(JRK, x)
Jr1 ∪ r2K = γt(Jr1K,∨, Jr2K)
Jr1 × r2K = γ1(Jr1K,∧, Jr2K)
γt(∀(k : TF). e1,�, ∀(k : TF). e2) = ∀(k : TF). γt(e1,�, e2)
γt(φF1 ,�, φF2) = φF1 � φF2
γ1(∀j : TFj . φ

F
1 ,�, ∀k : TFk . φ

F
1) = ∀(j : TFj). ∀(k : TFk). φF1 � φF2

Semantics of Type Refinements JφK

Jφ1 ∧ φ2K = Jφ1K ∧ Jφ2K
Jφ1 ∨ φ2K = Jφ1K ∨ Jφ2K

Jr1 = r2K = γt(Jr1K,⇔, Jr2K)
Jr1 ⊆ r2K = γt(Jr1K,⇒, Jr2K)

Figure 4: Semantics of Specification Language

STAR captures the fact that an inductive extension of a relation has
the same type as the relation itself. The rule S-APP sort checks
relation applications by ensuring that the argument to the relation
has the required simple (non-dependent) type. The rule makes use
of a simple typing judgment () under a refinement erased Γ (de-
noted ‖Γ‖) for this purpose. Rules for simple typing judgments are
straightforward, and are elided here; the full set of rules can be
found in the accompanying technical report [10].

Refinement erasure on a dependent base type (τ) sets its type
refinement to true , effectively erasing the refinement to yield a
simple type. For function types, erasure is defined recursively:
‖{ν : T |φ}‖ = T ‖(x : τ1)→ τ2‖ = ‖τ1‖ → ‖τ2‖

Refinement erasure for type environments performs erasure over
all type bindings within the environment, in addition to erasing all
recorded branch conditions. For an empty environment, refinement
erasure is an identity.

‖Γ, x : τ‖ = ‖Γ‖ , x : ‖τ‖ ‖Γ, φ‖ = ‖Γ‖
‖·‖ = ·

The dependent type checking rules for λR expressions are
mostly standard, except for T-CONST and T-MATCH. The rule
T-CONST makes use of a function ty that maps a constant c to a
type (ty(c)), which remains its type under any Γ. The function ty
is defined below:

∀i ∈ Z, ty(i) = int
ty(Nil) = {ν : intlist |φn}
ty(Cons) = x : int→ y : intlist→ {ν : intlist |φc}

The type refinements of Nil (φn) and Cons (φc) in the T-MATCH
rule are conjunctive aggregations of Nil and Cons cases (resp.)
of all structural relation definitions found within a program. To
help us precisely define φn and φc, we assume the presence of
(a) a globally-defined finite map (ΣR) that maps relation names
to their pattern-match definitions, and (b) a finite ordered map ΓR
that maps relation names to their sorts. We implicitly parameterize
our typing judgment over ΣR (i.e., our ` is actually `〈ΣR,ΓR〉).
Inductive relations defined using the closure operator are assumed

to be unfolded to pattern-match definitions before being bound in
ΣR:

R , R∗2 ΣR(R2) = 〈Nil⇒ r1, Consx y ⇒ r2〉
ΣR(R) = 〈Nil⇒ r1, Consx y ⇒ r2 ∪R(y)〉

For the sake of presentation, we treat the pattern-match defini-
tion of a structural relation as a map from constructor patterns
to relational expressions. Consequently, when ΣR(R) = 〈Nil ⇒
r1, Consx y ⇒ r2 ∪ R(y)〉, the notation ΣR(R)(Nil) denotes r1,
and ΣR(R)(Consx y) denotes r2. With help of ΣR, we now define
φn, and φc as:

φn =
∧
R∈dom(ΣR)R(ν) = ΣR(R)(Nil)

φc =
∧
R∈dom(ΣR)R(ν) = ΣR(R)(Consx y)

For instance, consider a case where ΣR has only one element (R)
in its domain:

ΣR = [R 7→ 〈Nil⇒ Rid(0) | Consx y ⇒ Rid(x)〉]
The type of Nil and Cons in such case is as following:

ty(Nil) = {ν : intlist |R(ν) = Rid (0)}
ty(Cons) = x : int→ y : intlist→ {ν : intlist |R(ν) = Rid (x)}

The T-MATCH rule type checks each branch of the match expres-
sion under an environment that records the corresponding branch
condition. Additionally, the type environment for the Cons branch
is also extended with the types of matched pattern variables (x and
y). The branch condition for the Cons (alternatively, Nil) case is ob-
tained by substituting the test value (v) for the bound variable (ν)
in the type refinement of Cons (Nil). Intuitively, the branch condi-
tion of Cons (alternatively, Nil) captures the fact that the value v
was obtained by applying the constructor Cons (Nil); therefore, it
should satisfy the invariant of Cons (Nil). For instance, consider the
match expression:

match z with Cons x y ⇒ e1 else e2

where Cons has type5

Cons : x:int→ y:intlist→
{ν : intlist | Rmem (ν) = Rid (x) ∪ Rmem (y)}

Expression e1 is type-checked under the extended environment:

Γ, x:{ν:int | true}, xs:{ν:intlist | true},
Rmem (z) = Rid (x) ∪ Rmem (y)

The subtyping rules allow us to propagate dependent type in-
formation, and relate the subtype judgment to a notion of semantic
entailment (|=) in logic. The cornerstone of subtyping is the sub-
typing judgment between base dependent types defined by the rule
SUBT-BASE. The rule refers to the map ΓR that provides sorts for
relations occurring free in type refinements. Intuitively, the rule as-
serts dependent type τ1 to be a subtype of τ2, if and only if:

• Their base types match, and,
• Given a logical system L, and interpretations of type environ-

ment (Γ, ν : T) and the type refinement φ1 (of τ1) in L, the
following implication holds in L:

JΓ, ν : T K⇒ Jφ1K⇒ Jφ2K

The context under which the implication has to be valid (JΓRK,
is the interpretation of sort bindings of relations in L.

The soundness of λR’s type system is defined with respect to a
reduction relation (−→) that specifies the langauge’s operational
semantics:

THEOREM 3.1. (Type Safety) if · ` e : τ , then either e is a
value, or there exists an e′ such that e−→ e′ and · ` e′ : τ .

3.3 Semantics of the Specification Language
The semantics of our specification language is defined via a trans-
lation from well-typed relational expressions and well-formed type
refinements to quantified propositions of many-sorted first-order
logic (MSFOL).

Many-sorted first-order logic extends first-order logic (FOL)
with sorts (types) for variables. For our purpose, we only consider
the extension with Booleans and uninterpreted sorts, i.e., sorts that,
unlike int , do not have an attached interpretation. Ground terms,
or quantifier-free formulas, of MSFOL are drawn from proposi-
tional logic with equality and n-ary uninterpreted functions.

Our MSFOL semantics make use of the ΣR map defined previ-
ously. For perspicuity, we introduce the following syntactic sugar:

ΣR(R)(Cons v1 v2) = [v2/y] [v1/x] ΣR(R)(Consx y)

Further, we also assume a finite ordered map ΓR that maps struc-
tural relations to their sorts. That is, for all R such that · ` R ::
τR, we have that ΓR(R) = τR.

Fig. 4 describes the MSFOL semantics of λR’s specification
language. The semantics is operational in the sense that it describes
an algorithm to compile assertions in λR type refinements to for-
mulas in MSFOL. Our semantics are parameterized over an auxil-
iary function (F) that maps λR datatypes to uninterpreted sorts in
MSFOL. The specific uninterpreted sorts types map to are not rele-
vant here. However, F has to be a total function over λR datatypes.
Note that despite treating interpreted types (eg: intlist and int) as
uninterpreted sorts in the underlying logic, the exercise of ascribing
a semantics to the type refinement language is complete. This is be-
cause the interpretation of any type is the collection of operations
allowed on that type, and our type refinement language does not
contain operations that are specific to values of any specific type.

5 In our examples, we assign the same names to formal and actual arguments
for convenience.

Relations translate to uninterpreted functions with a Boolean
co-domain in MSFOL. We choose to curry sorts of uninterpreted
functions representing relations (R) to simplify the semantics. The
auxiliary function ηwrap wraps an uninterpreted function under
a quantified formula; this can be construed as an eta-equivalent
abstraction of an uninterpreted function in prenex quantified logic.
As an example, suppose we have

R :: intlist :→ {int}

That is, ΓR maps R to intlist :→ {int}. Assume that: JintK = A0

and JintlistK = A1. Now,

JRK = ηwrap(R,ΓR(R))

ηwrap(R, Jintlist :→ {int}K)
ηwrap(R, JintlistK→ J{int}K)
ηwrap(R,A1 → A0 → bool)

∀(k : A1).ηwrap(R k,A0 → bool)

∀(k : A1).∀(j : A0).ηwrap(R k j, bool)

∀(k : A1).∀(j : A0).R k j

Auxiliary function Inst instantiates a prenex-quantified formula.
We employ the standard interpretation of set union and cross prod-
uct operations, when sets are represented using prenex-quantified
propositions:

∀x.φ1 ∪ ∀x.φ2 = ∀x.(φ1 ∨ φ2)
∀x.φ1 × ∀y.φ2 = ∀x.∀y.(φ1 ∧ φ2)

Our semantics use syntactic rewrite functions - γt and γ1, to per-
form this translation, and to move quantification to prenex position
when composing quantified formulas using logical connectives.

To demonstrate the compilation process, we consider the fol-
lowing λR assertion:

Rob(l) = Rid(x) × Rmem(xs)

involving membership and occurs-before relations for integer lists:

Rmem :: intlist :→ {int}
Rob :: intlist :→ {int*int}

The series of steps that compile the assertion to an MSFOL for-
mula, which captures the semantics of the assertion, are shown in
Fig. 5.6 The example assumes that F maps int to sort A0 , and
intlist to sort A1 .

The semantics of types and type refinements given Fig. 4 can
be lifted in a straightforward way to the level of type environments
(Γ):

JΓ, x : {ν : T |φ}K = JΓK⇒ x : JT K⇒ J[x/ν]φK
JΓ, φK = JΓK⇒ JφK
J·K = true

The interpretation of relation sort environment (ΓR) is a set of
assertions over MSFOL sorts of uninterpreted relations:

JΓR, R :: τRK = JΓRK ∪ {R : JτRK}
J·K = {}

The following lemma states that the translation to MSFOL is
complete for a well-formed type refinement:

LEMMA 3.2. (Completeness of semantics) For all φ, Γ, if Γ ` φ,
then there exists an MSFOL proposition φL such that JφK = φL .

6 We focus only on the underlined part of the assertion as compilation stack
increases. We switch back to showing complete assertion when all sub-parts
are reduced. The digit before the dot in a step number indicates this switch.

J Rob(l) = Rid (x)× Rmem (xs) K (1.1)

γt(J Rob(l) K, ⇔, J Rid (x)× Rmem (xs) K) (1.2)

InstJ Rob K l (2.1)

Inst(∀(i : J intlist K).∀(j : J int K) . (2.2)

∀(k : J int K).(Rob i j k)) x

Inst (∀(i : A1).∀(j : A0).∀(k : A0).(Rob i j k)) x (2.3)

(∀(j : A0).∀(k : A0).(Rob x j k)) (2.4)

γt(J Rob(l) K, ⇔, J Rid (x)× Rmem (xs) K) (1.2)

γ1(J Rid (x) K, ∧, J Rmem (xs) K) (3.1)

Inst (∀(i : J int K.∀(j : J int K).(i = j)) x (4.1)

∀(j : A0).(x = j) (4.2)

γ1(J Rid (x) K, ∧, J Rmem (xs) K) (3.1)

(∀(k : A0)(Rmem xs k)) (5.1)

γ1(∀(j : A0).(x = j) , ∧, (∀(k : A0)(Rmem xs k))) (3.2)

∀(j : A0).∀(k : A0).(x = j) ∧ (Rmem xs k) (3.3)

γt((∀(j : A0).∀(k : A0).(Rob x j k)) , ⇔, (1.3)

∀(j : A0).∀(k : A0).(x = j) ∧ (Rmem xs k))

∀(j : A0).∀(k : A0).(Rob l j k)⇔ (x = j) ∧ (Rmem xs k) (1.4)

Figure 5: Compiling a λR assertion to MSFOL

3.4 Decidability of λR Type Checking
The subtyping judgment in our core language (λR) relies on the
semantic entailment judgment of MSFOL. The premise of SUBT-
BASE contains the following:

JΓRK |= JΓ, ν : T K⇒ Jφ1K⇒ Jφ2K

Consequently, decidability of type checking in λR reduces to de-
cidability of semantic entailment in MSFOL. Although seman-
tic entailment is undecidable for full first-order logic, our subset
of MSFOL is a carefully chosen decidable fragment. This frag-
ment, known as Effectively Propositional (EPR) first-order logic, or
Bernay-Schönfinkel-Ramsey (BSR) logic, consists of prenex quan-
tified propositions with uninterpreted relations and equality. Off-
the-shelf SMT solvers (e.g., Z3) are equipped with efficient deci-
sion procedures for EPR logic [19], making type checking in λR a
practical exercise.

THEOREM 3.3. (Decidability) Type checking in λR is decidable.

Proof Follows from Lemma 3.2 and decidability proof of EPR
logic.

4. Parametricity
4.1 Syntax
We now extend our core language (λR) with parametric polymor-
phism, and the specification language with parametric relations -
relations parameterized over other relations . We refer to the ex-
tended calculus as λ∀R. Figure 6 shows the type and specification
language of λ∀R. We have elided λ∀R’s expression language in the
interest of space. Unmodified syntactic forms of λR are also elided.

The only algebraic data type in λ∀R is a polymorphic list, which
is the domain for structural relations. Consequently, structural rela-
tions have sort schemes (σR), akin to type schemes (σ) of the term
language. For example, the non-parametric head relation (Rhd)
from Section 2, when defined over a polymorphic ’a list will
have sort scheme, ∀ ’a. ’a list :→ ’a . The specification
language also contains an expression (RT) to instantiate a gen-
eralized type variable in parametric relation sorts.

A parametric relation generalizes a structural relation, just as
a polymorphic list generalizes a monomorphic one. Our syntax

Calculus λ∀R

t ∈ tuple − sort variables x, y, k ∈ variables
′a , ′b ∈ type variables

T ::= ′a | ′a list | int datatypes

τ ::= {ν : T |Φ} | (x : τ)→ τ dependent type

δ ::= ∀t.∀(R :: ′a :→ t). δ | τ parametric dep. type

σ ::= ∀ ′a . σ | δ type scheme

Specification Language

Φ ::= ρ = ρ | ρ ⊆ ρ | Φ ∧ Φ | true type refinement

ρ ::= R(x) | ρ ∪ ρ | ρ× ρ rel . expression

R ::= RT | R θR | R instantiation

θ ::= t | t ∗ θ | T ∗ θ | T tuple sort

τR ::= ∀t. (′a :→ t) :→ (′a list :→ θ) relation sort

| ′a list :→ θ

σR ::= ∀ ′a . τR | τR sort scheme

∆R ::= 〈R, Rp, σR, Consx y ⇒ r |Nil⇒ r〉 rel . definition

| 〈R, Rp, σR, R∗〉

Figure 6: λ∀R - Language with parametric relations

and semantics for parametric relations are based on this correspon-
dence. Since the list type constructor takes only one type argu-
ment, structural relations in λ∀R are parameterized over one rela-
tional parameter. The domain of a relational parameter to a struc-
tural relation over a ’a list should be ’a . When the type vari-
able in ’a list is instantiated with, e.g., ’b list , the parameter
of a parametric relation over ’a list can be instantiated with a
structural relation over ’b list . For instance, the relational pa-
rameter R in the parametric membership relation (Rmem R), de-
fined in Sec. 2, can be instantiated with the non-parametric head
relation, Rhd

7, after instantiating ’a in its sort scheme with a ’b
list . The resulting relation can now be applied to a list of lists
(i.e., a ’b list list) to denote the set of head elements in the
constituent lists.

The definition (∆R) of a parametric relation is a tuple contain-
ing its name (R), the name of its relational parameter (Rp), its sort
scheme (σR), and its definition. A parametric relation definition
very often does not place constraints over the co-domain of its rela-
tional parameter. For instance, consider the parametricRhd relation
over ’a list reproduced from Section 2:

relation (Rhd R) (x::xs) = R(x)
| (Rhd R) [] = ∅

Rhd requires that the domain of its parameter be ’a , but it places
no restriction on the co-domain of R. In order to have a truly
parametric definition ofRhd , it is essential that we let the relational
parameter have an unrestricted co-domain. Therefore, we let tuple-
sort variables (t) be used in tuple sorts (θ). Such a variable can be
instantiated with a tuple sort, such as int*int.

In order to use a parametric relation in a type refinement, its
relational parameter has to be instantiated. Polymorphism in λ∀R
is predicative so parameterization over relations in λ∀R is also
predicative. An instantiated parametric relation is equivalent to
a non-parametric relation; it can be applied to a variable of the
term language, and can also be used to instantiate other parametric
relations.

7 A note on notation: We use (Rmem R) and (Rhd R) to denote para-
metric membership and head relations, resp. We continue to useRmem and
Rhd to denote their non-parametric versions. We use qualifiers ”paramet-
ric” and ”non-parametric” to disambiguate.

r ::= R(x) | r × r
FR ::= λ(x : T). r transformer
eb ::= bind (R(x), FR) bind expression
Eb ::= λ(x : T). bind (R(x), FR) bind abstraction
ψ ::= R = Eb bind equation
ΣbR ::= λR.Eb bind definition

Figure 7: Bind Syntax

To extend the generality of parametric relations to dependent
types of the term language, we lift the parameterization over re-
lations from the level of type refinements to the level of types. We
refer to dependent types parameterized over relations as parametric
dependent types (δ). An example of a parametric dependent type is
the type of foldl from Section 2. Another example is the type of
map shown below:

(’R1, ’R2) map :
l → (f : x → {ν | ’R2(ν) = ’R1(x)}) →
{ν | ((Rob ’R2)∗ ν) = ((Rob ’R1)

∗ l)}

4.2 Sort and Type Checking
Rules to check sorts of relational expressions and well-formedness
of type refinements (Φ) in λ∀R are straightforward extensions of
similar rules for λR and are omitted here. Sort-checking a paramet-
ric relation definition reduces to sort-checking a non-parametric re-
lation definition under an environment extended with the sort of its
relational parameter. Checking the sort of a relation instantiation
is the same as checking the sort of a function application in other
typed calculi, such as System F, as are rules to type-check general-
ization and instantiation expressions.

4.3 Semantics of Parametric Relations
Before we describe our semantics for parametric relations, we
present a few auxiliary definitions:

Ground Relations. A ground relation of a parametric relation (R)
is a non-parametric relation obtained by instantiating the relational
parameter with the identity Rid relation in its definition. Since we
require the co-domain of the relational parameter to be a tuple-
sort variable (t), an instantiation of the parameter with Rid is
always sort-safe. Therefore, there exists a ground relation for every
parametric relation in λ∀R.

Transformer Expression. A transformer expression (FR) is a λR
relational expression under a binder that binds a tuple of variables.
A transformer expression is expected to transform the tuple to
a set of tuples through a cross-product combination of relation
applications. The sort of a transformer application is a map (under
’:→’) from tuple-sort (θ1) to a set sort ({θ2}). An example of a
transformer expression of sort ’a :→ { ’a*’a } is the reflexive
transformer:

λx.Rid(x) × Rid(x)

Bind Expressions. Consider an operator that accepts a relation
application and a transformer expression (FR), applies FR over ev-
ery tuple in the set representing a relation application, and sub-
sequently folds the resulting set of sets using set union. Such an
operator has following sort:

∀t1, t2.{t1} :→ (t1 :→ {t2}) :→ {t2}

We name the operator bind , after set monadic bind. The syntax
of bind expressions is given in Fig. 7. For brevity, we exclude sort
annotations on bind expressions (FR) and bind abstractions (Eb) in
our examples.

By binding a relation application with a transformer expression,
a bind expression effectively creates a new relation. For instance,
given a list l with type ’a list , the bind expression that binds
Rmem(l) with a reflexive transformer is as following:

bind (Rmem (l), λx.Rid (x)× Rid (x))

The result of evaluating this expression is the set of reflexive pairs
of elements in the list, which is equivalent to instantiating Rmem

with Rdup :

(Rmem Rdup)(l) = bind (Rmem (l), λx.Rid (x)× Rid (x))

Here, equality is interpreted as equality of sets on both sides. Since
the semantics of a relation application is the set of tuples, the above
equation defines the semantics of (Rmem Rdup) in terms of its
ground relation Rmem . Indeed, a parametric Rmem relation (call it
Rπmem) can be defined equivalently in terms of its non-parametric
variant as:

Rπmem ≡ λR.λl. bind (Rmem (l), λx.R(x))

We refer to the above definition as the bind definition of parametric
Rmem relation. Every well-sorted parametric structural relation
definition in λ∀R can be transformed to a bind definition that
is extensionally equal, i.e., both produce the same set of tuples
for every instantiation, and subsequent application. Therefore, the
pattern-match syntax used to define parametric relations is simply
syntactic sugar over its underlying bind definition.

4.3.1 Elaboration to Bind Definition
Elaborating a parametric relation definition to a bind definition re-
quires that we construct its ground relation, and a transformer ex-
pression (FR). A ground relation definition is derived by instantiat-
ing its parametric definition with Rid , as stated previously. Con-
structing a transformer expression is equally simple - one only
needs to examine the co-domain tuple sort of the parametric re-
lation, which is also the co-domain tuple sort of the transformer
expression (from the type of bind). A sort variable in the tuple
sort is interpreted as application of its parameter relation, an aster-
isk in the sort translates to a cross-product, and a λ∀R type in the
tuple sort translates to application of Rid . For instance, consider a
hypothetical parametric relation Rx with the following sort:

Rx :: ∀t. (int :→ {t}) :→ (int list :→ {int ∗ t ∗ t})
We letR denote the relational parameter ofRx . The ground relation
of Rx (call it Rx ′) is the instantiated parametric relation (Rx Rid),
which has the sort int list :→ {int ∗ int ∗ int}. From the type of
bind , we know that the sort of the required transformer expression
(FR) is (int∗int∗int) :→ {int∗t∗t}. Recalling thatFR is a lambda
bound relational expression, which is a cross product combination
of relation applications (Fig. 7), we observe that the only possible
solution for FR is:

λ(x,y,z).Rid(x)×R(y)×R(z)

Consequently, we derive the following bind definition of Rx :

λR.λl. bind (Rx ′ (l), λ(x,y,z). Rid (x)×R(y)×R(z))

4.3.2 Bind Equations
By substituting parametric relations with their bind definitions,
every instantiation of a parametric relation can be reduced to a
bind abstraction (Eb in Figure 7), which, like any non-parametric
structural relation in λ∀R, is a map from a ’a list to a set of
tuples. Therefore, an instantiated parametric relation can be treated
as a new non-parametric relation that is defined using bind . For
example, (Rmem Rdup) can be treated as a new non-parametric
relation R1 , defined in terms of bind :

Semantics of Bind Equations JψK

JR2 = λ(x : T1). bind (R1(x), λ(k : T2). r)K = ∀(x : JT1K). γ⇒(JR1(x)K, ∀((k : JT2K).JrK, JR2(x)K)

∧ ∀(x : JT1K). γ⇐(JR1(x)K, ∀(k : JT2K).JrK, JR2(x)K)

γ⇒(∀(k : TF1).φF1 , ∀(k : TF1).∀(j : TF2).φF2 , ν
F) = ∀(k : TF1). ∀(j : TF2). φF1 ∧ φF2 ⇒ νF j

γ⇐(∀(k : TF1).φF1 , ∀(k : TF1).∀(j : TF2).φF2 , ν
F) = ∀(j : TF2). ∃(k : TF1). νF j ⇒ φF1 ∧ φF2

Figure 8: Semantics of bind equations for parametric relations in λ∀R

R1 = λl. bind (Rmem (l), λx.Rid (x)× Rid (x))

By rigorously defining the semantics of bind equations as above,
we can effectively capture the semantics of any instantiation of
a parametric relation in terms of its ground relation. This is the
insight that allows us to use parametric relations seamlessly in type
refinements. For instance, the bind semantics for (Rmem Rdup)
lets us prove the following implication, which could potentially
arise during subtype checking:

((Rmem Rdup) l1) = ((Rmem Rdup) l2)
⇒ Rmem (l1) = Rmem (l2)

The formal semantics of bind equations, which also define an algo-
rithm to compile bind equations to MSFOL formulas, is described
in Fig. 8. Under our semantics, the bind equation for (Rmem Rdup)
is interpreted as a conjunction of following first-order formulas
(elaborated for clarity):

• If 〈x〉 ∈ Rmem(l), and 〈y〉 ∈ Rid(x) × Rid(x), then 〈y〉 ∈
((Rmem Rdup) l).
• If 〈y〉 ∈ ((Rmem Rdup) l), then there must exist x such that
〈x〉 ∈ Rmem(l) and 〈y〉 ∈ Rid(x) × Rid(x).

Since sets have no other notion associated with them other than
membership, the above first-order assertions completely describe
((Rmem Rdup) l) in terms of (Rmem l).

4.4 Decidability of Type Checking
Type refinements (Φ) in λ∀R can be elaborated to a conjunction
of bind equations representing semantics of instantiated relations,
and a λR type refinement (φ). Consequently, we have the following
result:

THEOREM 4.1. (Decidability) Type checking in λ∀R is decidable.

Proof Follows from the decidability proof of EPR logic, to which
bind equations are compiled, and the decidability result (Theorem
3.3) for λR.

5. Implementation
We have implemented our specification language and verification
procedure as an extended type-checking pass (called CATALYST)
in MLton [15], a whole-program optimizing compiler for Stan-
dard ML (SML).8 The input to our system is CoreML, an A-
normalized intermediate representation with pattern-matching, but
with all SML module constructs elaborated and removed. SML
programs are annotated with relational specifications, defined in
terms of relational dependent types that decorate function signa-
tures, along with definitions of parameterized structural relations
over the program’s datatypes. The type system is a conservative

8 The source code for the implementation as well as a Web interface to the
system is available online from: https://github.com/tycon/catalyst.

extension of SML’s, so all programs that are well-typed under CAT-
ALYST are well-typed SML programs. Our type-checking and ver-
ification process closely follows the description given in the previ-
ous sections. Verification conditions, representing the consequent
of the SUBT-BASE type-checking rule (Fig. 3) are compiled to a
first-order formula, as described in Sections 3 and 4, and checked
for validity (satisfiability of its negation) using the Z3 SMT solver.

To be practically useful, our implementation extends the formal
system described thus far in three important ways:

Primitive Relations. We provide a general framework to add new
primitive relations that allows the class of relational expressions to
be extended by permitting relational expressions to be abstracted
in prenex form. The framework only needs to be seeded with the
single primitive relation Rid . For example, RnotEqk can be defined
as the following primitive relation:

RnotEq = λk.λx.Rid (x) - Rid (k)

Similarly, Reqk can be defined as:

Req = λk.λx.Rid (x) - (Rid (x) - Rid (k))

Both RnotEq and Req can be ascribed colon-arrow sorts, similar
to structural relations. Once defined, a primitive relation can be
used freely in type refinements. For example, the relation yielded
by evaluating (RnotEq c) can be used to instantiate the parametric
Rmem relation to define the set of all elements in a list that are not
equal to some constant c .

Base Predicates: Consider the obvious relation refinement for the
polymorphic identity function:

id : x → {v | Rid(v) = Rid(x) }
The type refinement used here is an unintuitive way of express-
ing the simple fact that id returns its argument. To avoid such
needless verbosity, we admit non-relational assertions (called base
predicates), drawn from propositional logic with equality, to our
specification language; these predicates may be freely composed in
type refinements using logical connectives.

Inference and Annotation Burden: Our implementation infers
sorts for structural relations, and relational parameters in dependent
types. Our term language and specification language have distinct
sort instantiation expressions. We also infer appropriate tuple-sort
instantiations by unification. Therefore, neither the ML program,
nor the specification needs to be annotated with sorts.

The type checking algorithm performs bi-directional type check-
ing [18], and needs annotations only for recursive function defini-
tions. For all other expressions, CATALYST synthesizes a suitable
dependent type. For example, types from different branches of ML
case expressions are unified using a logical disjunction. Gener-
ating a suitable type for a let expression requires that we use
an existential quantifier in type refinements, which is skolemized
while encoding the VC in MSFOL. Notably, we do not expose any
quantifiers in our specification language.

datatype color = R | B
datatype ’a tree = E | T of color * ’a tree

* ’a * ’a tree
fun balance (t:’a tree) : ’a tree = case t of

T (B,T (R,T (R,a,x,b),y,c),z,d) =>
T (R,T (B,a,x,b),y,T (B,c,z,d))

| T (B,T (R,a,x,T (R,b,y,c)),z,d) =>
T (R,T (B,a,x,b),y,T (B,c,z,d))

| T (B,a,x,T (R,T (R,b,y,c),z,d)) =>
T (R,T (B,a,x,b),y,T (B,c,z,d))

| T (B,a,x,T (R,b,y,T (R,c,z,d))) =>
T (R,T (B,a,x,b),y,T (B,c,z,d))

| _ => t

(a) balance

(* Tree head (root) relation *)
relation Rthd (T(c,l,n,r)) = {(n)};
(* Tree membership relation *)
relation Rtmem = R∗thd ;
(* Total -order relation among tree members *)
relation Rto (T (c,l,n,r)) = Rtmem (l) × {(n)}

∪ {(n)} × Rtmem (r)
∪ Rtmem (l) × Rtmem (r);

(*
* "balance" preserves the total -order among members
* of the tree
*)

balance : t → {t’ | R∗to (t’) = R∗to (t)};

(b) Relational specification of balance

Figure 9: Red-Black Tree Example

For non-recursive function applications, although it is possible
to infer instantiation annotations for parametric relations with the
help of an expensive fixpoint computation that generates an exhaus-
tive list of all possible instantiations, CATALYST relies on man-
ual annotations for parameter instantiations to avoid this cost. An
example of such annotation is shown in Fig. 10c (the contains
function).

5.1 Experiments
We have investigated the automatic verification of expressive shape
invariants using CATALYST on a number of programs, including:

1. List library functions, such as as concat , rev , revAppend ,
foldl , foldr , zip , unzip etc. (some of these specifications
have been discussed in Sec. 2 and 4), and

2. Okasaki’s red-black tree [17] library functions, such as balance ,
multiple order traversal functions, and mirrorImage .

3. Compiler transformations over MLton’s SSA (Static Single As-
signment) intermediate representation.

For several of these benchmarks (especially those in (1) and (2)),
CATALYST was able to successfully verify specifications to the
extent of full functional correctness. Excluding the time take by the
MLton compiler to elaborate and type check these Standard ML
programs, none of our benchmarks take more than 0.2s to verify;
this time includes A-Normalization, specification elaboration, VC
generation, and SMT solving through Z3.

Red-Black Tree. The specification of the red-black tree balance
function, shown in Fig. 9b, illustrates the kind of specifications
that were automatically verified by CATALYST in our experiments.
The specification asserts that the balance function on red-black
trees (Fig. 9a) preserves a total-order among members of the
tree. The non-inductive total-order relation (Rto in Fig. 9b) is
defined in terms of the tree membership relation (Rtmem) described
in Sec. 2.3, and relates (a) elements in the left sub-tree to the
root element, (b) root to the elements in the right sub-tree, and
(c) elements in the left sub-tree to those in right. The inductive
total-order relation (R∗to) on a red-black tree, obtained by closing
the Rto relation over the tree, relates every pair of elements in
the tree that are in-order. Consequently, the specification of the
balance function effectively asserts that in-order traversal over
an unbalanced red-black tree, and in-order traversal on its balanced
version, return the same sequence of elements.

CATALYST can verify full functional correctness of standard
tree traversal functions that return a list of elements. The relational
specifications for such functions essentially relate different order
relations on the input tree to an occurs-before order of the result list.
For instance, a function inOrder that performs in-order traversal

on a red-black tree (t) returns a list (l) such that its inductive
occurs-before relation is the same as that of t’s inductive total-order
relation:

inOrder : t → { l | R∗ob(l) = R∗to(t)}

SSA. An important intermediate representation used in MLton is
a variant of SSA that is operated upon by a number of optimization
passes. After each such pass, MLton checks the well-formedness
of the output by checking, for example, that variable definitions
dominate variable uses in the SSA dominator tree. Because MLton
performs this check after every optimization pass, compile times
can suffer, especially as program size scales. A potential applica-
tion of CATALYST is to statically typecheck the integrity of SSA
optimization passes, thereby eliminating this overhead.

A program in SSA form is represented as a tree of basic blocks,
where each block consists of a set of straight-line instructions (e.g.,
definitions, assignments, primitive applications). The specification
of an SSA program makes use of several inductive relations: Rdu ,
the def-use relation,Rud , the use-def relation, andRuse-refl , the re-
flective variant of Ruse , the use relation, that collects all variables
used on the right-hand side of an assignment. The def-use relation
relates a def, i.e., a variable that is defined using an assignment
statement, to all uses that are dominated by the definition. Con-
versely, Rud relates a use to all def s that it dominates. With these
definitions, we can express the type of an SSA tree thus:

type ssa tree = {ν : block tree |Ruse-refl (ν) ⊆ Rdu (ν) ∧
Ruse-refl (ν) ∩ Rud (ν) = ∅}

This type captures the two essential structural properties of SSA:
(1) every use of a variable must be dominated by its definition; and
(2) no definition of a variable is ever dominated by its use. Verifying
that a transformation pass over the SSA IR has the type:

ssa tree → ssa tree

is tantamount to proving the transformation preserves the salient
SSA invariant that definitions always dominate uses.

6. Case Study
An SML implementation of the untyped lambda calculus is shown
in Fig. 11. The implementation makes use of auxiliary functions,
such as filter and contains , directly, and exists through
contains . By the virtue of being compositional, our verification
process relies on expressive relational types of these auxiliary func-
tions, which can nevertheless be verified by CATALYST. We present
them below:

exists. Consider the higher-order exists function over lists
shown in Fig. 10a; dependent type signatures are elided for brevity.

fun exists f l = case l of
[] => false

| x::xs =>
let

val v1 = exists f xs
val v2 = f x

in
v1 orelse v2

end

(a) exists

fun filter f l = case l of
[] => []

| x::xs =>
let

val xs’ = filter f xs
in

if f x then x::xs’
else xs’

end

(b) filter

fun contains l str =
let

val isStr = fn x => x=str
(* Instantiate the implicit
* relational parameter in type
* of "exists" with (REq str) *)

val hasStr = exists (REq str)
isStr l

in
hasStr

end

(c) contains

Figure 10: Examples

ML Program
1 datatype exp = Var of string
2 | App of exp*exp
3 | Abs of string*exp
4

5 fun freeVars e = case e of
6 Var id => [id]
7 | App (e1 ,e2) =>
8 concat [freeVars e1 , freeVars e2]
9 | Abs (id ,e’) => filter (RNeq id)

10 (fn fv => not (fv = id)) (freeVars e’)
11

12 fun alphaConvert e = case e of
13 Abs (id,e’) =>
14 let
15 val fv_e ’ = freeVars e’
16 val id’ = createNewName fv_e ’ id
17 in
18 Abs(id ’,subst(Var id’,id,e’))
19 end
20 | _ => raise Error

21 and subst e1 id e2 = case e2 of
22 Var id’ => if id = id ’
23 then e1 else e2
24 | App(e21 ,e22) =>
25 let
26 val e21 ’ = subst e1 id e21 ,
27 val e22 ’ = subst e1 id e22
28 in
29 App (e21 ’,e22 ’)
30 end
31 | Abs(id’,e2 ’) => if id’ = id then e2 else
32 let
33 val fv_e1 = freeVars e1
34 in
35 if contains fv_e1 id ’
36 then subst e1 id (alphaConvert e2)
37 else Abs(id ’,subst e1 id e2 ’)
38 end

Relational Specification
relation Rfv (Var x) = {(x)}

| Rfv (App (e1,e2)) = Rfv (e1) ∪ Rfv (e2)
| Rfv (Abs (id,e)) = Rfv (e) - {(id)};

createNewName : fvs → id → {v | not (v = id) ∧ not ({(v)} ⊆ Rmem(fvs))};
freeVars : e → {l | Rmem(l) = Rfv (e)};
alphaConvert : e → {ex | Rfv (ex) = Rfv (e)};
subst : e1 → id → e2 →

{ex | if ({(id)} ⊆ Rfv (e2)) then Rfv (ex) = (Rfv (e2) - {(id)}) ∪ Rfv (e1) else Rfv (ex) = Rfv (e2)};

Figure 11: SML implementation and specification of the untyped lambda calculus.

A type that captures the semantics of exists , irrespective of its
implementation, should assert that exists returns true if and
only if its higher-order argument returns true for some member
of the list. We express the invariant as the following type:

(’R exists) :
l → (f : x → { ν | ν = true ⇔ ’R(x) 6= ∅)})→
{ν | ν = true ⇔ ((Rmem ’R) ν) 6= ∅ }

The interpretation of the type is as follows: Let there be a relation
’R such that f returns true if and only if relation ’R(x) is not
the empty set for f ’s argument x . Then, exists returns true if
and only if relation R is not the empty set for some element in list.

filter. A parametric dependent type for filter , shown in Fig.
10b is given below:

(’R filter) :
l → f : x → { ν | ν = false ⇒ ’R(x) = ∅

∧ ν = true ⇒ ’R(x) = Rid (x) } →
{ν | Rmem(ν) = ((Rmem ’R) l) }

The intuition behind this type is same as that of exists . Filter
retains only those elements for which its higher-order argument
returns true .
contains. Consider the definition of the contains function
shown in Fig. 10c that uses exists to check for the existence
of a constant string str in a list l . Since the higher-order func-
tion passed to exists is:

val isStr = fn x => x=str

the relational dependent type of isStr is:

isStr : x →{ν | Reqstr (ν) 6= ∅}
This clearly suggests that the relational parameter of exists has
to be instantiated with Reqstr . Having made this observation, we
stress that no type annotation is required for isStr , as it is a non-
recursive function.

Observe that the call to exists from contains includes
explicit parameter instantiation. The resultant type of hasStr is:

hasStr : {ν | ν=true ⇔ ((Rmem Reqstr) l) 6= ∅}

The type refinement for hasStr indicates that hasStr is true if
and only if the set of all elements of list l that are equal to str is
not empty. Due to the equivalence of its first-order encoding to that
of the following assertion:

{ν=true ⇔ Rid(s) ⊆ Rmem(l)} ,

the implementation of contains type-checks against the type:

l →str →{ν | ν = true ⇔ Rid(str) ⊆ Rmem(l)}

6.1 α-conversion
The substitution operation (subst) substitutes a free variable (id)
in an expression (e2) with another expression (e1). Function
alphaConvert consistently renames occurrences of the bound
variable in an abstraction expression. Observe that subst and
alphaConvert are mutually recursive definitions. Both functions
make use of freeVars , which returns a list of an expression’s free
variables.

It is widely agreed that substitution andα-conversion operations
on lambda calculus terms are quite tricky to define correctly [6, 26].
Some of the behaviors exhibited by incorrect implementations in-
clude (a) α-conversion renames a free variable, or fails to rename a
bound variable; (b) substitution fails to substitute free occurrences
of the variable (id), or substitutes a bound occurrence of the vari-
able; or (c) substitution is not capture-avoiding, i.e., substituting e1
for id in e2 captures variables of e1 , which are otherwise free.

The relational specification of substitution and α conversion is
given in the bottom-half of Fig. 11.9 Note that one need not expose
notions of capture-avoidance, or other such intricacies, to write
down the specification, which is given in terms of a new structural
relation Rfv that relates an expression of the calculus to its free
variables. Function freeVars returns a list, whose members are
free variables of its input expression. Its type represents this fact.

CATALYST successfully verifies the implementation against its
specification. Alternate (incorrect) implementations such as those
that fail to perform the capture-avoiding check on line 35, or the
free variable check on line 31 trigger a type error. Conversely, note
that, despite enforcing strong invariants, the relational specifica-
tions for subst and alphaConvert do not constrain how these
functions are realized in ML. For instance, an implementation of
subst that proactively renames bound variables in e2 before sub-
stitution is successfully verified against the same specification.

7. Related Work
Type systems of mainstream functional languages, such as GHC
Haskell and OCaml, support a basic form of dependent typing
[12, 13] using GADTs [27]. At a high level, a structural relation of
a data type is similar to a GADT insofar as it corresponds to an in-
dex that tracks an inductively definable relation over the data type.
However, unlike the indexed type systems of Haskell and OCaml,
where types are kept separate from terms, ours is a dependent type
system. In this sense, our type system is similar to the refinement
based dependent type system of F* [23]. Type refinements in F* are
drawn from unrestricted (higher-order) logic extended with theo-
ries, whereas our specification language for ML programs is an ab-
straction over first-order logic that was tailor-made for equational
and relational reasoning. The expressivity gained by allowing un-
restricted type refinements in F* comes at the cost of decidability
of type checking.

Structural relations, in their operational manifestation, can be
compared to the structurally recursive measures of liquid types

9 We introduce some syntactic sugar in defining type refinements. For exam-
ple, the branch expression (if φ then φ1 else φ2) in a type refinement
translates to ((φ ∧ φ1) ∨ (¬φ ∧ φ2)).

[11, 25] where the co-domain is always a set. Parametric structural
relations may be viewed as generalizing such measures to higher-
order measures. Relationally parametric dependent types can be
compared to liquid types with abstract refinements [25], which let
liquid types parameterize over type refinements (Boolean predi-
cates). Once applied to a value, an abstract refinement becomes a
concrete refinement, which can only be used to refine a type. On
the other hand, a relational parameter can be treated just as any
other relation in our type refinements, including being passed as
an argument to other parametric relations. We require this general-
ity to reason about shape invariants of higher-order catamorphisms
such as map and foldr . For example, using only abstract refine-
ments, it is not possible to verify that projecting a list of pairs using
map and fst preserves ordering, or that an implementation of list
append that uses foldr is correct.

Measures are an example of structurally recursive abstraction
functions that map an algebraic data type to an abstract domain,
such as natural numbers or sets. Suter et al. [22] describe deci-
sion procedures for the theory of algebraic data types extended with
abstraction functions to decidable abstract domains. Our encoding
does not require such extensions since a structural relation directly
translates to an uninterpreted relation in first-order logic. Our en-
coding also supports parametric relations, which would otherwise
require higher-order abstraction functions.

Imperative shape analyses have previously used relations to cap-
ture some inductive properties [5], and to describe memory con-
figurations [9]. However, their applicability has been limited ow-
ing to destructive updates and pointer manipulations in imperative
programs. In [14], Might describes a shape analysis of closures in
higher-order programs. Our type system is capable of describing
some notion of control flow for higher-order functions; e.g., the or-
der in which the higher-order argument of foldl is applied over
the list. However, inductive relations are conspicuous by their ab-
sence in functional program analysis, despite the fact that such pro-
grams are highly amenable for inductive reasoning. To the best of
our knowledge, our type system is the first to use inductive relations
for performing shape analysis on functional programs.

Logical relations have been used extensively to reason about
contextual equivalence [1, 7]. Whereas a logical relation relates
two terms of a (possibly recursive) type, a structural relation relates
a term of an algebraic type to its constituent values. Parametric
logical relations have also been used to reason about contextual
equivalence for effectful programs [2–4]. In these efforts, a binary
logical relation that relates effectful expressions is parameterized
by a relation that relates their states. In contrast, a parametric
structural relation is a structural relation over a polymorphic data
type, that is parameterized by relations over type variables in the
data type. While the primary purpose of structural relations is to
enable specification and static verification, there is a possibility of
sufficiently equipping our framework to reason about invariance of
arbitrary relations, which is the key to reasoning about contextual
equivalence. This is a possible avenue for future research.

Henglein [8] describes a domain-specific language to define
ordering relations for composite data types such as lists and trees.
However, the notion of order explored is the domain order used
to compare two elements of same domain, such as a lexicographic
order. In contrast, the order relation in our system describes relative
ordering of elements in a composite data type.

8. Future Work
Due to the undecidability of program equivalence in general, it is
impossible for any specification language that is based on a decid-
able logic to completely specify functional correctness of all pos-
sible ML programs. The expressivity of our specification language
is inherently bound by the limits imposed by our choice of the un-

derlying decidable first-order logic. Confinement to relational and
equational theory means that it is not possible to express properties
that rely on specific theories, such as arithmetic. For instance, it is
not possible to write a relational specification that asserts that the
result of folding over a list of integers with (op +) is the sum of
all integers in the list. Further, we restrict ourselves to (parametric)
structural relations over (polymorphic) inductive datatypes in this
work. With this restriction, it may not be possible to express shape
related properties over arbitrary non-inductive datatypes. For ex-
ample, it is currently not possible to assert that in a random access
array, an element at a smaller index occurs-before an element at a
larger index. Nevertheless, these drawbacks can be mitigated by (a)
admitting relations without requiring their equational definitions,
and (b) extending our specification language with theory-specific
artifacts (especially, from the theory of arithmetic) in such a way
that the combination remains decidable. We intend to explore both
these extensions as part of future work.

One noticeable limitation of our current system is the lack of a
general type inference mechanism. Given that relational specifica-
tions which make use of parametric relations to express rich invari-
ants are non-trivial, and can be quite verbose, writing such specifi-
cations sometimes requires considerable manual effort. While pro-
viding higher level abstractions in the specification language can
mitigate the problem by enabling the programmer to reason di-
rectly at the level of properties, rather than at the level of relations,
the approach can be substantiated with a lightweight type infer-
ence mechanism based on refinement templates [20] to reduce the
burden of manual annotation. The integration of such mechanisms
within CATALYST is another avenue we anticipate pursuing.

9. Conclusions
This paper presents a relational specification language integrated
with a dependent type system that is expressive enough to state
structural invariants on functions over algebraic data types, often to
the extent of full-functional correctness. We describe how paramet-
ric relations can be used to enable compositional verification in the
presence of parametric polymorphism and higher-order functions.
We additionally provide a translation mechanism to a decidable
fragment of first-order logic that enables practical type checking.
Experimental results based on an implementation (CATALYST) of
these ideas justify the applicability of our approach.

Acknowledgments
We thank Matt Might, Ranjit Jhala, and the anonymous review-
ers for their detailed comments and suggestions. This work is
supported by the National Science Foundation under grants CCF-
1216613 and CCF-1318227.

References
[1] A. Ahmed. Step-Indexed Syntactic Logical Relations for Recursive

and Quantified Types. In ESOP’06, pages 69–83, 2006.

[2] N. Benton and B. Leperchey. Relational Reasoning in a Nominal
Semantics for Storage. In TLCA, pages 86–101, 2005.

[3] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, Writ-
ing and Relations: Towards Extensional Semantics for Effect Analy-
ses. In APLAS, pages 114–130, 2006.

[4] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational
Semantics for Effect-based Program Transformations: Higher-order
Store. In PPDP, pages 301–312, 2009.

[5] B.-Y. E. Chang and X. Rival. Relational Inductive Shape Analysis. In
POPL, pages 247–260, 2008.

[6] A. Charguraud. The Locally Nameless Representation. Journal of
Automated Reasoning, 49(3):363–408, 2012. ISSN 0168-7433.

[7] D. Dreyer, A. Ahmed, and L. Birkedal. Logical Step-Indexed Logical
Relations. In LICS’09, pages 71–80, 2009.

[8] F. Henglein. Generic Top-down Discrimination for Sorting and Parti-
tioning in Linear Time*. J. Funct. Program., pages 300–374, 2012.

[9] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach
to interprocedural shape analysis. ACM Trans. Program. Lang. Syst.,
32(2), Feb. 2010.

[10] G. Kaki and S. Jagannathan. A Relational Framework for Higher-
Order Shape Analysis. Technical Report TR-14-002, Purdue Univer-
sity, 2014. URL http://docs.lib.purdue.edu/cstech/1772/.

[11] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based Data Structure
Verification. In PLDI, pages 304–315, 2009.

[12] S. Lindley and C. McBride. Hasochism: The Pleasure and Pain of
Dependently Typed Haskell Programming. In Haskell Symposium,
pages 81–92, 2013.

[13] C. McBride. Faking it: Simulating dependent types in Haskell. J.
Funct. Program., 12(5):375–392, July 2002.

[14] M. Might. Shape Analysis in the Absence of Pointers and Structure.
In VMCAI, pages 263–278, 2010.

[15] MLton. http://mlton.org/.
[16] Objective Caml. http://ocaml.org/.
[17] C. Okasaki. Purely Functional Data Structures. Cambridge University

Press, New York, NY, USA, 1998.
[18] B. C. Pierce and D. N. Turner. Local Type Inference. ACM Trans.

Program. Lang. Syst., 22(1), Jan. 2000.
[19] R. Piskac, L. de Moura, and N. Bjørner. Deciding Effectively Propo-

sitional Logic with Equality. Technical Report MSR-TR-2008-181.
[20] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid Types. In PLDI,

pages 159–169, 2008.
[21] P.-Y. Strub, N. Swamy, C. Fournet, and J. Chen. Self-Certification:

Bootstrapping Certified Typecheckers in F* with Coq. In POPL, pages
571–584, 2012.

[22] P. Suter, M. Dotta, and V. Kuncak. Decision Procedures for Algebraic
Data Types with Abstractions. In POPL, pages 199–210, 2010.

[23] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed programming with value-dependent types. In ICFP,
pages 266–278, 2011.

[24] The Glasgow Haskell Compiler. https://www.haskell.org/
ghc/.

[25] N. Vazou, P. M. Rondon, and R. Jhala. Abstract Refinement Types. In
ESOP, pages 209–228, 2013.

[26] S. Weirich, B. A. Yorgey, and T. Sheard. Binders Unbound. In ICFP,
pages 333–345, 2011.

[27] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype Construc-
tors. In POPL, pages 224–235, 2003.

http://docs.lib.purdue.edu/cstech/1772/
http://mlton.org/
http://ocaml.org/
https://www.haskell.org/ghc/
https://www.haskell.org/ghc/

	Introduction
	Structural Relations
	Relational Composition
	Parametric Relations
	Parametric Dependent Types

	Core language
	Syntax
	Sorts, Types and Well-formedness
	Semantics of the Specification Language
	Decidability of R Type Checking

	Parametricity
	Syntax
	Sort and Type Checking
	Semantics of Parametric Relations
	Elaboration to Bind Definition
	Bind Equations

	Decidability of Type Checking

	Implementation
	Experiments

	Case Study
	-conversion

	Related Work
	Future Work
	Conclusions

