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Abstract
Recent work in high-performance systems written in man-
aged languages (such as Java or C#) has shown that garbage-
collection can be a significant performance bottleneck. A
class of these systems, focused on big-data, create many
and often large data structures with well-defined lifetimes.
In this paper, we present a language and a memory man-
agement scheme based on user-managed memory regions
(called transferable regions) that allow programmers to ex-
ploit knowledge of data structures’ lifetimes to achieve sig-
nificant performance improvements.

Manual memory management is susceptible to the usual
perils of dangling pointers. A key contribution of this pa-
per is a refinement-based region type system that ensures the
memory safety of C# programs in the presence of transfer-
able regions. We complement our type system with a type
inference algorithm that infers principal region types for
first-order programs, and practically useful types for higher-
order programs. This eliminates the need for programmers
to write region annotations on types, while facilitating the
reuse of existing C# libraries with no modifications. Experi-
ments demonstrate the practical utility of our approach.

1. Introduction
Consider the example, from [4], shown in Fig. 1. This code
represents the logic for a streaming query operator. The op-
erator receives a stream of input messages, each associated
with a time (window) t, processed by method onReceive.
Each input message contains a list of inputs, each of which
is processed by applying a user-defined function to create
a corresponding output. The operator may receive multiple
messages with the same timestamp (and messages with dif-
ferent timestamps may be delivered out of order). A timing-
message (an invocation of method OnNotify) indicates
that no more input messages with a timestamp t will be sub-
sequently delivered. At this point, the operator completes the

1 c l a s s SelectVertex<TIn, TOut> {
2 Func<TIn, TOut> selector;
3 Dictionary<Time, List<TOut>> map;
4 ...
5 void onReceive(Time t, List<TIn> inList) {
6 i f (!map.ContainsKey(t))
7 map[t] = new List<TOut>();
8 foreach (TIn input in inList) {
9 TOut output = selector(input);

10 map[t].add(output);
11 }
12 }
13 void onNotify(Time t) {
14 List<TOut> outList = map[t];
15 map.Remove(t);
16 transfer(successorId, t, outList);
17 }
18 }

Figure 1: SELECT dataflow operator

processing for time window t and sends a corresponding out-
put message to its successor.

This example is an instance of a general pattern, where
a producer creates a data structure and passes it to a con-
sumer. In a system where most of the computation takes this
form, and these data structures are very large, as is the case
with many streaming big-data analysis systems, garbage col-
lection overhead becomes significant [4]. Furthermore, in a
distributed dataflow system, the GC pause at one node can
have a cascading adverse effect on the performance of other
nodes, particularly when real-time streaming performance is
required [4, 10]. In particular, a GC pause at an upstream
actor can block downstream actors that are waiting for mes-
sages. However, often much of the GC overhead results from
the collector performing avoidable or unproductive work.
For example, in the process executing the code from Fig. 1,
GC might repeatedly traverse the map data structure, al-
though its objects cannot be collected until a suitable timing
message arrives.

An important observation, in the context of processes
of the kind described above, is that the data-structures ex-



changed between them can be partitioned into sets of fate-
sharing objects with common lifetimes, which makes them
good candidates for a region-based memory management
discipline. A region is a block of memory that is allocated
and freed in one shot, consuming constant time. A region
may contain one or more contiguous range of memory loca-
tions, and individual objects may be dynamically allocated
within the region over time, while they are deallocated en
masse when the region is freed. Thus, a region is a good fit
for a set of fate-sharing objects. In Fig. 1, the output to be
constructed for each time window t (i.e., map[t] ) can be a
separate region that is allocated when the first message with
timestamp t arrives, and deallocated after map[t] is trans-
ferred in onNotify .

Region-based memory management, both manual as well
as automatic, has been known for a long time. Manual
region-based memory management suffers from the usual
drawbacks, namely the potential for invalid references and
the consequent lack of memory safety. Automatic region-
based memory management systems guarantee memory
safety, but impose various restrictions. MLKit, which imple-
ments the approach pioneered by Tofte and Talpin [15, 16],
for example, uses lexically scoped regions. At runtime, the
set of all regions (existing at a point in time) forms a stack.
Thus, the lifetimes of all regions must be well-nested: it is
not possible to have two regions whose lifetimes overlap,
with neither one’s lifetime contained within the other. Un-
fortunately, the data structures in the above example do not
satisfy this restriction (as the output messages for multi-
ple time windows may be simultaneously live, without any
containment relation between their lifetimes). We refer to
regions with lexically scoped lifetimes as stack regions and
to regions that do not have such a lexically scoped region as
dynamic regions.

The goal of this work is a memory-safe region-based
memory management technique that supports dynamic re-
gions as first-class objects. Our focus, in this paper, is on
dynamic regions, which can be safely transferred across ad-
dress spaces. We refer to such dynamic regions as transfer-
able regions. As with allocation and deallocation, transfer-
ring a memory region is fast, and therefore, transferring a
data structure contained in a region is more efficient that
traversing its objects in heap, and transferring them inde-
pendently1. In the SelectVertex example from Fig. 1,
the proposed region to contain the output for each time win-
dow tmust be transferable due to the transfer operation
on Line 16. As it is the case with SelectVertex , the
transferred data is no longer accessed by the producer, so
the transfer operation in our system deallocates the region
once the transfer is complete.

With respect to memory safety, the key property we wish
to ensure is that there are no invalid references: i.e., refer-
ences to objects that were deallocated, or simply never ex-

1Empirical studies in [4] support this claim

isted. Transfer operation, with no additional checks, may
cause memory safety violations, both at the producer of the
data structure, and its (possibly remote) consumer. At the
producer, any existing references into the data structure be-
come invalid post transfer. If the data structure contains ref-
erences to objects outside its (transferable) region, then such
references become invalid in the context of the consumer.
Safety violations of this kind are particularly unwelcome as
the program with GC did not have them to begin with. Note
that, while the references of later kind (i.e., references that
escape a region), defeat the very purpose of a transferable
region, hence need to be prohibited, references of the former
kind (i.e., references into a region from outside) are not at
odds with the concept of a transferable region, hence need to
be permitted. In fact, allowing such references is crucial to
performance, as any non-trivial program creates temporary
objects, and it is undesirable to allocate them in a transfer-
able region; such regions are meant for the data being trans-
ferred. Since transferable regions are first class objects in
our setting, controlling references to and from such regions
while ensuring their safety without significantly diluting the
performance advantage of regions over GC is a challenging
exercise.

In this paper, we describe an approach that restores mem-
ory safety in presence of transferable regions through a com-
bination of a static typing discipline and lightweight runtime
checks. The cornerstone of our approach is an open lex-
ical block for transferable regions, that “opens” a transfer-
able region and guarantees that the region won’t be trans-
ferred/freed while it is open. Our observation is that by nest-
ing a [15]-style letregion lexical block, that delimits the
lifetime of a stack region, inside an open lexical block for
a transferable region, we can guarantee that the transferable
region will remain live as long as the stack region is live.
We say that the former “outlives” the later2, and any refer-
ences from the stack region to the transferable region are
therefore safe. Next, we note that by controlling the “out-
lives” relationships between various regions, we only allow
safe cross-region references, while prohibiting unsafe ones.
In the above example, an outlives relationship from the stack
region to the transferable region means that the references
in that direction are allowed, but not the references in the
opposite direction. In contrast, if an open block of a trans-
ferable region R0 is nested inside an open block of an-
other transferable region R1, we do not establish any out-
lives relationships, thus declaring our intention to not allow
any cross-region references between R0 and R1. Finally, we
observe that outlives relationships are established based on
the lexical structure of the program, hence a static type sys-
tem can enforce them effectively. By assigning region types
to objects, which capture the regions such objects are allo-
cated in, and by maintaining outlives relationships between

2We borrow the outlives relation from [2]. A comparison of our ap-
proach with [2] can be found in § 6.



various regions, we can statically decide the safety of all ref-
erences in the program.

Of course, the utility of our approach described above is
predicated on the assumption that we can enforce certain in-
variants on transferable regions. Firstly, a transferable region
cannot be transferred/freed inside an open block of that re-
gion (i.e, while it is still open). Secondly, a transferred/freed
region cannot be opened. These are typestate invariants on
the transferable region objects, which are hard to enforce
statically due to the presence of unrestricted aliasing. Tech-
niques like linear types and unique pointers can be used to
restrict aliasing, but the constraints they impose are often
hard to program around. We therefore enforce typestate in-
variants at runtime via lightweight runt-time checks. In par-
ticular, we define an acceptable state transition discipline for
transferable regions (Fig. 3), and check, at runtime, whether
a given transition of a transferable region (e.g., from open
state to freed state) is valid or not. The check is lightweight
since it only involves checking a single tag that captures the
current state. We believe that this is a reasonable choice since
regions are coarse-grained objects manipulated infrequently,
when compared to the fine-grained objects that are present
inside these regions, for which safety is enforced statically.
An added advantage of delegating the enforcement of type-
state invariants to runtime is that our region type system is
simple3, which made it possible to formulate a type infer-
ence that completely eliminates the need to write region type
annotations. This, we believe, significantly reduces the im-
pediment to adopt our approach in practical setting.

Contributions
The paper makes the following contributions:

• We present BROOM, a C# -like typed object-oriented
language that eschews garbage collection in favour of
programmer-managed memory regions . BROOM extends
its core language, which includes lambdas (higher-order
functions) and generics (parametric polymorphism), with
constructs to create, manage and destroy static and trans-
ferable memory regions. Transferable regions are first-
class values in BROOM.
• BROOM is equipped with a region type system that stati-

cally guarantees safety of all memory accesses in a well-
typed program, provided that certain typestate invariants
on regions hold. The later invariants are enforced via sim-
ple runtime checks.
• We define an operational semantics for BROOM, and a

type safety result that clearly defines and proves safety
guarantees described above.
• We describe a region type inference algorithm for BROOM

that (a). completely eliminates the need to annotate
BROOM programs with region types, and (b). enables

3§ 3 contains all the type rules of our language, which occupy less than
a page.

seamless interoperability between region-aware BROOM
programs and legacy standard library code that is region-
oblivious. The cornerstone of our inference algorithm
is a novel constraint solver that performs abduction in a
partial-order constraint domain to infer weakest solutions
to recursive constraints.
• We describe an implementation of BROOM frontend in

OCaml, along with case studies where the region type
system was able to identify unsafe memory accesses stat-
ically.

2. An Informal Overview of BROOM

BROOM enriches a simple object-oriented language (sup-
porting parametric polymorphism and lambdas) with a set
of region-specific constructs. In this section, we present an
informal overview of these region-specific constructs.

2.1 Using Regions in BROOM

Stack Regions The “letregion R { S } ” construct
creates a new stack region, with a static identifier R ,
whose scope is restricted to the statement S . The seman-
tics of letregion is similar to Tofte and Talpin [15]’s
letregion expression: objects can be allocated by S in
the newly created region while R is in scope, but the region
and all objects allocated within it are freed at the end of S .

Object Allocation The “new@R T() ” construct creates
a new object of type T in the region R . The specification of
the allocation region R in this construct is optional. At run-
time, BROOM maintains a stack of active regions, and we
refer to the region at the top of the stack as the allocation
context. The statement new T() allocates the newly cre-
ated object in the current allocation context. This is impor-
tant as it enables BROOM applications to use existing region-
oblivious C# libraries. In particular, given a C# library func-
tion f (that makes no use of BROOM’s region constructs),
the statement “letregion R { f(); } ” invokes f ,
but has the effect that all objects allocated by this invoca-
tion are allocated in the new region R .

Region Identifiers Every live region in BROOM is associ-
ated with a static identifier that uniquely identifies the region
within its scope. At runtime, if a letregion expression
is evaluated multiple times in a loop or a recursive method,
the corresponding identifier is bound to a new stack region
each time. Any proposition involving static region identifiers
is considered true at a program location if and only if the
proposition is true under all possible evaluation contexts of
that program location. For instance, consider the following
example:

f o r ( i n t i=0; i<=10; i++) {
l e t r e g i o n R0 {

l e t r e g i o n R1 {
A a1 = new@R1 A();
... } } }



The identifiers R0 and R1 are bound to new stack regions
each time the loop is evaulated. Nonetheless, the proposi-
tions (a). R0 � R1 , and (b). a1 : A@R1 (read as a1 refers
to an object of type A contained in region R1 ) are true at
line 5, as they are true under all possible bindings of R0 and
R1 at line 5.

Transferable Regions BROOM’s transferable regions are
an encapsulation of a data-structure that can be transferred
between autonomous entities (e.g., between two concur-
rently executing threads or actors). Hence, unlike stack re-
gions, transferable regions are not constrained to have a lex-
ically scoped lifetime. (Hence, we also refer to them as dy-
namic regions.)

Furthermore, transferable regions, unlike stack regions,
are first class values of BROOM: they are objects of the class
Region , they are created using the new keyword, and
can be passed as arguments, stored in data structures, and
returned from methods. A transferable region is intended to
encapsulate a single data-structure, consisting of a collection
of objects with a distinguished root object of some type
T , which we refer to as the region’s root object. The class
Region is parametric over the type T of this root object.

The Region constructor takes as a parameter a function
that constructs the root object: it creates a new region and
invokes this function, with the new region as the allocation
context, to create the root object of the region. The following
code illustrates the creation of a transferable region, whose
root is an object of type A .

Region<A> rgn = new Region<T>(() => new A())

In the above code, rgn is called the handler to the newly
created region, and is required to read the contents of the
region, or change its state. The class Region offers two
methods: a free method that deallocates the region (and
all the objects allocated within it), and transfer method
that transfers the region to a consumer process. It is an ab-
straction of two possible forms of transfer: a transfer be-
tween two processes in a shared memory setting or a trans-
fer between two processes in a distributed, message-passing,
setting. The precise semantics of transfer are unimpor-
tant in the context of the region type system and we will not
discuss them further.

Open and Closed Regions A transferable region must be
explicitly opened using BROOM’s open construct in or-
der to either read or update or allocate objects in the re-
gion. Specifically, the construct “open rgn as v@R {
S } ” does the following: (a). It opens the transferable re-
gion handled by rgn for allocation (i.e., makes it the cur-
rent allocation context), (b). binds the identifier R to this
open region, and (c). initializes the newly introduced local
variable v to refer to the root object of the region. The @R
part of the statement is optional and may be omitted. The
open construct is intended to simplify the problem of en-
suring memory safety, as will be explained soon. We refer

1 c l a s s SelectVertex<TIn, TOut> {
2 Func<TIn, TOut> selector;
3 Dictionary<Time, Region<List<TOut>>> map;
4 ...
5 void onReceive(Time t,Region<List<TIn>> inRgn){
6 i f (!map.ContainsKey(t))
7 map[t] = new Region<List<TOut>>
8 (() => new List<TOut>());
9 open inRgn as inList {

10 l e t r e g i o n R0 {
11 foreach (TIn input in inList) {
12 open map[t] as outList {
13 TOut output = selector(input);
14 outList.add(output); } } } }
15 inRgn.free();
16 }
17 void onNotify(Time t) {
18 Region<List<TOut>> outRgn = map[t];
19 map.Remove(t);
20 outRgn.transfer();
21 }
22 }

Figure 2: SELECT dataflow operator in BROOM

to a transferable region that has not been opened as a closed
region.

Motivating Example Fig. 2 shows how the motivating ex-
ample of Fig. 1 can be written in BROOM. The onReceive
method receives its input message in a transferred region
(i.e., a closed region whose ownership is transferred to the
recipient). Line 7 creates a new region to store the output
for time t , initializing it to contain an empty list. Line 9
opens the input region to process it4. Line 10 creates a stack
region R0 . Thus, the temporary objects created by the iter-
ation in line 11, for example, will be allocated in this stack
region that lives just long enough. We open the desired out-
put region in line 12, so that the new output objects created
by the invocation of selector in line 13 are allocated in
the output region. Finally, the input region is freed in line
15. The output region at map[t] stays as along as input
messages with timestamp t keep arriving. When the timing
message for t arrives, the onNotify method transfers the
outRgn at map[t] to a downstream actor.

2.2 Memory Safety
Our goal is a type system that can ensure the memory safety
of programs that use the region constructs described above.
The key to memory safety in BROOM is the following re-
striction: an object o1 in a region R1 is allowed to store a
pointer to an object o2 in a region R2 only if R2 is guaran-
teed to outlive R1. (A similar restriction applies in the case
where o1 is a stack-allocated variable.)

Enforcing this restriction is simple in the case of stack re-
gions since the outlives relation between stack regions can
be inferred from their lexical nesting. Unfortunately, infer-
ring outlives relations in presence of transferable regions is

4We omit @R annotation in open when we don’t need R .



Figure 3: The lifetime of a dynamic (transferable) region in
BROOM

not easy. BROOM imposes the following protocol on the use
of transferable regions to help simplify this check.

A transferable region (that has not been freed or trans-
ferred) can be in one of two possible states, open or closed. A
newly created region is in the closed state. A region must be
opened, using the open construct (as explained previously),
in order to read or update or allocate an object within that re-
gion. An open region cannot be freed or transferred. In par-
ticular, an open region is guaranteed to be live for the entire
duration of the open construct. This allows the type system
to infer a valid outlives relation between the opened region
and any stack region that is nested within the open construct.

The protocol for transferable regions is presented as a fi-
nite state machine in Fig. 3. The safety of memory accesses
in BROOM is now subject to the condition that every trans-
ferable region correctly follows the state transition discipline
of Fig. 3. Under this condition, BROOM’s region type system
statically guarantees the safety of all memory accesses.

In BROOM, this enforcement is done at runtime by ex-
plicitly keeping track of the current state for Region ob-
jects, and checking the validity of every open, transfer, or
free operation and throwing an exception if it is invalid. As
explained previously, this is a reasonable trade-off in the
context of BROOM, as regions are coarse-grained objects,
which are manipulated infrequently, when compared to fine-
grained objects that reside inside these regions. Therefore,
runtime overhead of checking the region’s state transition
discipline is acceptable.

Cloning Note that in the example from Fig. 2 the object
returned by the selector (on Line 13) should not contain
any references to the input object, since the input region,
where the object resides, will be freed at the end of the
method. If there is a need for the output object to point
to subobjects of the input object, such subobjects must be
cloned (to copy them from the input region to the output
region). Fortunately, BROOM’s region type system (§ 3) is
capable of capturing such nuances in the type of selector
and the type checker will ensure correctness. Furthermore,
the type can be automatically inferred by BROOM’s region
type inference (§ 4), which can perform the above reasoning
on behalf of the programmer.

3. FEATHERWEIGHT BROOM

The purpose of BROOM’s region type system is to enforce
the key invariant required for memory safety, namely that an
object o1 in a region R1 contains a reference to an object o2
in R2, only if R2 is guaranteed to outlive R1. Intuitively, the
invariant can be enforced by (a). tracking outlives relation-
ships between various regions in the program (b). tagging the
C# type of every object in the program with its allocation re-
gion, and (c). ensuring that, when a reference is created, its
target object (o2) is allocated in a region that is known to be
in outlives relationship with the object containing the refer-
ence. We now formally develop this intuition via FEATHER-
WEIGHT BROOM (FB), our explicitly typed core language
(with region types) that incorporates the features introduced
in the previous section. FEATHERWEIGHT BROOM builds
on the Featherweight Generic Java (FGJ) [9] formalism, and
reuses notations and various definitions from [9], such as the
definition of type well-formedness for the core (region-free)
language.

3.1 Syntax
Fig 4 describes the syntax of FB. We refer to the class types
of FGJ as core types. The following definition of Pair
class in FB illustrates some of the key elements of the formal
language5:

c l a s s Pair<a / Object, b / Object>
<ρa, ρ1, ρ2 | ρ1 � ρa ∧ ρ2 � ρa> / Object<ρa> {

a@ρ1 fst;
b@ρ2 snd;
Pair(a@ρ1 fst, b@ρ2 snd) {

super(); t h i s.fst = fst; t h i s.snd = snd;
}
a@ρ1 getFst() {

re turn t h i s.fst;
}

}

A class in FB is parametric over zero or more type vari-
ables (as in FGJ) as well as one or more region variables ρ.
We refer to the first region parameter, usually denoted ρa,
as the allocation region of the class: it serves to identify the
region where an instance of the class is allocated. An object
in FB can contain fields referring to objects allocated in re-
gions (ρ) other than its own allocation region (ρa), provided
that the former outlive the later (i.e., ρ � ρ). In such case, the
definition of object’s class needs to be parametric over allo-
cation regions of its fields (i.e., their classes). Furthermore,
the constraint that such regions must outlive the allocation
region of the class needs to be made explicit in the definition,
as the Pair class does in the above definition. We say that
the Pair class exhibits constrained region polymorphism.

To construct objects of the Pair class, its type and
region parameters need to be instantiated with core types

5The symbol / should be read extends, and the symbol � stands for
outlives



π ∈ Static region ids ρ ∈ Region variables a, b ∈ Type variables m ∈ Method names x, y, f ∈ Variables and fields

cn ∈ Class names ::= Object | Region | A | B
K ∈ FGJ class types ::= cn〈T 〉
T ∈ FGJ types ::= a | K | unit | T → T

N ∈ Region− annotated class types ::= cn〈T 〉〈πaπ〉
τ ∈ types ::= T@π | N | unit | 〈ρaρ |φ〉τ π−→ τ

C ∈ Class definitions ::= class cn〈a / K〉〈ρaρ |φ〉 / N{τ f ; k d}
k ∈ Constructors ::= cn(τ x){ super (x); this .f = x; }
d ∈ Methods ::= τ m〈ρaρ |φ〉(τ x){ return e; }
φ,Φ ∈ Region constraints ::= true | ρ � ρ | ρ = ρ | φ ∧ φ
e ∈ Expressions ::= () | x | e.f | e.m〈πaπ〉(e) | new N(e) | λ@πa〈ρaρ |φ〉(x : τ).e | e〈πaπ〉(e)

| let x = e in e | letregion ρ in e | open x as y@π in e

Figure 4: FEATHERWEIGHT BROOM: Syntax

allocRgn(A〈πaπ〉〈T 〉) = πa

allocRgn(〈ρaρ |φ〉τ1 πa

−−→ τ2) = πa

shape(A〈ρaρ〉〈T 〉) = A〈T 〉

boundΘ(a@π) = Θ(a)@π
boundΘ(N) = N
fields( Object 〈π〉) = •

ctype( Object 〈π〉) = •
ctype(B〈T 〉〈πaπ〉) = fields(B〈T 〉〈πaπ〉)

CT (B) = class B〈a / K〉〈ρa, ρ |φ〉 / N{τf f ; ...}
S = [π/ρ, πa/ρa, T/a] fields(S(N)) = g : τg

fields(B〈T 〉〈πaπ〉) = g : τg, f : S(τf )

CT (B) = class B〈a / K〉〈ρa, ρ |φ〉 / N{τf f ; k d}
m /∈ d S = [π/ρ, πa/ρa, T/a]

mtype(m,B〈T 〉〈πaπ〉) = mtype(m,S(N))

CT (B) = class B〈a / K〉〈ρa, ρ |φ〉 / N{τf f ; k d}
τ2 m〈ρam, ρm |φm〉(τ1 x){...} ∈ d S = [π/ρ, πa/ρa, T/a]

mtype(m,B〈T 〉〈πaπ〉) = S(〈ρam, ρm |φm〉τ1 → τ2)

mtype(m,N) = 〈ρa1ρ1, |φ1〉τ11 → τ12

implies A.Φ ` φ2 ⇔ S(φ1) and τ21 = S(τ11)

and A ` τ22 <: S(τ12) S = [ρ2/ρ1][ρa2/ρ
a
1 ]

override(A, N, 〈ρa2ρ2, |φ1〉τ21 → τ22)

Figure 5: FEATHERWEIGHT BROOM: Auxiliary Definitions

(T ) and concrete region identifiers6 (π), respectively. For
example:
l e t r e g i o n π0 in

l e t snd = new Object<π0>() in
l e t r e g i o n π1 in

l e t fst = new Object<π1>() in
l e t p = new Pair<Object,Object><π1,π0,π1>

(fst,snd);

In the above code, the instantiation of ρa and ρ1 with π0, and
ρ2 with π1 is allowed because (a) π0 and π1 are live during
the instantiation, and (b). π0 � π1 and π1 � π1 (since out-
lives is reflexive). Observe that the region type of p conveys
the fact that (a). it is allocated in region π1, and (b). it holds
references to objects allocated in region π0 and π1. In con-
trast, if we choose to allocate the snd object also in π1, then
p would be contained in π1, and its region type would be
Pair<Object,Object><π1,π1,π1> , which we ab-
breviate as Pair<Object,Object>@π1 . In general,

6Region variables (ρ) and region identifiers (π) belong to the same
syntactic class. Region identifiers are to region variables, as types (T ) are
to type variables (a)

we treat B〈T 〉@π as being equivalent to B〈T 〉〈π〉. Region
annotation on type a, where a is a type variable, assumes the
form a@π. If a is instantiated with Pair<Object,Object> ,
the result is the type of a Pair object contained in π. The
type unit is unboxed in FB, hence it has no region annota-
tions.

Like classes, methods can also exhibit constrained re-
gion polymorphism. A method definition in FB is neces-
sarily polymorphic over its allocation context (§ 2.1), and
optionally polymorphic with respect to the regions contain-
ing its arguments. Region parameters, like those on classes,
are qualified with constraints (φ). Note that if a method is
not intended to be polymorphic with respect to its alloca-
tion context (for example, if its allocation context needs to
be same as the allocation region of its this argument), then
the required monomorphism can be captured as an equality
constraint in φ.

FB extends FGJ’s expression language with a lambda ex-
pression and an application expression (e〈πaπ〉(e)) to define



Type, and Type Constraint Well-formedness A ` τ ok, ∆ ` φ ok

π ∈ A.∆
A ` Object 〈π〉 ok

{ρa, ρ} /∈ A.∆ A′ = (A.Σ,A.∆ ∪ {ρa, ρ},A.Θ,A.Φ ∧ φ)

π ∈ A.∆ A′.∆ ` φ ok A′ ` τ1 ok A′ ` τ2 ok

A ` 〈ρaρ |φ〉τ1 π−→ τ2 ok

A.Θ  T ok

Region 〈T 〉〈π〉
ρ0, ρ1 ∈ ∆

∆ ` ρ0 � ρ1 ok

CT (B) = class B〈a / K〉〈ρa, ρ |φ〉 / N{...} πa, π ∈ A.∆
A.Θ  B〈T 〉 ok S = [π/ρ, πa/ρa, T/a] A.Φ ` S(φ)

A ` B〈πaπ〉〈T 〉 ok

A.Θ  T ok πa ∈ A.∆
A.Θ  T <: Object

A ` T@πa ok

∆ ` φ0 ok

∆ ` φ1 ok

∆ ` φ0 ∧ φ1 ok

Expression Typing A, πa,Γ ` e : τ

A, πa,Γ ` () : unit

A, πa,Γ ` x : Γ(τ)

A, πa,Γ ` e : τ ′

f : τ = fields(boundA.Θ(τ ′))

A, πa,Γ ` e.fi : τi

A, πa,Γ ` e : τ

A ` N ok fields(N) = f : τ

A, πa,Γ ` new N(e) : N

A, πa,Γ ` e1 : τ1

A, πa,Γ[x 7→ τ1] ` e2 : τ2

A, πa,Γ ` let x = e1 in e2 : τ2

A.Θ  T ok K = Region 〈T 〉
(∅, {ρa},A.Θ, true), ρa, · ` e : T@ρa

A, πa,Γ ` new K〈π>〉(λ@πa〈ρa〉().e) : K〈π>〉

π ∈ A.Σ A′ = ({}, {π},A.Θ, true)
π /∈ A.∆ ∪ {π>} A′ ` T@π ok A′, π,Γ ` e : T@π

A, πa,Γ ` new Region 〈T 〉〈π〉(e) : Region 〈T 〉〈π>〉

A, πa,Γ ` e0 : τ π ∈ A.∆
mtype(m, boundA.Θ(τ)) = 〈ρaρ |φ〉τ1 → τ2 S = [π/ρ, πa/ρa]

A ` 〈ρaρ |φ〉τ1 → τ2 ok A, πa,Γ ` e : S(τ1) A.Φ ` S(φ)

A, πa,Γ ` e0.m〈πaπ〉(e) : S(τ2)

A = (Σ,∆,Θ,Φ) π /∈ ∆ φ = ∆ � π A ` τ ok
A′ = (Σ,∆ ∪ {π},Θ,Φ ∧ φ) A′, π,Γ ` e : τ

A, πa,Γ ` letregion π in e : τ

π ∈ A.∆ ρa, ρ /∈ A.∆
A′ = (A.Σ,A.∆ ∪ {ρa, ρ},A.Θ,A.Φ ∧ φ) A′.∆ ` φ ok
A′ ` τ1 ok A′ ` τ2 ok A′, ρa,Γ[x 7→ τ1] ` e : τ2

A, πa,Γ ` λ@π〈ρaρ |φ〉(x : τ1).e : 〈ρaρ |φ〉τ1 π−→ τ2

A, πa,Γ ` ea : Region 〈T 〉〈π>〉
A = (Σ,∆,Θ,Φ) π /∈ ∆ A′ = (Σ,∆ ∪ {π},Θ,Φ)

Γ′ = Γ[y 7→ T@π] A′, π,Γ′ ` eb : τ A ` τ ok
A, πa,Γ ` open ea as y@π in eb : τ

π ∈ A.∆ A, πa,Γ ` e : 〈ρaρ |φ〉τ1 π−→ τ2

S = [π/ρ][πa/ρa] A.Φ ` S(φ) A, πa,Γ ` e : S(τ1)

A, πa,Γ ` e〈πaπ〉(e) : S(τ2)

A, πa,Γ ` e : Region 〈T 〉〈π>〉
A, πa,Γ ` e.transfer〈πa〉() : unit

Figure 6: FEATHERWEIGHT BROOM: Static Semantics

and apply functions7. Functions, like methods, exhibit con-
strained region polymorphism, as evident in their arrow re-
gion type (〈ρaρ |φ〉τ π−→ τ ). Note that any of the τ ’s in the
arrow type can themselves be region-parametric arrow types.
In this respect, our region type system is comparable to Sys-
tem F’s type system, which admits higher-rank parametric
polymorphism. Note that a lambda expression creates a clo-
sure, which can escape the context in which it is created. It
is therefore important to keep track of the region in which
a closure is allocated in order to avoid unsafe dereferences.
The π annotation above the arrow in the arrow type denotes
the allocation region of the corresponding closure. Note that

7We distinguish between functions and methods. The former result
from lambda expressions, whereas the latter come from class definitions

it is important to distinguish between the allocation context
argument (ρa) of a function and the allocation region (π) of
its closure. In BROOM, the later corresponds to the region
where a Func object is allocated, while the former corre-
sponds to the region where it is applied. For instance, in the
following example:

l e t r e g i o n π {
l e t f = λ〈ρa〉(). new Object〈ρa〉()
in f

}

The type of f is 〈ρa〉 unit π−→ Object 〈ρa〉, coveying that
(a). f ’s closure is allocated in π, and (b). when executed
under an allocation context ρa, the closure returns an object
allocated in ρa.



Method Well-formedness d ok in B

∆ = {ρa, ρ, ρam, ρm} Θ = [a 7→ K] Φ = φ ∧ φm A = (Σ,∆,Θ,Φ) ∆ ` φm ok

A ` τ1, τ2 ok class B〈a / K〉〈ρa, ρ |φ〉 / N{...} Γ = ·[x 7→ τ1][ this 7→ B〈a〉〈ρaρ〉]
override(m,N, 〈ρamρm |φm〉τ1 → τ2) A, ρam,Γ ` e : τ A ` τ <: τ2

τ2 m〈ρamρm |φm〉(τ1 x){ return e; } ok in B

Class Well-formedness B ok

∆ = {ρa, ρ} Θ = [a 7→ K] Φ = φ A = (Σ,∆,Θ,Φ) ∆ ` φ ok
Θ  K ok A ` N, τf ok shape(N) 6= Region 〈T 〉 Φ ` allocRgn(τf ) � ρa

ctype(N) = τN k = B(τf x, τN y){ super (x); this .f = y; } d ok in B

class B〈a / K〉〈ρa, ρ |φ〉 / N{τf f ; k d} ok

Figure 7: FEATHERWEIGHT BROOM: Method and Class Well-formedness

3.2 Types and Well-formedness
Well-formedness and typing rules of FEATHERWEIGHT
BROOM establish the conditions under which a region type
is considered well-formed, and an expression is considered
to have a certain region type, respectively. Fig. 6 contains
the entire set of the rules. The rules refer to a context (A),
which is a tuple of:

• A set (∆ ∈ 2π) of static identifiers of regions that are
estimated to be live,
• A finite map (Θ ∈ a 7→ K) of type variables to their

bounds8, and
• A constraint formula (Φ) that captures the outlives con-

straints on regions in ∆.

A also contains Σ, which is primarily an artifact to facil-
itate the type safety proof, and can be ignored while type
checking user-written programs in FB. The context for the
expression typing judgment also includes:

• A type environment (Γ ∈ x 7→ τ ) that contains the type
bindings for variables in scope, and
• The static identifier (πa) of the allocation context for the

expression is being typechecked.

Like the judgments in FGJ [9], all the judgments defined by
the rules in Fig. 6 are implicitly parameterized on a class
table (CT ∈ cn 7→ D) that maps class names to their
definitions in FB.
The well-formedness judgment on region types (A ` τ ok)
makes use of the well-formedness and subtyping judgments
on core types 9. The class table (JCT K) for such judgments is
derived from FB’s class table (CT ) by erasing all region an-
notations on types, and region arguments in expressions (J·K

8A bound of a type variable (a) in FGJ [9] is the class (K) that type
variable was declared to extend.

9We use a double-piped turnstile () for judgments in FGJ [9], and a
simple turnstile (`) for those in FB.

denotes the region erasure operation). The well-formedness
rule for class types (B〈T 〉〈πaπ〉) is responsible for enforc-
ing the safety property that prevents objects from containing
unsafe references. It does so by insisting that regions πaπ
satisfy the constraints (φ) imposed by the class on its region
parameters. The later is enforced by checking the validity
of φ, with actual region arguments substituted10 for formal
region parameters, under the conditions (A.Φ) guaranteed
by the context. The semantics of this sequent is straightfor-
ward, and follows directly from the properties of outlives and
equality relations. For any well-formed core type T , T@π is
a well-formed region type if π is a valid region. The type
Region 〈T 〉〈π〉 is well-formed only if π = π>, where π>
is a special immortal region that outlives every other live
region. This arrangement allows Region handlers to be
aliased and referenced freely from objects in various regions,
regardless of their lifetimes. On the flip side, this also opens
up the possibility of references between transferable regions,
which become unsafe in context of the recipient’s address
space. Fortunately, such references are explicitly prohibited
by the type rule of Region objects, as described below.

The type rules distinguish between the new expressions
that create objects of the Region class, and new expres-
sions that create objects of other classes. The rule for the
later relies on an auxiliary definition called fields that re-
turns the sequence of type bindings for fields (instance vari-
ables) of a given class type. Like in FGJ, the names and
types of a constructor’s arguments in FB are same as the
names and types of its class’s fields, and the type rule re-
lies on this fact to typecheck constructor applications. Note
that this rule does not apply to new expressions involving
Region class, as we do not define fields for Region .

The type rule for new Region expressions expects
the Region class’s constructor to be called with a nullary
function that returns a value in its allocation context. It en-
forces this by typechecking the body (e) of the function un-

10The notation [a/b](e) stands for ”a is substituted for b in e”



∆ ` (e,Σ) −→ (e′,Σ′)

allocRgn(N) ∈ ∆ fields(N) = f : τ

∆ ` (( new N(v)).fi,Σ) −→ (vi,Σ)

fresh(π′) ∆ ∪ {π′} ` ([π′/π]e,Σ) −→ (e′,Σ′)

∆ ` ( letregion π in e,Σ) −→ ( letregion π′ in e′,Σ′)

∆ ` ( letregion π in v,Σ) −→ (v,Σ)
K = Region 〈T 〉 πa ∈ ∆ fresh(π) Σ′ = Σ[ρ 7→ C]

∆ ` ( new K〈π>〉(λ@πa〈ρa〉().e),Σ) −→ ( new K〈π〉([π/ρa]e),Σ′)

{π} ` (e,Σ) −→ (e′,Σ′)

K = Region 〈T 〉 π ∈ dom(Σ)

∆ ` ( new K〈π〉(e),Σ) −→ ( new K〈π〉(e′),Σ′)
va = new Region 〈T 〉〈π〉(vr) Σ(π) 6= X

∆ ` ( open va as x@π0 in vb,Σ) −→ (vb,Σ)

∆ ` (e,Σ) −→ ⊥
∆ ` (E[e],Σ) −→ ⊥

va = new Region 〈T 〉〈π〉(vr) Σ(π) 6= X fresh(π1)

{π1} ` ([π1/{π, π0}][vr/x]eb,Σ[π 7→ O]) −→ (e′b,Σ
′) Σ′′ = Σ′[π 7→ Σ(π)]

∆ ` ( open va as x@π0 in eb,Σ) −→ ( open va as x@π1 in e′b,Σ
′′)

va = new Region 〈T 〉〈π〉(vr) Σ(π) = X

∆ ` ( open va as x@π0 in eb,Σ) −→ ⊥

allocRgn(N), πa ∈ ∆ mbody(m〈πaπ〉, N) = x.e

∆ ` (( new N(v)).m〈πaπ〉(v′),Σ) −→ ([v′/x][ new N(v)/ this ] e,Σ)

N = Region 〈T 〉〈π〉 Σ(π) 6= O Σ′ = Σ[π 7→ X]

∆ ` (( new N(v)).transfer〈πa〉(),Σ) −→ ( () ,Σ′)

N = Region 〈T 〉〈π〉 Σ(π) = O

∆ ` (( new N(v)).transfer〈πa〉(),Σ) −→ ⊥
va = λ@πa〈ρaρ〉(τ x).e πa, π

a ∈ ∆

∆ ` (va〈πaπ〉(v),Σ) −→ ([v/x][π/ρ][πa/ρa] e,Σ)

∆ ` (e,Σ) −→ (e′,Σ′)

∆ ` (E[e],Σ) −→ (E[e′],Σ′)

fresh(π′)

∆ ∪ {π′} ` ([π′/π]e,Σ) −→ ⊥
∆ ` ( letregion π in e,Σ) −→ ⊥

K = Region 〈T 〉 π ∈ dom(Σ)

{π} ` (e,Σ) −→ ⊥
∆ ` ( new K〈π〉(e),Σ) −→ ⊥

va = new Region 〈T 〉〈π〉(vr) Σ(π) 6= X fresh(π1)

{π1} ` ([π1/{π, π0}][vr/x]eb,Σ[π 7→ O]) −→ ⊥
∆ ` ( open va as x@π0 in eb,Σ) −→ ⊥

Evaluation Context E

E ::= • | (•).f | • .m〈πaπ〉(e) | v.m〈πaπ〉(..., •, ...) | new N(..., •, ...) | new Region 〈T 〉〈π>〉(•) | • 〈πaπ〉(e)
| v〈πaπ〉(..., •, ...) | open • as y@π in e

Figure 8: FEATHERWEIGHT BROOM: Operational Semantics

der an empty context containing nothing but the allocation
context of the function. This step ensures that the value re-
turned by the function stores no references to objects allo-
cated elsewhere, including the top region (π>), thus prevent-
ing cross-region references originating from transferable re-
gions11.

The type rule for letregion expression requires that
the static identifier introduced by the expression be unique
under the current context (i.e., π /∈ ∆). This condition is
needed in order to prevent the new region from incorrectly
assuming any existing outlives relationships on an epony-
mous region. Provided this is satisfied, the expression (e)
under letregion is then typechecked assuming that the
new region is live (π ∈ ∆) and that it is outlived by all exist-
ing live regions (∆ � π). The result of a letregion ex-
pression must have a type that is well-formed under a context

11The body of the function (e) might, however, create new (transferable)
regions while execution, but that is fine as long as such regions, and objects
allocated in them, don’t find their way into the result of evaluating e

not containing the new region. This ensures that the value
obtained by evaluating a letregion expression contains
no references to the temporary objects inside the region12.

The rule for open expression, unlike the rule for letregion ,
does not introduce any outlives relationship between the
newly opened region and any pre-existing region while
checking the type of the expression (e) under open . This
prevents new objects allocated inside the transferable region
from storing references to those outside. Environment (Γ)
is extended with binding for the type of root object while
typechecking e.

The type rule for lambda expression typechecks the
lambda-bound expression (e) under an extended type en-
vironment containing bindings for function’s arguments, as-
suming that region parameters are live, and that declared
constraints over region parameters hold. The constraints (φ)
are required to be well-formed under ∆′, which means that

12The appendix contains a formal proof of this claim



φ must only refer to the region variables in the set ∆′. Note
that the closure is always allocated in the current alloca-
tion context (πa). This prevents the closure from escaping
the context in which it is created, thus trivially ensuring the
safety of any dereferences inside the closure.

3.3 Operational Semantics and Type Safety
Fig. 8 defines a small-step operational semantics for FEATH-
ERWEIGHT BROOM via a five-place reduction relation:

∆ ` (e,Σ) −→ (e′,Σ′)

The reduction judgment should be read as following: given a
set (∆) of regions that are currently live, and a map (Σ) from
unique identifiers of transferable regions to their current
states (Fig. 3), the expression e reduces to e′, while updating
Σ to Σ′. The semantics gets “stuck” if e attempts to access
an object whose allocation region is not present in ∆, or if e
tries to open a transferable region, whose identifier is not
mapped to a state by Σ. On the other hand, if e attempts
to commit an operation on a Region object that is not
sanctioned by the transition discipline in Fig. 3, then it raises
an exception value (⊥).

To help state the type safety theorem, we define the syn-
tactic class of values:

v ∈ values ::= new N(v) | λ@πa〈ρaρ |φ〉(τ x).e
new Region 〈T 〉〈π〉(v)

Note that for new Region 〈T 〉〈π〉(v) to be considered a
value, π 6= π>. The semantics reduces a new Region 〈T 〉〈π>〉(e)
expression in the user program to a runtime new Region 〈T 〉〈π〉(v)
value that is tagged with a unique identifier (π) for this
region. A binding is also added to Σ, mapping π to the
“closed” state. Fig. 6 defines a type rule for such values, al-
lowing them to be typed. Type safety theorem is now stated
thus13:

THEOREM 3.1. (Type Safety) ∀e, τ,∆,Σ, π, such that π ∈
∆ and ∆ ` Φ ok, if (dom(Σ),∆, ·,Φ), π, · ` e : τ , then
either e is a value, or e raises an exception (∆ ` (e,Σ) −→
⊥), or there exists an e′ and a Σ′ such that ∆ ` (e,Σ) −→
(e′,Σ′) and (dom(Σ′),∆, ·,Φ), π, · ` e : τ .

Furthermore, we prove the following theorem about FB,
which, in conjunction with the type safety theorem, implies
the safety of region transfers across address spaces:

THEOREM 3.2. (Transfer Safety) ∀ v, ∆, ∆′, Σ, Σ′, Φ, Φ′,
π, π′, such that π ∈ ∆, π′ ∈ ∆′, and πi /∈ dom(Σ′) ∪∆ ∪
{π>}, if (dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(v) :
Region 〈T 〉〈π>〉, then (Σ′[πi 7→ C],∆′, ·,Φ′) ` new Region 〈T 〉〈πi〉(v) :
Region 〈T 〉〈π>〉

The above theorem states that if a new Region 〈T 〉〈πi〉(v)
value is well-typed under one context, then it is also well-
typed under every other context, whose Σ maps πi to closed
(C) state. Thus, a recipient of a transferable region only

13Theorems 3.1 and A.7 are restated and proved in the appendix

needs to add a binding for the region to its Σ in order to
preserve its type safety. Notably, this result could not have
been established if it were possible for a transferable region
to contain references to objects outside the region.

4. Type Inference
BROOM’s region type system imposes a heavy annotation
burden, and the cost of manually annotating C# standard
libraries with region types is prohibitive. We now present
our region type inference algorithm that completely elimi-
nates the need to write region type annotations, except on
some higher-order functions. Formally, the type inference al-
gorithm is an elaboration function from programs in JFBK
(i.e., FB without region types, but with letregion and
open expressions, similar to the language introduced in § 2)
to programs in FB. The elaboration proceeds in four steps.
In the first step we make use of the observation that region
types are refinements of FGJ types with region annotations
and constraints over such region annotations, and compute
polymorphic region type templates for methods and classes
from their FGJ types. The templates contain region vari-
ables (ρ) to denote unknown region annotations, and pred-
icate variables (ϕ) to denote unknown constraints over such
region annotations. Free region variables are generalized in
types (hence, polymorphic). Second, we make use of the
computed region type templates to elaborate expressions by
introducing region variables to denote unknown region ar-
guments in new expressions, method calls and function ap-
plications. While elaborating expressions, we also build a
system of constraints that capture well-formedness require-
ments and subtyping relationships between type templates
that must hold (as per the static semantics in Fig. ??) for
the elaboration to be valid. Third, we lift expression elab-
oration and constraint generation to methods and classes.
Finally, we solve the constraints by making use of our fix-
point constraint solving algorithm CSOLVE*, which reduces
the constraint solving problem to an abduction problem in a
Herbrand constraint system, and then relies on CSOLVE, our
abduction solver for that domain.

4.1 Region Type Templates
Region type templates are FGJ types extended with fresh
region variables (ρ) and predicate variables (ϕ) to denote
unknown region annotations and region constraints, respec-
tively. For instance, if a variable x has type Object in
FGJ, its region type template is of form Object 〈ρ0〉, where
ρ0 is a fresh region variable. Likewise, given the region-
annotated definition of Pair class from §3.1 a region type
template for a method with FGJ type Pair 〈 A , B 〉 → A is



14,15 〈ρa0 , ρ1, ρ2, ρ3 |ϕ0〉 Pair 〈 A , B 〉〈ρ1, ρ2, ρ3〉 → unit ,
where ρa0 and ρ1−3 are fresh region variables, and ϕ0 is a
fresh predicate variable denoting unknown constraints over
ρa0 and ρ1−3. Region type template of a type variable a is
a@ρ, where ρ is fresh. For a class, a template is computed in
two steps. In the first step, we templatize the types of all its
fields, constructor arguments, and arguments and return val-
ues of all its methods, along with the type of its superclass.
In the second step, we generalize all the free region vari-
ables occuring in the templates computed in the first step as
region parameters of the class. Finally, we add a fresh allo-
cation region parameter (ρa) to the list of parameters, and
introduce a new predicate variable (ϕ) to denote unknown
constraints on region parameters. For example, consider the
standard FGJ definition of Pair 〈 a , b 〉 class, where a and
b are the types of fst and snd fields, respectively. It can
be templatized as following:

c l a s s Pair〈a / Object , b / Object 〉
〈ρa0 , ρ0−4 |ϕ0〉 / Object 〈ρ4〉 {

a@ρ0 fst;
b@ρ1 snd;
Pair(a@ρ2 fst, b@ρ3 snd) { ... }
...

}

The template elides Pair ’s methods, whose region type
templates contain no free variables. Among the region pa-
rameters of the class template, ρ0−4 are obtained by gener-
alizing free region variables in the types of its class’s fields,
constructor arguments, and its superclass type. The remain-
ing parameter (ρa0) is a fresh region variable denoting the
allocation region argument. Fresh predicate variable ϕ0 de-
notes unknown constraints over ρa0 and ρ0−4 that need to
hold for template to be a well-formed region-annotated class
definition in FB.

The type template for a recursively defined class is com-
puted in two steps. First, all recursive occurances of the class
among the types of its fields are ignored and the class is
templatized as if it is a non-recursive class. Next, all the re-
cursive occurances are templatized with respect to the class
template computed in the first step, such that their region an-
notations are exactly same as the region parameters of the
class. For example, consider a generic ListNode 〈 a 〉 class
containing two fields: data of type a and next of type
ListNode 〈 a 〉. where a is the type of the data stored in the
linked list node. To templatize the ListNode 〈a〉 class, we
first ignore its recursive occurance in the type of next field,
and templatize the type a of data field as a@ρ0. Based
on this type template of data field, we compute the class’s
template as following:

14In our exposition, we assume that classes A and B are trivial sub-
classes of Object with no fields/methods. Like Object , they accept one
region parameter - the allocation region of their objects.

15We abuse arrow notation to also represent types of methods, but unlike
function types, there is no allocation region annotation atop the arrow in a
method type.

elabExpr(CT,A, πa,Γ, e) =
match e with
| newK(e) −→

l e t N = templateTy(K) in
l e t C1 = typeOk(A, N) in
l e t C2 = match K with Region 〈T 〉 −→ >

| _ −→ {A.Φ ` allocRgn(N) = πa} in
l e t ( : τ) = fields(N)

l e t (e′ : τ ′, C3) = elabExpr(A, πa,Γ, e) in
l e t C4 = subtypeOk(A, τ ′, τ) in
( newN(e′) : N,

⋃4
i=1 Ci)

| ea(e) −→
l e t (e′a : 〈ρaρ |φ〉τ π−→ τ,C1) =

elabExpr(A, πa,Γ, ea) in
l e t ρ′ = freshρ() in
l e t C2 = {ρ′ ∈ A.∆} in
l e t S = [ρ′/ρ][πa/ρa] in
l e t C3 = {A.Φ ` S(φ)} in
l e t (e′ : τ ′, C4) = elabExpr(A, πa,Γ, e) in
l e t C5 = subtypeOk(A, τ ′,S(τ)) in
(e′a〈πaρ′〉(e′) : S(τ),

⋃5
i=1 Ci)

| letregion π in ea −→
l e t π′ = freshπ() in
l e t (∆,Θ,Φ) = A in
l e t A′ = (∆ ∪ {π′},Θ,Φ ∧ (∆ � π′)) in
l e t (e′a : τ,C1) = elabExpr(A′, π′,Γ, [π′/π]ea) in
( letregion π′ in e′a : τ,C1)

| open ea as y@π in eb −→
l e t (e′a : Region 〈T 〉〈ρ〉,C1) =

elabExpr(A, πa,Γ, ea) in
l e t π′ = freshπ() in
l e t (∆,Θ,Φ) = A in
l e t (A′,Γ′) = ((∆ ∪ {π′},Θ,Φ),Γ[y 7→ T@π′]) in
l e t (e′b : τ,C2) = elabExpr(A′, π′,Γ′, [π′/π]ea) in
( open e′a as y@π′ in e′b : τ, C1 ∪ C2)

| _ −→ ...

Figure 9: Constraint generation for expressions in JFBK

ListNode 〈 a / Object 〉〈ρa0 , ρ0 |ϕ0〉 / Object {...}

Next, we trivially templatize the type of next field in the
body of the class as ListNode 〈 a 〉〈ρa0 , ρ0〉. The resulting
class represents a linked list with spine in the region ρa0 and
data objects in the region ρ0.

The templatization technique we described above for re-
cursive class definitions can be extended to mutually re-
cursive definitions in a straightforward manner, by simul-
taneously templatizing them. Using the techniques outlined
above, we compute region type templates for all classes
bound in the class table of the JFBK program before we pro-
ceed to elaborate expressions.

4.2 Expression Elaboration
Elaborating JFBK expressions to FB expressions involves
(a). replacing core types in variable declarations and new
expressions with fresh region type templates, and (b). explic-
itly instantiating region parameters of methods with fresh
region variables in method calls and function applications.
This elaboration is performed with respect to the polymor-



elabMeth(CT,B, τ m〈ρamρm |ϕm〉(τ x){ return e; }) =

l e t class B〈a / K〉〈ρaρ |ϕ〉 / N{τf x; k d} = CT (B) in
l e t (∆,Θ,Φ) as A =

({ρa, ρ, ρam, ρm}, a / K,ϕ ∧ ϕm) in
l e t C1 = {∆ ` ϕm ok} in
l e t Γ = ·[ this 7→ B〈a〉〈ρaρ〉][x 7→ τ ] in
l e t (e′ : τ ′,C2) = elabExpr(A, ρam,Γ, e) in
l e t C3 = subtypeOk(A, τ ′, τ) in
(τ m〈ρamρm |ϕm〉(τ x){ return e′; }, C1 ∪ C2 ∪ C3)

elabClass(CT,B) =

l e t class B〈a / K〉〈ρaρ |ϕ〉 / N{τf x; k d} = CT (B) in
l e t (∆,Θ,Φ) as A = ({ρa, ρ}, a / K,ϕ) in
l e t C1 = ∆ ` ϕ ok in
l e t (C2,C3) = (typeOk(A, N),typeOk(A, τf )) in
l e t C4 = {Φ ` allocRgn(τf ) � ρa ∧ allocRgn(N) = ρa} in
l e t (k′,C5) = elabCons(B, k) in
l e t (d′,C6) = elabMeth(B, d) in
( class B〈a / K〉〈ρaρ |ϕ〉 / N{τf x; k′ d′},

⋃6
i=1 Ci)

Figure 10: Method, class and class table elaboration

phic type templates of classes and methods computed as per
§4.1.

Function elabExpr, shown in Fig. 9, performs this elab-
oration for a subset of expressions in JFBK, whose corre-
sponding FB expressions have been ascribed static seman-
tics in Fig. 6. elabExpr is defined under the same context
as the expression typing judgment in Fig. 6 with symbols
A,πa, and Γ retaining their meaning. The function traverses
expressions in a syntax-directed manner of a type checker,
introducing fresh region type templates for unknown region
types, while generating constraints over region and predi-
cate variables. The precise nature of generated constraints
is explained in §4.4, but in summary, they capture the rela-
tionships between the type templates of various subexpres-
sions and their well-formedness. Note that elabExpr returns
the region type template of the subexpression, which is used
to generate constraints for the expression. Functions typeOk
and subtypeOk (definitions not shown) used by elabExpr im-
plement type well-formedness and subtype judgments from
Fig. 6, respectively.

4.3 Method and Class Elaboration
Functions elabMeth and elabClass shown in Fig. 10 lift
expression elaboration to method and class definitions, re-
spectively. Both functions first build a context (A) contain-
ing a set (∆) of region variables denoting regions that are
currently live, a map (Θ) mapping type variables to their
bounds, and a constraint formula (Φ) capturing constraints
over live region variables. We use predicate variables (ϕ and
ϕm) to capture constraints over variables in ∆ denoting the
fact that such constraints are yet to be inferred.

Function elabMeth elaborates a method definition of
class B. It calls elabExpr with the context A, its allocation
context parameter (ρam), and a type environment (Γ) that

contains region type bindings for all the arguments of the
method, including the implicit this argument. The region
type template returned by elabExpr for the method body is
checked against its expected type (derived from the type
template of the method) generating more constraints. The
function then returns the elaborated method definition and
the set of constraints.

elabClass elaborates the definition of a class B. It relies
on elabCons16 and elabMeth functions to elaborateB’s con-
structor (k) and method definitions (d), respectively. To the
set of constraints returned by these functions, elabClass adds
constraints generated by checking the well-formedness of
the type templates of its superclass and fields, and also a new
constraint capturing a couple of safety conditions: first, the
allocation regions of objects referred by the instance vari-
ables should outlive the allocation region of the instance it-
self, and second, the allocation regions of a class type and its
superclass type must be the same.

Function elabClassTable (Fig. 10) elaborates every defi-
nition in the class table CT , while accumulating constraints.
The constraints are finally solved by solve (§4.5), which re-
turns substitution functions Sρ and Sϕ for free region and
predicate variables, respectively, introduced during templa-
tization and elaboration stages. The substitutions are applied
to the class table (and to the artifacts that make up the class
table, recursively) to compute a class table that maps classes
to their fully region-annotated definitions in FB.

Note that if the original program in JFBK contains unsafe
references, for example, a reference from a transferable re-
gion to a stack regions, then the constraints generated during
the elaboration are not satisfiable. In such case, solve fails to
solve constraints, causing the program to be rejected.

4.4 Constraints
Our constraint generation algorithm generates three kinds of
constraints:

• Well-formedness constraints of form ρ ∈ ∆, restricting
the domain of unification for a region variable (ρ) to the
set (∆) of regions in scope,
• Well-formedness constraints of form ∆ ` ϕ ok, restrict-

ing the domain of a predicate variable (ϕ) to the set of all
possible constraint formulas over region variables (∆) in
scope, and
• Validity constraints of form Φ ` φ, where Φ and φ

are region constraints (Fig. 4) extended with predicate
variables and pending substitutions17:

Φ, φ ::= true | ρ � ρ | ρ = ρ | F (ϕ) | φ ∧ φ
F ::= · | [ρ/ρ]F

A pending substitution (F ) is a substitution function over
region variables/identifiers. They represent the substitu-

16The definition of elabCons is straightforward, hence not shown.
17we borrowed this terminology from [12]



tions that need to be carried out when a predicate variable
(ϕ) is replaced by a concrete formula in a validity con-
straint. For instance, in the validity constraint π1 � π2 `
[π1/ρ1][π2/ρ2]ϕ, pending substitution is [π1/ρ1][π2/ρ2].
Any concrete formula (call it φsol) over variables ρ1 and
ρ2 is a solution to ϕ if and only the formula obtained by sub-
stituting π1 and π2 for ρ1 and ρ2 (resp.) in φsol is deducible
from π1 � π2.

In general, validity constraints generated by our algo-
rithm assume one of the following two forms:

φcx ∧
∧
i ϕi ` φcs φcx ∧

∧
i ϕi ` Fj(ϕj)

Where ϕi’s denote the unknown preconditions of the class
and the method under elaboration. If the constraint is gener-
ated while checking the well-formedness of a type or elabo-
rating an expression, then ϕj’s denote the unknown precon-
ditions of classes and methods that were used in that type
or expression. Each use of a (region-polymorphic) class or
a method may instantiate region parameters differently, re-
sulting in a different pending substitution (Fj). Formulas
φcx and φcs are concrete, i.e., free of predicate variables
and pending substitutions. While φcx captures relationships
that are known to hold between concrete region identifiers
(i.e., π’s) when the constraint was generated, φcs captures
relationships that are required to hold among region vari-
bles (i.e., ρ’s), or relationships between region variables and
identifiers. Each region variable occuring in φcs has an asso-
ciated well-formedness constraint, which specifies its unifi-
cation domain. The unification domain of a constraint is the
union of unification domains of all region variables occuring
in the constraint.

Constraints Example 1 Consider the Pair class template
from §4.1. Following constraints are generated during its
elaboration (Constrains are identified with ci’s. Some trivial
constraints, such as ρ4 ∈ ∆0 and ρ5 ∈ ∆1, where ∆0 =
{ρa0 , ρ0−4} and ∆1 = ∆0 ∪ {ρ5}, have been elided):

[c1] : ∆0 ` ϕ0 ok [c2] : ϕ0 ` ρ0 � ρa0 ∧ ρ1 � ρa0 ∧ ρ4 = ρa0
[c3] : ϕ0 ` ρ2 = ρ0 [c4] : ϕ0 ` ρ3 = ρ1

[c5] : ϕ0 ∧ ϕ1 ` ρ5 = ρ0 [c6] : ∆1 ` ϕ1 ok

Constraints Example 2 Let us add to the Pair class a
contrived method alt that accepts a Region object r , a
Pair<A,A> object q , and an A object y . It assigns y to
fst and snd fields of q , and calls itself recursively with
the same region, a new Pair object allocated in a local re-
gion, and an A object referred by the snd field of the pair
inside the region. alt never terminates. Elaboration phase
elaborates the method to the following region-annotated def-
inition18(The original definition of alt can be obtained by
erasing all the region annotations from the elaborated ver-
sion):

18In reality, elaboration uses new region variables as parameters to the
constructor and method calls, and then generates constraints that unify them
with actuals. In our examples, to avoid clutter due to trivial constraints,we
coalesced both steps and show the actuals instead.

u n i t alt<ρa2,ρ6−9 |ϕ2>(Region<Pair<A,A>><π>> r,
Pair<A,A><ρ6−8> q, A<ρ9> y) {

q.fst := y; q.snd := y;
open r as π0 w i t h r o o t p in

l e t r e g i o n π1 in
l e t x = new Pair<A,A><π1,π0,π0>

(p.fst,p.fst) in
alt<π1,π1,π0,π0,π0>(r,x,p.snd)

}

Constraints generated during the elaboration are shown be-
low (let ∆2 = {ρa0 , ρ0−4, ρa2 , ρ6−9} ):

[c7] : ∆2 ` ϕ2 ok [c8] : ϕ1 ∧ ϕ2 ` ρ7 � ρ6 ∧ ρ8 � ρ6

[c9] : ϕ1 ∧ ϕ2 ` ρ7 = ρ9 [c10] : ϕ1 ∧ ϕ2 ` ρ8 = ρ9

[c11] : ϕ1 ∧ ϕ2 ∧ π0 � π1 ` [π1/ρ
a
2 ][π1/ρ6][π0/ρ7−9]ϕ2

4.5 Constraint Solving
Our constraint generation algorithm traverses the entire pro-
gram, performing elaboration and collecting constraints,
which are subsequently solved en masse. The motivation be-
hind the whole-program approach to constraint generation
is twofold: it simplifies elaboration functions and makes
presentation easier, and second, it naturally generalizes to
mutual recursion. Nonetheless, we do not intend our type
inference to be a whole-program analysis for (a). it preempts
opportunities for separate compilation and dynamic linking,
and (b). it is expensive and an overkill in most practical
cases. We therefore reclaim the compositionality of type
inference by solving the constraints in a compositional fash-
ion. In more practical terms this means that our constraint
solving algorithm visits and solves every constraint (or, ev-
ery set of mutually dependent constraints) only once. It com-
poses computed solutions to solve other constraints that de-
pend on the solved constraints. Importantly, the failure to
solve a dependent constraint does not result in backtrack-
ing. We now describe our compositional constraint solving
algorithm in detail. To simplify the presentation of our algo-
rithm, we assume that are no mutually recursive definitions
in the source program. Recursive definitions are nonetheless
allowed.

Terminology In a validity constraint, a predicate variable
occuring on the left side of the turnstile is said to occur
negatively, or with negative polarity. In contrast, a predicate
variable occuring on the right side is said to occur positively,
or with positive polarity. A validity constraint constrains
the set of predicate variables that occur negatively in the
constraint, while it uses the set of predicate variables that
occur positively. A constraint is said to be recursive if it
constrains and uses a predicate variable.

Given a set of validity constraints, we first build a depen-
dency graph (Gc) with constraints as nodes, and dependen-
cies between them captured as edges. There exists an edge
from a constraint c2 to a constraint c1 in the graph (i.e., c2
depends on c1) if any of the following conditions hold:

• c1 constrains a predicate variable that c2 uses.



• c1 constrains a (non-strict) subset of predicate variables
that c2 constraint.

The first condition intuitively corresponds to a case, where
expression or type, whose region elaboration is constrained
by c2 refers to a method or a class, whose unknown precon-
dition is constrained by c1. The common predicate variable
(ϕ) represents the unknown precondition in this case. The
dependency from c2 to c1 means that c1 must be solved to
compute ϕ before c2 is solved, thus enforcing the rule that
the precondition of a method must not depend on its calling
context. The second condition captures two kinds of depen-
dencies. First, the dependency from the constraints over a
method precondition to the constraints over the precondition
of the class containing the method. This captures our pref-
erence that the constraints over a class’s region parameters
should not depend on the idiosyncracies of its methods. Any
additional constraints required by any of its methods must
be captured in the precondition of the method itself (well-
formedness rules allow this possibility). The second condi-
tion adds bidirectional dependencies between validity con-
straints that constraint the same set of predicate variables.

Next, we convert the dependency graph over constraints
into a dependency DAG (GC) over sets of constraints, where
each set represents a strongly connected component in the
dependency graph.

Example The dependency DAG (GC) over validity con-
straints from the Pair example (§ ??) is shown below:

Each node (labeled Ci) is a set of constraints that belong
to a strongly connected component in the dependency graph
(Gc), hence are mutually dependent. All dependencies, ex-
cept the self-dependency on c10, are type-2 dependencies.

A dependency DAG makes the dependencies between
constraints explicit. Constraints in each set are mutually
dependent, and need to be solved simultaneously, whereas
constraints in different sets can be solved as per any valid
topological ordering of the graph’s transpose. Accordingly,
we obtain a topological ordering of nodes in the graph GTC
(GC’s transpose), and solve the sets of constraints in that
order. The solutions obtained after solving a constraint set
are applied to the constraints in subsequent sets before at-
tempting to solve them. Consequently, when the turn of a
constraint set (C) arrives during the constraint solving pro-
cess, it satisfies certain properties:

• There exists only one predicate variable (ϕ) that is either
constrained or used by the constraints in the set (C).
The variable is called set’s subject. This property follows
from (a). the fact that all the dependency constraints
have already been solved (and solutions applied), and
(b). the assumption that there are no mutually recursive
definitions.

• All the constraints that constrain the set’s subject are
present in the set. This follows from our definition of the
dependency relation.

For the DAG in figure above, we consider the topological
order [C1, C2, C3] of its transpose, and solve the sets of
constraints in that order. Solving the set (C) of constraints
entails finding an assignment for C’s subject (ϕ), and also
all the region variables (ρ) that occur free in C, such that the
solution satisfies well-formedness constraints on ϕ and ρ. To
simplify presentation, we think of C as being parameterized
on ϕ and ρ, and write it as C[ϕ, ρ]. We now formalize the
constraint satisfaction problem, and its solution.

Definition (Constraint Satisfaction Problem (CSP)) A con-
straint satisfaction problem is a tuple (C[ϕ, ρ],∆ϕ,∆),
where C[ϕ, ρ] is a set of validity constraints, where i’th
validity constraint assumes one of the following forms:

φicx ∧ ϕ ` φics φicx ∧ ϕ ` Fi(ϕ)

∆ are the unification domains for ρ. We call the union of all
unification domains (

⋃
∆) as the unification domain (∆) of

the CSP. The solution to the constraint satisfaction problem
is a pair (S, φsol), where S is a map from ρ to ∆ such that
S(ρj) ∈ ∆j , for every j, and φsol is a constraint formula
such that:

• φsol is well-formed under ∆ϕ (i.e., ∆ϕ ` φsol ok).
• Every sequent in C[(φsol,S(ρ))] is valid.
• φsol is maximally weak. That is, @φ′sol such that φ′sol is

well-formed, C[(φ′sol,S(ρ))] is valid, and φ′sol is strictly
weaker than φsol (i.e., · ` φsol ⇒ φ′sol but · 0 φ′sol ⇒
φsol).

4.6 Solving the CSP
The first step of solving the CSP (C[ϕ, ρ],∆ϕ,∆) is to
cast it as an equivalent problem (c[ϕ, ρ],∆ϕ,∆) involving
a single validity constraint. The single constraint ([ϕ, ρ]) is:

Φcx ∧ ϕ ` Φcs ∧
∧
i Fi(ϕ)

Where Φcx =
∧
i φ

i
cx and Φcs =

∧
i φ

i
cs. To see why

both CSPs are equivalent, consider two distinct constraints,
ci[ϕ, ρi] and cj [ϕ, ρj ]. Since i 6= j, ρi 6= ρj . Without the
loss of generality, assume that ci was generated before cj
by the constraint generation algorithm. Observe that when
our constraint generation algorithm generates a constraint,
all relationships between concrete region identifiers referred
by the consequent of constraint are already present in its
antecedent (this includes the unification domains of region
variables referred by the consequent). Since no new rela-
tionships between existing regions are added when a new
constraints is generated, φjcx either describes the same re-
lationships that are already described by φicx, or describes
relationships among region identifiers that are new, and not
relevant to ci. Therefore, strengthening the context of ci with
that of cj (or vice versa) neither weakens nor strengthens ci
(resp. cj).



For the constraint sets C1, C2, and C3 in the running ex-
ample, equivalent constraints are c12, c13, and c14, respec-
tively, shown below:

[c12] : ϕ0 ` ρ0 � ρa0 ∧ ρ1 � ρa0 ∧ ρ4 = ρa0 ∧ ρ2 = ρ0 ∧ ρ3 = ρ1

[c13] : ϕ0 ∧ ϕ1 ` ρ5 = ρ0

[c14] : ϕ1 ∧ ϕ2 ∧ π0 � π1 ` ρ7 � ρ6 ∧ ρ8 � ρ6 ∧ ρ7 = ρ9∧
ρ8 = ρ9 ∧ [π1/ρ

a
2 ][π1/ρ6][π0/ρ7−9]ϕ2

4.6.1 Non-Recursive Constraints
We first describe how we solve a non-recursive CSP (c[ϕ, ρ],∆ϕ,∆)
where c[ϕ, ρ] is of the form Φcx ∧ ϕ ` Φcs.

Our approach is based on the observation that FB does
not admit null values or uninitialized variables, thus forc-
ing every region variable to be unified with some concrete
region. The constraint formula Φcs captures all such unifi-
cation constraints on ρ. Since the set of all concrete region
identifiers is the unification domain (∆) of CSP, this means
for every ρi with a well-formedness constraint as ρi ∈ ∆i,
there exists a π ∈ ∆ such that and Φcx ∧ Φcs ` ρ = π.
However, π may not belong to ∆i, in which case the well-
formedness constraint on ρi is not satisfied, and constraint
solving must fail. Therefore, there exists a unique assign-
ment S such that c[φsol,S(ρ) is satisfied, regardless of φsol.

To obtain φsol, we make use of another observation. Let
c[ϕ,S(ρ)] be the following constraint:

Φcx ∧ ϕ ` Φ′cs

Consider a maximally weak formula φ such that Φcx `
φ ⇔ Φ′cs. Clearly, ∆ ` φ ok. However, since ∆ϕ ⊆ ∆,
we have two cases:

• Case ∆ϕ ` φ ok: This means that φ is a solution to ϕ.
• Case ∆ϕ 0 φ ok: In this case, φ contains at least one

equality or outlives constraint on two region identifiers,
πi and πj , where (a). πi, πj ∈ ∆ − ∆ϕ, or (b). πi ∈
∆ − ∆ϕ and πj ∈ ∆ϕ, such that the constraint is not
implied by Φcx (if it is implied, then φ is not maximally
weak). Let us denote such constraint on πi and πj as
φij . Now, let us consider a solution φsol to ϕ, which
means that Φcx ∧ φsol ` Φ′cs. Since Φcx ` φ ⇔ Φ′cs,
we have Φcx ∧ φsol ` φ. Since φ ` φij , we have
Φcx ∧ φsol ` φij , although Φcx 0 φij . But this is
impossible. To see why, recall that all the constraints
on identifiers in ∆ϕ occuring in Φcx are subsumed by
(∆ − ∆ϕ) � ∆ϕ. Therefore, it is impossible to derive
φij from Φcx by only adding constraints on π ∈ ∆ϕ.
Hence, such a solution φsol cannot exist.

The above discussion hints at an algorithm to compute a
solution to ϕ: find a maximally weak φsol such that Φcx `
φsol ⇔ Φ′cs. If ∆ϕ ` φsol ok, then φsol is the solution.
Otherwise, there is no solution to ϕ. We now describe a
graph-based algorithm to compute maximally weak φsol.

Definitions Given a constraint formula φ, we define its
graph encoding G(φ) = (V (φ), E(φ)) as a digraph whose

vertices (V (φ)) are free region variables and identifiers in φ,
and whose edges (E(φ)) denote outlives constraints in19 φ.
That is, if φ contains a constraint ρ1 � ρ2, then ρ1, ρ2 ∈
V (φ) and (ρ1, ρ2) ∈ E(φ). Equality constraints are treated
as a conjunction of symmetric outlives constraints for the
purpose of graph encoding. Conversely, given a digraph G,
we define its constraint encoding Φ(G) in a straightforward
manner. We say that a graph G1 = (V1, E1) is as connected
as graph G2 = (V2, E2) if V2 ⊆ V1, and for every ρ1, ρ2 ∈
V2, if there exists a path between ρ1 and ρ2 in G2, then there
must exist a path between same pair of vertices in G1.

A maximally weak φsol that satisfies φcx ` φsol ⇔ φcs
is a constraint encoding of the smallest graph G (i.e., Φ(G))
such thatG(φcx)∪G is as connected asG(φcs). The problem
of computing such a G is equivalent to the problem finding
of finding minimum number of edges to add to G(φcx) such
that it is as connected as G(φcs). Algorithms to solve the
later problem are known to exist [3].

Solving the constraints c12 and c13 by reducing them to
graph augmentation problems, as described above, results in
the following solutions for ϕ0 and ϕ1 (symmetric outlives
constraints are replaced with equalities):

ϕ1 ⇔ ρ0 � ρa0 ∧ ρ1 � ρa0 ∧ ρ4 = ρa0 ∧ ρ2 = ρ0 ∧ ρ3 = ρ1
ϕ2 ⇔ ρ5 = ρ0

4.6.2 Solving Recursive Constraints
Substituting the above solutions for ϕ0 and ϕ1 in c14 gives
us a recursive constraint of the following form:

φcx ∧ ϕ ` φcs ∧ F (ϕ)

Where φcx and φcs are concrete constraint formulas, and
F is a substitution function, not necessarily idempotent. We
now extend constraint solving to recursive CSP (c[ϕ, ρ],∆ϕ,∆),
where c[ϕ, ρ] assumes the form Φcx ∧ϕ ` Φcs ∧

∧
i Fi(ϕ).

For the sake of brevity, we define G(ϕ) = Φcx ∧
∧
i Fi(ϕ),

and use F in c[ϕ, ρ]:

Φcx ∧ ϕ ` G(ϕ)

To solve the above recursive constraint, we start with the
observation that the set of all constaints (φ) over ∆ ∪ {ρ} is
a lattice, where φ1 ≤ φ2 , · ` φ1 ⇒ φ2. Note that G is a
monotone over the lattice:

∀φ1, φ2. · ` (φ1 ⇒ φ2)⇒ (G(φ1)⇒ G(φ2))

From Knaster-Tarski’s theorem, we know thatG has a great-
est fixed point (φf ), with following properties:

• Property 1 φf = G(φf ), which means · ` φf ⇔
G(φf )

• Property 2 ∀φ′f such that φ′f = G(φ′f ), we have φ′f ≤
φf , which means · ` φ′f ⇒ φf .

19We alternate between viewing a constraint formula (φ) as a set of
constraints and a conjunction of constraints in this description



We therefore compute the greatest fixed point (φf ) of G,
and convert the recursive constraint to the following non-
recursive constraint:

Φcx ∧ ϕ ` φf
The technique described in § 4.6.1 now suffices to solve the
above constraint.

Let H(ϕ2) denote the consequent of the recursive con-
straint c14. Its greatest fixed point (φf ) is shown below:

ρ7 � ρ6∧ρ8 � ρ6∧ρ7 = ρ9∧ρ8 = ρ9∧π0 � π1∧π0 = π0

Computing a maximally weak φsol such that ϕ1∧π0 � π1 `
φsol ⇔ φf results in the following solution for ϕ2 that meets
its well-formedness requirement ({ρa0 , ρ0 − 4, ρa2 , ρ6−9} `
ϕ2 ok):

ρ7 � ρ6 ∧ ρ8 � ρ6 ∧ ρ7 = ρ9 ∧ ρ8 = ρ9

5. Implementation and Evaluation
We have implemented the prototype of BROOM compiler
frontend, including its region type system and type infer-
ence, in 3k+ lines of OCaml. The input to our system is
a program in JFB+K, an extended version of JFBK that
includes assignments, conditionals, loops, more primitive
datatypes (e.g.strings), and a null value. Our implementa-
tion of region type inference closely follows the description
given in Sec. 4. To solve the constraints that arise during type
inference, we built a solver called CSOLVE that implements
constraint solving approach based on fixpoint computation
and graph augmentation described in § 4.6.1. If the input
JFB+K program does not create any unsafe references, our
compiler annotates it with region types, which act as a wit-
ness to program’s memory safety. On contrary, if the input
program does create a reference that is potentially unsafe,
then the type inference fails during the constraint solving
phase. We currently do not implement error localization and
feedback mechanisms.

To evaluate the practical utility of our region type system
and type inference, we translated some of the Naiad stream-
ing query operator benchmarks (Naiad vertices) used in [4]
to JFB+K, and used our prototype compiler to assign region
types to these programs, and thus prove their safety. During
the process, we found multiple instances of potential mem-
ory safety violations in the JFB+K translation of bench-
marks, which we verified to be present in the original C# im-
plementation as well. The cause of all safety violations is the
creation of a reference from the outgoing message (a trans-
ferable region) to the payload of the incoming message. For
example, the implementation of RegionSelectVertex
contains the following:

i f ( t h i s.selectFn(inMsg.payload[i])) {
outMsg.set(outputOffset, inMsg.payload[i]);
...

}

The outMsg is later transferred to a downstream actor,
where the reference to inMsg ’s payload becomes unsafe20.
We eliminated such unsafe references by creating a clone of
inMsg.payload[i] in outMsg , and our compiler was
subsequently able to certify the safety of all references.

6. Related Work
Tofte and Talpin in [11, 15, 16] introduce the concept of a
region type system to statically ensure the safety of region-
based memory management in ML. Following their semi-
nal work, static type systems for safe region-based memory
management have been extensively studied in the context of
various languages and problem settings [1, 2, 5–8, 13, 18,
19]. Our work differs from the existing proposals in a num-
ber of ways. Firstly, our problem setting includes lexically
scoped stack regions and dynamic transferable regions (both
programmer-managed) in context of an object-oriented pro-
gramming language equipped with higher-order functions.
Second, we adopt a two-pronged approach to memory safety
that relies on a combination of a simple static type discipline
and lightweight runtime checks. In particular, our approach
requires neither restrictive static mechanisms (e.g., linear
types and unique pointers) nor expensive runtime mecha-
nisms (e.g., garbage collection and reference counting) in or-
der to guarantee safety. Lastly, our region type system comes
equipped with full type inference that completely eliminates
the need to write region annotations on types to convince the
type checker that the program is safe.

[16] proposes to extend Standard ML, a higher-order
functional language, with lexically-scoped stack regions,
and defines an elaboration from Standard ML to the region-
annotated version of Standard ML. The aim of the elabora-
tion is to introduce stack regions and do away with GC in
a transparent fashion without jeopardizing memory safety.
We too define an elaboration, but our focus is on introduc-
ing region annotations necessary to prove the safety of an
object-oriented program that already uses (stack and dy-
namic) regions. Similar to their region inference algorithm,
our region type inference algorithm can deal with region-
polymorphic recursion by computing fixed points for recur-
sive constraints. While their inference algorithm only ever
generates equality constraints, which can be solved via uni-
fication, our type inference algorithm also generates partial
order outlives constraints, which are required to capture sub-
tle relationships between lifetimes of transferable regions
and stack regions. Consequently, our constraint solving al-
gorithm is more sophisticated, and is capable of inferring
unknown outlives constraints over region arguments of poly-
morphic recursive functions.

Cyclone [5] equips C with programmer-managed stack
regions, and a typing discipline that statically guarantees the
safety of all pointer dereferences. Later proposals [7, 14] ex-

20This unsafe reference could have gone unnoticed during experiments
in [4] because their experimental setup included only one actor.



tends Cyclone with dynamic regions. BROOM differs from
Cyclone fundamentally because of its non-intrusiveness de-
sign principle, which requires its safety mechanisms to not
intrude on the the programming practices of C#. BROOM
programmers, for example, shouldnt be forced to abandon it-
erators in favor of for-loops, annotate region types, or rewrite
C#’s standard libraries to use in BROOM. Non-intrusiveness
is not a design consideration for Cyclone, which requires C
programmers to use new language constructs and abandon
some standard programming idioms in the interest of pre-
serving safety. For instance, Cyclone programmers are re-
quired to write region types for functions; the type infer-
ence is only intraprocedural. Ensuring safety in presence
of dynamic regions requires using either unique pointers
or reference-counted objects. Both approaches are intrusive.
For example, unique pointers constrain, or in some cases for-
bid, the use of the familiar iterator pattern, which requires
creation of aliases to objects in a collection. Some standard
library functions, for example, those that use caching, may
need to be rewritten. Moreover, even with unique pointers,
safety cannot be guaranteed statically; checks against NULL
are needed at run-time to enforce safety. For ref-counted
objects, Cyclone requires programmers to use special func-
tions (alias refptr and drop refptr ) to create and
destroy aliases. Reference count is affected only by these
functions. An alias going out of scope, for instance, does
not decrement the ref-count. The requirement to use addi-
tional constructs to manage aliases makes reference count-
ing more-or-less as intrusive as unique pointers.

Our work differs from Cyclone also in terms of its tech-
nical contributions. While Cyclone equips C with a range of
region constructs [14], the semantics of (a significant sub-
set of) such constructs, and the safety guarantees of the lan-
guage are not formalized. In contrast, the (static and dy-
namic) semantics of Broom has been rigorously defined
with respect to a well-understood formal system (FGJ). The
safety guarantees have been formalized and proved. The core
of Broom is very simple; the rules that make up static and
dynamic semantics occupy less than a page each. We be-
lieve that the rigor and simplicity of Broom makes it easy to
understand the the underlying ideas, and apply them in vari-
ous problem settings. Similar contrast can be made of region
type inference in both the languages. Cyclones type infer-
ence was only ever described as being similar to Tofte and
Talpins, and its effectiveness in presence of tracked pointers
is not clear. In contrast, the complete Ocaml (pseudo) code
of Broom’s inference algorithm, was given in the supplement
and the ideas underlying type inference have been described
elaborately in the paper

An ownership type system for safe region-based mem-
ory management in real-time Java has been proposed by [2].
Like us, they too assume a source language with programmer-
managed memory regions, and focus on proving safety
of programs written in that language. Their source lan-

guage admits various kinds of regions in order to support
shared-memory concurrency. However, all their regions have
lexically-scoped lifetimes. In contrast, we admit regions
with dynamically determined lifetimes in order to support
message-passing concurrency. We borrow outlives relation
from their formal development, and our type system bears
some similarities to their’s. However, our language also ad-
mits parametric polymorphism (generics) and higher-order
functions, whose interaction is non-trivial in context of a
region type system. On the other hand, our type system es-
chews the notions of region kinds and ownership, leading to
a more succinct formalization. Furthermore, we establish a
type safety result that formalizes its guarantees with respect
to a well-defined operational semantics. Like Cyclone, [2]’s
language is explicitly typed. Although there is some sup-
port for local type inference, region types for methods and
classes need to be written explicitly. In contrast, we support
full type inference that eliminates any such need.

[6] proposes a flow-sensitive region-based memory man-
agement for first-order programs that proposes to overcome
some of the drawbacks of [16] by generalizing [16]’s ap-
proach to regions with dynamic lifetimes. However, dynamic
regions are still not first-class values of the language, and
reference counting is nonetheless needed to ensure memory
safety. [18] extends lambda calculus with first-class regions
with dynamic lifetimes, and imposes linear typing to con-
trol accesses to regions. Our open/close lexical block for
transferable regions traces its orgins to the let! expres-
sion in [18] and [17], which safely relaxes linear typing re-
strictions, allowing variables to be temporarily aliased. We
don’t have linear typing, thus admit unrestricted aliasing.
Moreover, [18]’s linear type system is insufficient to enforce
the invariants needed to ensure safety under region transfers,
such as the absence of references that escape a transferable
region.

The idea of using region-based memory management to
facilitate the safe transfer of rich data structures between
computational nodes has been previously explored by [8]
in the context of Scheme language. However, their setting
only includes lexically-scoped regions for which Tofte and
Talpin-style analysis [16] suffices. In contrast, our language
provides first-class support for transferable regions with dy-
namic lifetimes. We require this generality in order to sup-
port streaming query operators, such as the one shown in
Fig. 1.
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A. Appendix
LEMMA A.1. (Substitution Preserves Typing) ∀e, z, τ1, τ2,Σ,∆,Γ,Φ, if (dom(Σ),∆, ·,Φ), π,Γ[z 7→ τ1] ` e : τ2 and
(dom(Σ),∆, ·,Φ), π,Γ ` v : τ1, then (dom(Σ),∆, ·,Φ), π,Γ ` [v/z]e : τ2

Proof Intros e. Induction on e. For every subexpression e0, inductive hypothesis says the following:

∀(z, τ1, τ2,Σ,∆,Γ,Φ). (dom(Σ),∆, ·,Φ), π,Γ[z 7→ τ1] ` e0 : τ2 ∧ (dom(Σ),∆, ·,Φ), π,Γ ` v : τ1 IH1
⇒ (dom(Σ),∆, ·,Φ), π,Γ ` [v/z]e0 : τ2

In all the inductive cases, we have the following hypotheses:

(dom(Σ),∆, ·,Φ), π,Γ[z 7→ τ1] ` e : τ2 H2
(dom(Σ),∆, ·,Φ), π,Γ ` v : τ1 H4

In each case, proof strategy is the same: invert on H2, apply IH1, and then construct the proof term for the goal by applying
type rules.

LEMMA A.2. (Weakening) ∀v, τ,∆,∆0,Σ,Φ, π, π0, such that value(v), π ∈ ∆, π0 /∈ ∆, and ∆0 ⊆ ∆, if (dom(Σ),∆ ∪
{π0}, ·,Φ ∧∆0 � π0), π0, · ` v : τ and (dom(Σ),∆, ·,Φ) ` τ ok, then (dom(Σ),∆, ·,Φ), π, · ` v : τ .

Proof Intros. Hypotheses:

π ∈ ∆ H1
π0 /∈ ∆ H2
∆0 ⊆ ∆ H4

(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆0 � π0), π0, · ` v : τ H6
(dom(Σ),∆, ·,Φ) ` τ ok H8

Proof by induction on H6. Cases:
• Case (v = new N0(v) and τ = N0): Inversion on H6:

fields(N0) = f : τ H10
(dom(Σ),∆, ·,Φ) ` N0 ok H11

(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆0 � π0), π0, · ` v : τ H12

Inductive hypothesis on v:

(dom(Σ),∆, ·,Φ) ` τ ok ⇒ (dom(Σ),∆, ·,Φ), π, · ` v : τ IH1

Inversion onH8 tells us thatN0 is of the formB〈T 〉〈ππ〉, where, class B〈a/K〉〈ρa, ρ |φ〉/N{τh h, ...} is a well-formed
class definition. Furthermore, we get:

π, π ∈ ∆ H13

·  T ok H14
Φ ` [π/ρa][π/ρ]φ H16

Let fields(N) = g : τg . Inverting the well-formedness of class B, we get the following:

(∅, {ρa, ρ}, [a 7→ K], φ) ` τhτg ok H18

Since ·  B〈T 〉 ok, H18 gives:

(∅, {ρa, ρ}, ·, φ) ` [T/a](τhτg) ok H20

And, since π 6= ρa and {π} ∩ {ρ} = ∅:

(∅, {π, π}, ·, [π/ρ][π/ρa]φ) ` [π/ρ][π/ρa][T/a](τhτg) ok H22

From the definition of fields, we have:

fields(B〈T 〉〈ππ〉) = h : [π/ρ][π/ρa][T/a]τh, g : [π/ρ][π/ρa][T/a]τg H24

From H10 and H24, we know that τ = [π/ρ][π/ρa][T/a](τhτg). Substituting this in H22:

(∅, {π, π}, ·, [π/ρ][π/ρa]φ) ` τ ok H26



Using H13 and H16, from H26, we derive:

(dom(Σ),∆, ·,Φ) ` τ ok H28

From H28 and IH1, we get:

(dom(Σ),∆, ·,Φ), π, · ` v : τ H30

From H10, H11, and H30, we prove the required goal:

(dom(Σ),∆, ·,Φ), π, · ` new N0(v) : N0

• Case (v = new Region 〈T 〉〈πi〉(v0) and τ = Region 〈T 〉〈π>〉): Inversion on H6:

πi ∈ dom(Σ) H10
πi /∈ ∆ ∪ {π0, π>} H12

(dom(Σ),∆ ∪ {πi, π0}, ·,Φ ∧∆0 � π0) ` T@πi ok H14
(dom(Σ),∆ ∪ {πi, π0}, ·,Φ ∧∆0 � π0), π, · ` v0 : T@πi H16

Inductive hypothesis on v0:

(dom(Σ),∆ ∪ {πi}, ·,Φ) ` T@πi ok ⇒ (dom(Σ),∆ ∪ {πi}, ·,Φ), π, · ` v0 : T@πi IH1

Inverting H14, we get:

·  T <: Object H18
·  T ok H19

πi ∈ ∆ ∪ {πi, π0} H20

H20 implies πi ∈ ∆ ∪ {πi}. Using this, H18, and H19, and applying the type well-formedness rule for T@πi, we derive
the following:

(dom(Σ),∆ ∪ {πi}, ·,Φ) ` T@πi ok H22

H22 and IH1 gives:

(dom(Σ),∆ ∪ {πi}, ·,Φ), π, · ` v0 : T@πi H24

H12 implies πi /∈ ∆ ∪ {π>}. Using this, and H10, H22 and H24, we conclude:

(dom(Σ),∆, ·,Φ), π, · ` Region 〈T 〉〈πi〉 : Region 〈T 〉〈π>〉

• Case (v = λ@πa〈ρaρ |φ〉(τ1 x).e and τ = 〈ρaρ |φ〉τ πa

−−→ τ2): By inversion on H6:

πa = π0 H10

(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆0 � π0), π0, · ` λ@π0〈ρaρ |φ〉(τ1 x).e : 〈ρaρ |φ〉τ π0−→ τ2 H12

From H8:

(dom(Σ),∆, ·,Φ) ` 〈ρaρ |φ〉τ π0−→ τ2 ok H14

Inverting H14 tells us that π0 ∈ ∆. But H2 tells us that π0 /∈ ∆. This is a contradiction, telling us that it cannot be the
case that the type of lambda is well-formed under (dom(Σ),∆, ·,Φ). Intuitively, this means that a letregion expression
or an open expression can never return a closure, thereby ensure that a function application never dereferences an invalid
reference.

LEMMA A.3. (Safe Region Renaming) ∀e,Σ, τ,∆,Φ, ρ, π, such that ∆ ` Φ ok, ρ /∈ ∆ ∪ Σ and fresh(π) (i.e., π /∈
∆ ∪ Σ ∪ RVars(e) ∪ RVars(CT )), if (Σ,∆ ∪ {ρ}, ·,Φ), ρ, · ` e : τ , then (Σ,∆ ∪ {π}, ·, [π/ρ]Φ), π, · ` [π/ρ]e : [π/ρ]τ

Proof By induction on e. Proof in each case follows directly from the following facts:
• The inductive hypothesis, which says that for every sub-expression e0 of e, the following holds:

∀Σ, τ,∆,Φ, ρ, π, such that ∆ ` Φ ok, ρ /∈ ∆ ∪ Σ and fresh(π), if (Σ,∆ ∪ {ρ}, ·,Φ), ρ, · ` e : τ, then IH1
(Σ,∆ ∪ {π}, ·, [π/ρ]Φ), π, · ` [π/ρ]e : [π/ρ]τ



• If ρ /∈ RVars(e) and e0 is a subexpression of e, then ρ /∈ RVars(e0)
• If π /∈ frv(φ1 ∧ φ2), then φ1 ` φ2 implies [π/ρ]φ1 ` [π/ρ]φ2.

THEOREM A.4. (Progress) ∀e, τ,∆,Σ,Φ, π, if π ∈ ∆ and (dom(Σ),∆, ·,Φ), π, · ` e : τ , then one of the following holds:

(i) ∃(e′,Σ′). ∆ ` (e,Σ) −→ (e′,Σ′)
(ii) value(e)

(iii) ∆ ` (e,Σ) −→ ⊥

Proof Intros e. Induction on e. For every subexpressions e0, inductive hypothesis gives us the following:

∀(τ0,∆0,Σ0,Φ0, π0).π0 ∈ ∆0 ∧ (dom(Σ0),∆0, ·, φ0), π0, · ` e0 : τ0 ⇒ IH1
(∃(e′0,Σ′0).∆ ` (e0,Σ0) −→ (e′0,Σ

′
0)) ∨ (value(e0)) ∨ (∆ ` (e0,Σ0) −→ ⊥)

Cases from the induction:

• Cases (e = () and e = x): proof trivial.
• Case (e = e0.fi): Intros. Hypothesis:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H5

Inverting H5:

(dom(Σ),∆, ·,Φ), π, · ` e0 : τ ′ H7

f : τ = fields(bound·(τ
′)) H9

Applying H7 in IH1, we have three cases:
SCase (e0 takes a step): Hypotheses:

∆ ` (e0,Σ) −→ (e′0,Σ
′
0) H11

Therefore (e0.fi,Σ) takes a step to (e′0.fi,Σ
′
0) under ∆.

SCase (e0 is a value): Since e0 has type τ ′ and bound· is defined for τ ′, it follows that e0 is newN(v). From H7:

(dom(Σ),∆, ·,Φ), π, · ` newN(v) : τ ′ H14

Inverting H14:

(dom(Σ),∆, ·,Φ) ` N ok H16

Inverting H16:

allocRgn(N) ∈ ∆ H18

From H9, H18, we know that (e0.fi,Σ) takes a step to (vi,Σ)

SCase (e0 raises ⊥): e0.fi also raises ⊥.
• Case (e = letregion π0 in e0): Intros. Hypothesis:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H5

Inverting H5:

π0 /∈ ∆ H7
(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆ � π0), π0, · ` e0 : τ H9

From H9 and IH1, we have three cases:
SCase (e0 takes a step). Hypotheses:

∆ ∪ {π0} ` (e0,Σ) −→ (e′0,Σ
′
0) H11

From H7 and H11, ∆ ` (e,Σ) −→ ( letregion π0 in e′0,Σ
′
0).

SCase (e0 is a value v0): From H7, ∆ ` (e,Σ) −→ (v0,Σ)

SCase (e0 raises ⊥): e raises ⊥ too.



• Case (e = open ea as y@π0 in eb): Intros. Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H5

Inverting H5:

(dom(Σ),∆, ·,Φ), π, · ` ea : Region 〈T 〉〈π>〉 H7
π0 /∈ ∆ H9

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, [y 7→ T@π0] ` eb : τ H11

We have three cases. First case deals with (ea,Σ) taking a step to (e′a,Σ
′
a) under ∆. Under this context, (e,Σ) takes a step

to ( open e′a as y@π0 in eb,Σ
′
a). So, there is progress. Second case deals with ea raising ⊥. In this case, execution

of e also raises ⊥. So, we again have progress. Third case deals with ea being a value new N(v). Inverting H7, we have
to consider two possible derivations: one from the generic type rule for values of any type, and another from the type rule
tailor-made for Region values. The first rule does not apply because fields( Region 〈T 〉〈π>〉) is undefined. The only rule
that applies is the special type rule for Region values. Hence, ea is new Region 〈T 〉〈πi〉(v), where:

πi /∈ ∆ H12
πi ∈ dom(Σ) H13

(dom(Σ),∆ ∪ {πi}, ·,Φ), πi, · ` v : T@πi H16

From H9, H13, H16, and Lemma A.3:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, · ` [π0/πi]v : T@π0 H18

From H11, H18 and Lemma A.1:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, · ` [[π0/ρ
a]v/y]eb : τ H19

From H12 and H13, we know that πi ∈ dom(Σ). We now have three cases:
SCase (Σ(πi) 6= X and eb is not a value): By inductive hypothesis, ([[π0/ρ

a]v/y]eb,Σ[ρ 7→ O] can either (a). take a step
to (e′b,Σ

′) under ∆ ∪ {π0}, or (b). eb evaluates to ⊥. In the first case, (e,Σ) itself evaluates to:

( open ( new Region 〈T 〉〈ρ〉(λ@π〈ρa〉().v)) as e′b@y in ,Σ′[ρ 7→ Σ(ρ)])

In the second case, the evaluation of e also raises ⊥.
SCase(Σ(πi) 6= X and eb is a value vb): Trivially, ∆ ` (e,Σ) −→ (vb,Σ).
SCase(Σ(πi) = X): e raises ⊥.

• (e = ea.m〈πa, π〉(e)): Intros. Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H4

By inversion on H4:

(dom(Σ),∆, ·,Φ), π, · ` ea : τa H6
πa = π H7
π ∈ ∆ H8

mtype(m, bound·(τa)) = 〈ρaρ |φ〉τ1 → τ2 H10

(dom(Σ),∆, ·,Φ), π, · ` e : [π/ρ][π/ρa]τ1 H11
Φ ` [π/ρ][π/ρa]φ

Three cases:
SCase (ea isn’t a value): From H16 and IH , we know that either (a). ea can take a step, or (b) ea reduces to ⊥. In first
case, e can also take a step, and in second case, e also reduces to ⊥.
SCase (ea = va, but ∃i such that ei isn’t a value): From H11, we know that (ei,Σ) can either (a). take a step
to (e′i,Σ

′) under ∆, or (b). ei reduces to ⊥. In the first case, we have ∆ ` (va.m〈πa, π〉(..., ei, ...),Σ) −→
(va.m〈πa, π〉(..., e′i, ...),Σ′).



SCase (ea = va and ∀i. ei = vi): H10 says that bound for τa is defined under empty Θ. This is possible only if τa = N
and va = new N(v′). Furthemore, N cannot be of form Region 〈T 〉〈π>〉 because, mtype isn’t defined for Region .
Using these facts, and inverting H6, we get (dom(Σ),∆, ·,Φ) ` N ok. Inverting it again:

allocRgn(N) ∈ ∆ H13

Now, since mtype(m,N) is defined if and only if mbody(m,N) is defined, we know that:

mbody(m,N) = x. em H14

From H13 and H14, we know that ∆ ` ((va.m〈πa, π〉(v),Σ) −→ ([v/x][ new N(v′)/ this ]em,Σ)
• Case (e = ea〈πaπ〉(e)). Proof closely follows the proof for ea.m〈πaπ〉(e). The only difference is that when ea evaluates to

a lambda λ@π0〈ρaρ |φ〉(τ x).eb, we need a proof that π0 ∈ ∆. This can be obtained by inverting the type judgment for the
lambda.
• Case(e = new N(e)): Intros. Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` new N(e) : τ H4

Inverting H4 leads to two cases:
SCase (shape(N) 6= Region 〈T 〉): Hypotheses:

(dom(Σ),∆, ·,Φ) ` N ok H5

fields(N) = f : τ H7
(dom(Σ),∆, ·,Φ), π, · ` e : τ H8

Inverting H5:

allocRgn(N) ∈ ∆ H10

Three cases:
− SSCase (∃i such that ei takes a step): In this case, e also takes a step.
− SSCase (∃i such that ei reduces to ⊥). In this case, e also reduces to ⊥.
− SSCase (∀i ei is a value vi): In this case, e is also a value new N(v).
SCase (shape(N) = Region 〈T 〉 and e = Region 〈T 〉〈πi〉(e0)): From H4:

(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(e0) : τ H4

Inversion on H4 gives two cases:
− SSCase(πi = π>): In this case, e0 = λ@π〈ρa〉().e1. In this case, ∆ ` ( new Region 〈T 〉〈π>〉(v0),Σ) −→

( new Region 〈T 〉〈πj〉([πj/ρa]e1),Σ[πj 7→ C]), where πj is fresh (πj /∈ ∆ ∪ dom(Σ)).
− SSCase (πi 6= π>): Hypotheses:

πi ∈ dom(Σ) H16
πi /∈ ∆ ∪ {π>} H18

(dom(Σ),∆ ∪ {πi}, ·,Φ), πi, · ` e0 : T@πi H20

From IH1 and H20, we have three cases:
· SSSCase (e0 is a value v0): In this case, e = Region 〈T 〉〈πi〉(v0) is also a value.
· SSSCase (e0 raises ⊥): In this case, e also raises ⊥.
· SSSCase (∆∪{πi} ` (e0,Σ) −→ (e′0,Σ

′)): In this case, ∆ ` ( Region 〈T 〉〈πi〉(e0),Σ) −→ ( Region 〈T 〉〈πi〉(e′0),Σ′)
• Case (e = e0.transfer〈πa〉()): Intros. Hypotheses:

π ∈ ∆ H2
πa = π H3

(dom(Σ),∆, ·,Φ), π, · ` e0.transfer〈πa〉() : τ H4

By inversion on H4:

(dom(Σ),∆, ·,Φ), π, · ` e0 : Region 〈T 〉〈π>〉 H6



Now, if e0 can take a step, so can e, hence there is progress. Else, if e0 raises an exception, so does e. The only non-trivial
case is when e0 is a value. But, only values of type Region 〈T 〉〈π>〉 is new Region 〈T 〉〈πi〉(...), where πi 6= π>. By
inversion on H6, we get:

πi ∈ dom(Σ) H8

We have two cases:
(Σ(πi) 6= O): In this case, ∆ ` (e,Σ) −→ ( () ,Σ[πi 7→ X]).
(Σ(πi) = O): In this case, evaluation of e raises ⊥.

• Case (e is a lambda abstraction): e is already a value.
• Case (e = e1; e2): Proof trivial.

THEOREM A.5. (Preservation) ∀e, τ,∆,Σ,Φ, π, such that π ∈ ∆, if (dom(Σ),∆, ·,Φ), π, · ` e : τ and ∆ ` (e,Σ) −→
(e′,Σ′), then (dom(Σ′),∆, ·,Φ), π, · ` e′ : τ .

Proof Intros e. Induction on e. For every subexpressions e0, inductive hypothesis gives us the following:

∀(τ0,∆0,Σ0,Φ0, π0). (π0 ∈ ∆0) ∧ ((dom(Σ0),∆0, ·,Φ0), π0, · ` e0 : τ0) ∧ (∆ ` (e0,Σ0) −→ (e′0,Σ
′
0)) IH1

⇒ (dom(Σ′0),∆0, ·,Φ0), π0, · ` e′0 : τ0

Cases from induction

• Case (e = () or e = x): Proof is trivial.
• Case (e = e0.fi): Intros. Hypothesis:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H4

∆ ` (e,Σ) −→ (e′,Σ′) H6

Inverting H4:

(dom(Σ),∆, ·,Φ), π, · ` e0 : τ ′ H7

f : τ = fields(bound·(τ
′)) H9

Inverting H6, we get two cases:
SCase (∆ ` (e0,Σ) −→ (e′0,Σ

′)): In this case, ∆ ` (e0.fi,Σ) −→ (e′0.fi,Σ
′). H7 and IH1 gives:

(dom(Σ′),∆, ·,Φ), π, · ` e′0 : τ ′ H11

Proof follows from H11 and H9.
SCase (e0 is a value new N(v)): Hypotheses:

allocRgn(N) ∈ ∆ H13
∆ ` (e,Σ) −→ (vi,Σ) H15

We need to prove that ((dom(Σ),∆, ·,Φ), π, ·) ` vi : τi. From H7, since e0 = new N(v):

(dom(Σ),∆, ·,Φ), π, · ` new N(v) : τ ′ H16

Inverting H16 and using H9 gives us the proof.
• Case (e = letregion π0 in e0): Intros. Hypothesis:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H4

∆ ` (e,Σ) −→ (e′,Σ′) H6

Inverting H4:

π0 /∈ ∆ H7
(dom(Σ),∆, ·,Φ) ` τ ok H8

(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆ � π0), π0, · ` e0 : τ H9

Inverting H6, we get two cases:



SCase (∆∪{π0} ` (e0,Σ) −→ (e′0,Σ
′)): In this case, ∆ ` ( letregion π0 in e0,Σ) −→ ( letregion π0 in e′0,Σ

′).
H9 and IH1 gives:

(dom(Σ),∆ ∪ {π0}, ·,Φ ∧∆ � π0), π, · ` e′0 : τ H11

From H7 and H11, we can conclude that (dom(Σ′),∆, ·,Φ), π, · ` letregion π0 in e′0 : τ .
SCase (e0 is a value v0): In this case, ∆ ` ( letregion π0 in e0,Σ) −→ (v0,Σ

′). FromH2,H7−9, and Lemma A.2,
we have:

(dom(Σ),∆, ·,Φ), π, · ` v0 : τ H13

Thus, type is preserved.
• Case (e = open ea as y@π0 in eb): Intros. Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` e : τ H4

∆ ` (e,Σ) −→ (e′,Σ′) H6

Inverting H4:

(dom(Σ),∆, ·,Φ), π, · ` ea : Region 〈T 〉〈π>〉 H7
(dom(Σ),∆, ·,Φ) ` τ ok H8

π0 /∈ ∆ H9
(dom(Σ′),∆ ∪ {π0}, ·,Φ), π0, [y 7→ T@π0] ` eb : τ H11

Inverting H6, we get many cases:
SCase (∆ ` (ea,Σ) −→ (e′a,Σ

′)): Since the domain of Σ monotonically increases during the evaluation, we have:

dom(Σ) ⊆ dom(Σ′) H13

Since strenthening the context trivially preserves typing and well-formedness, from H7− 11 and H13, we have:

(dom(Σ′),∆, ·,Φ), π, · ` ea : Region 〈T 〉〈π>〉 H15
(dom(Σ′),∆, ·,Φ) ` τ ok H17

π0 /∈ ∆ H19
(dom(Σ′),∆ ∪ {π0}, ·,Φ), π0, [y 7→ T@π0] ` eb : τ H20

From H15− 20, we have (dom(Σ′),∆, ·,Φ), π, · ` e : τ .
SCase (ea is a value va, and eb steps to e′b): Hypotheses:

va = new Region 〈T 〉〈πi〉(vr) H22
πi 6= π> H23

Σ(πi) 6= X H24
π0 /∈ ∆ H26

∆ ∪ {π0} ` ([[π0/πi]vr/y]eb,Σ[πi 7→ O]) −→ (e′b,Σ
′) H27

Σ′′ = Σ′[πi 7→ Σ(πi)] H29

We need to prove that (dom(Σ′′),∆, ·,Φ), π, · ` open va as y@π0 in e′b : τ . Note that dom(Σ′′) = dom(Σ′).
Hence, the proof obligation is (dom(Σ′),∆, ·,Φ), π, · ` open va as y@π0 in e′b : τ . First, since the domain of Σ
monotonically increases during the evaluation, we have:

dom(Σ) ⊆ dom(Σ′) H31

Next, since ea = va, from H7 and H22, we have:

(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(vr) : Region 〈T 〉〈π>〉 H33

Since H23, inversion on H33 gives:

(dom(Σ),∆ ∪ {πi}, ·,Φ), πi, · ` vr : T@πi H34
πi /∈ ∆ H35

From H23, H26, H34, H35, and Lemma A.3, we have:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, · ` [π0/πi]vr : T@π0 H36



From H11, H36 and Lemma A.1, we get:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, · ` [[π0/πi]vr/y]eb : τ H38

H24 says that πi ∈ dom(Σ). Hence, from H38:

(dom(Σ[[πi 7→ O]]),∆ ∪ {π0}, ·,Φ), π0, · ` [[π0/πi]vr/y]eb : τ H40

From H40, H27 and IH1:

(dom(Σ′),∆ ∪ {π0}, ·,Φ), π0, · ` e′b : τ H42

By strengthening the type context:

(dom(Σ′),∆ ∪ {π0}, ·,Φ), π0, ·[y 7→ T@π0] ` e′b : τ H48

Since dom(Σ) ⊆ dom(Σ′) (from H31), we get the following by strengthening the context in H7− 11:

(dom(Σ′′),∆, ·,Φ), π, · ` va : Region 〈T 〉〈π>〉 H50
(dom(Σ′′),∆, ·,Φ) ` τ ok H51

From H48, H50, H51, we have the required goal:

(dom(Σ′),∆, ·,Φ), π, · ` open va as y@π0 in e′b : τ

SCase (ea is a value va, and eb is a value vb): In this case, ∆ ` ( open va as y@π0 in vb,Σ) −→ (vb,Σ). From
H11:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, [y 7→ T@π0] ` vb : τ H53

Since value(vb), it has not free variables. Consequently:

(dom(Σ),∆ ∪ {π0}, ·,Φ), π0, · ` vb : τ H55

From H2, H8, H9, H55 and Lemma A.2, we prove the required goal:

(dom(Σ),∆, ·,Φ), π, · ` vb : τ

• Case (e = new Region 〈T 〉〈π>〉(e0)): Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈π>〉(e0) : τ H4

∆ ` (e,Σ) −→ (e′,Σ′) H6

Inverting H4, we know that e0 = λ@π〈ρa〉().e1, and:

(∅, {ρa}, ·, true), ρa, · ` e1 : T@ρa H7
·  T ok H8

From H7 and Lemma A.3:

(∅, {πi}, ·, true), πi, · ` [πi/ρ
a]e1 : T@πi H10

Inverting H6:

πi /∈ dom(Σ) ∪∆ H17
Σ′ = Σ[πi 7→ C] H19

∆ ` ( new Region 〈T 〉〈π>〉(λ@π〈ρa〉().e1)) −→ ( new Region 〈T 〉〈πi〉([πi/ρa]e1),Σ′) H21

Since strengthening the context preserves typing, strengthening the context for type judgment inH10 gives us the following:

(dom(Σ′),∆ ∪ {πi}, ·,Φ), πi, · ` [πi/ρ
a]e : T@πi H24

H19 implies πi ∈ dom(Σ′). This, and H17, H8, and H24 entail the required goal:

(dom(Σ′),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉([πi/ρa]e1) : Region 〈T 〉〈π>〉



• Case (e = new Region 〈T 〉〈πi〉(e0), where πi 6= π>):Hypotheses:

π ∈ ∆ H2
(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(e0) : τ H4

∆ ` ( new Region 〈T 〉〈πi〉(e0),Σ) −→ (e′,Σ′) H6

Since e isn’t a value, inverting H6 tells us that new Region 〈T 〉〈πi〉(e0) takes a step to new Region 〈T 〉〈πi〉(e′0) when e0
takes a step to e′0. The proof for this case is similar to the previous case; we invert H4 and H6, apply inductive hypothesis
to derive typing judgment for e0 under a context containing πi, and finally apply the type rule for new Region 〈T 〉〈πi〉(e′0)
(where πi 6= π>) to prove the preservation.
• Case (e is a lambda expression): e is a value, hence cannot take a step. Preservation trivially holds.
• Case (e is a method/function call, or a let expression): Proof follows directly from the inductive hypothesis, substitution

lemma (A.1) and renaming lemma (A.3).

THEOREM A.6. (Type Safety) ∀e, τ,∆,Σ, π, if π ∈ ∆ and (dom(Σ),∆, ·,Φ), π, · ` e : τ , then either e is a value, or one of
the following holds:

(i) ∃(e′,Σ′). such that ∆ ` (e,Σ) −→ (e′,Σ′) and (dom(Σ′),∆, ·,Φ), π, · ` e : τ
(ii) ∆ ` (e,Σ) −→ ⊥

Proof Directly follows from Theorems A.4 and A.5.

THEOREM A.7. (Transfer Safety) ∀ v, ∆, ∆′, Σ, Σ′, Φ, Φ′, π, π′, such that π ∈ ∆, π′ ∈ ∆′, and πi /∈ dom(Σ′) ∪ {π>}, if
(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(v) : Region 〈T 〉〈π>〉, then (Σ′[πi 7→ C],∆′, ·,Φ′) ` new Region 〈T 〉〈πi〉(v) :
Region 〈T 〉〈π>〉

Proof Intros. Hypothesis:

πi /∈ dom(Σ′) ∪∆′ ∪ {π>} H6
(dom(Σ),∆, ·,Φ), π, · ` new Region 〈T 〉〈πi〉(v) : Region 〈T 〉〈π>〉 H8

By inversion on H8, we observe that v is well-typed under an empty environment containing nothing but πi. Hence,
frv(v) ∈ {πi}. Since v is a value, it means that v preserves its type under any context that contains a binding for πi in Σ.
Since πi /∈ dom(Σ′) ∪ ∆′, it means that v preserves its type under a context with Σ[πi 7→ C]. Applying the type rule for
new Region 〈T 〉〈πi〉(v) expression, where πi 6= π>, we get the proof.
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