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Preface

Overview

Work in type systems for programming languages now touches many parts

of computer science, from language design and implementation to software

engineering, network security, databases, and analysis of concurrent and dis­

tributed systems. The aim of this book, together with its predecessor, Types

and Programming Languages (Pierce [2002]—henceforth TAPL) is to offer a

comprehensive and accessible introduction to the area’s central ideas, results,

and techniques. The intended audience includes graduate students and re­

searchers from other parts of computer science who want get up to speed in

the area as a whole, as well as current researchers in programming languages

who need comprehensible introductions to particular topics. Unlike TAPL, the

present volume is conceived not as a unified text, but as a collection of more

or less separate articles, authored by experts on their particular topics.

Required Background

Most of the material should be accessible to readers with a solid grasp of the

basic notations and techniques of operational semantics and type systems—

roughly, the first half of TAPL. Some chapters depend on more advanced

topics from the second half of TAPL or earlier chapters of the present vol­

ume; these dependencies are indicated at the beginning of each chapter. Inter­

chapter dependencies have been kept to a minimum to facilitate reading in

any order.

Topics

Precise Type Analyses The first three chapters consider ways of extending

simple type systems to give them a better grip on the run time behavior of
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programs. The first, Substructural Type Systems, by David Walker, surveys

type systems based on analogies with “substructural” logics such as linear

logic, in which one or more of the structural rules of conventional logics—

which allow dropping, duplicating, and permuting assumptions—are omitted

or allowed only under controlled circumstances. In substructural type sys­

tems, the type of a value is not only a description of its “shape,” but also

a capability for using it a certain number of times; this refinement plays a

key role in advanced type systems being developed for a range of purposes,

including static resource management and analyzing deadlocks and livelocks

in concurrent systems. The chapter on Dependent Types, by David Aspinall

and Martin Hofmann, describes a yet more powerful class of type systems, in

which the behavior of computations on particular run­time values (not just

generic “shapes”) may be described at the type level. Dependent type sys­

tems blur the distinction between types and arbitrary correctness assertions,

and between typechecking and theorem proving. The power of full dependent

types has proved difficult to reconcile with language design desiderata such

as automatic typechecking and the “phase distinction” between compile time

and run time in compiled languages. Nevertheless, ideas of dependent typ­

ing have played a fruitful role in language design and theory over the years,

offering a common conceptual foundation for numerous forms of “indexed”

type systems. Effect Types and Region­Based Memory Management, by Fritz

Henglein, Henning Makholm, and Henning Niss, introduces yet another idea

for extending the reach of type systems: in addition to describing the shape

of an expression’s result (a static abstraction of the possible values that the

expression may yield when evaluated), its type can also list a set of possible

“effects,” abstracting the possible computational effects (mutations to the

store, input and output, etc.) that its evaluation may engender. Perhaps the

most sophisticated application of this idea has been in memory management

systems based on static “region inference,” in which the effects manipulated

by the typechecker track the program’s ability to read and write in particular

regions of the heap. For example, the ML Kit Compiler used a region analy­

sis internally to implement the full Standard ML language without a garbage

collector.

Types for Low­Level Languages The next part of the book addresses an­

other research thrust that has generated considerable excitement over the

past decade: the idea of adapting type system technologies originally devel­

oped for high­level languages to low­level languages such as assembly code

and virtual machine bytecode. Typed Assembly Language, by Greg Morrisett,

presents a low­level language with a type system based on the parametric

polymorphism of System F and discusses how to construct a type­preserving
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compiler from a high­level language, through a series of typed intermedi­

ate languages, down to this typed assembly code. Proof­Carrying Code, by

George Necula, presents a more general formulation in a logical setting with

close ties to the dependent types described in Aspinall and Hofmann’s chap­

ter. The strength of this presentation is that it offers a natural transition

from conventional type safety properties, such as memory safety, to more

general security properties. A driving application area for both approaches is

enforcing security guarantees when dealing with untrusted mobile code.

Types and Reasoning about Programs One attraction of rich type systems

is that they support powerful methods of reasoning about programs—not

only by compilers, but also by humans. One of the most useful, the tech­

nique of logical relations, is introduced in the chapter Logical Relations and a

Case Study in Equivalence Checking, by Karl Crary. The extended example—

proving the correctness of an algorithm for deciding a type­sensitive behav­

ioral equivalence relation on terms in the simply typed lambda­calculus with

a Unit type—foreshadows ideas developed further in Christopher Stone’s

chapter on type definitions. Typed Operational Reasoning, by Andrew Pitts,

develops a more general theory of typed reasoning about program equiv­

alence. Here the examples focus on proving representation independence

properties for abstract data types in the setting of a rich language combin­

ing the universal and existential polymorphism of System F with records and

recursive function definitions.

Types for Programming in the Large One of the most important projects

in language design over the past decade and more has been the use of type­

theory as a framework for the design of sophisticated module systems—

languages for assembling large software systems from modular components.

One highly developed line of work is embodied in the module systems found

in modern ML dialects. Design Considerations for ML­Style Module Systems,

by Robert Harper and Benjamin C. Pierce, offers an informal guided tour of

the principal features of this class of module systems—a “big picture” intro­

duction to a large but highly technical body of papers in the research litera­

ture. Type Definitions, by Christopher A. Stone, addresses the most critical

and technically challenging feature of the type systems on which ML­style

module systems are founded: singleton kinds, which allow type definitions to

be internalized rather than being treated as meta­level abbreviations.

Type Inference The ML family of languages—including Standard ML, Objec­

tive Caml, and Moscow ML, as well as more distant relatives such as Haskell—
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has for decades been a showcase for advances in typed language design and

compiler implementation, and for the advantages of software construction in

richly typed languages. One of the main reasons for the success of these lan­

guages is the combination of power and convenience offered by their type

inference (or type reconstruction) algorithms. Basic ML type inference has

been described in many places, but descriptions of the more advanced tech­

niques used in production compilers for full­blown languages have until now

been widely dispersed in the literature, when they were available at all. In

The Essence of ML Type Inference, François Pottier and Didier Rémy offer a

comprehensive, unified survey of the area.

Exercises

Most chapters include numerous exercises. The estimated difficulty of each

exercise is indicated using the following scale:

« Quick check 30 seconds to 5 minutes

«« Easy ≤ 1 hour

««« Moderate ≤ 3 hours

«««« Challenging > 3 hours

Exercises marked « are intended as real­time checks of important concepts.

Readers are strongly encouraged to pause for each one of these before mov­

ing on to the material that follows. Some of the most important exercises are

labeled Recommended.

Solutions to most of the exercises are provided in Appendix A. To save

readers searching for solutions to exercises for which solutions are not avail­

able, these are marked 3.

Electronic Resources

Additional materials associated with this book can be found at:

http://www.cis.upenn.edu/~bcpierce/attapl

Resources available on this site will include errata for the text, pointers to

supplemental material contributed by readers, and implementations associ­

ated with various chapters.

Acknowledgments

Many friends and colleagues have helped to improve the chapters as they

developed. We are grateful to Amal Ahmed, Lauri Alanko, Jonathan Aldrich,



Preface xiii

Derek Dreyer, Matthias Felleisen, Robby Findler, Kathleen Fisher, Nadji Gau­

thier, Michael Hicks, Steffen Jost, Xavier Leroy, William Lovas, Kenneth Mac­

Kenzie, Yitzhak Mandelbaum, Martin Müller, Simon Peyton Jones, Norman

Ramsey, Yann Régis­Gianas, Fermin Reig, Don Sannella, Alan Schmitt, Peter

Sewell, Vincent Simonet, Eijiro Sumii, David Swasey, Joe Vanderwaart, Yanling

Wang, Keith Wansbrough, Geoffrey Washburn, Stephanie Weirich, Dinghao

Wu, and Karen Zee for helping to make this a much better book than we could

have done alone. Stephanie Weirich deserves a particularly warm round of

thanks for numerous and incisive comments on the whole manuscript. Nate

Foster’s assistance with copy editing, typesetting, and indexing contributed

enormously to the book’s final shape.

The work described in many chapters was supported in part by grants from

the National Science Foundation. The opinions, findings, conclusions, or rec­

ommendations expressed in these chapters are those of the author(s) and do

not necessarily reflect the views of the NSF.





P a r t I

Precise Type Analyses





1 Substructural Type Systems

David Walker

Advanced type systems make it possible to restrict access to data structures

and to limit the use of newly­defined operations. Oftentimes, this sort of

access control is achieved through the definition of new abstract types under

control of a particular module. For example, consider the following simplified

file system interface.

type file

val open : string → file option

val read : file → string * file

val append : file * string → file

val write : file * string → file

val close : file → unit

By declaring that the type file is abstract, the implementer of the module

can maintain strict control over the representation of files. A client has no way

to accidentally (or maliciously) alter any of the file’s representation invariants.

Consequently, the implementer may assume that the invariants that he or

she establishes upon opening a file hold before any read, append, write or

close.

While abstract types are a powerful means of controlling the structure of

data, they are not sufficient to limit the ordering and number of uses of func­

tions in an interface. Try as we might, there is no (static) way to prevent a

file from being read after it has been closed. Likewise, we cannot stop a client

from closing a file twice or forgetting to close a file.

This chapter introduces substructural type systems, which augment stan­

dard type abstraction mechanisms with the ability to control the number and

order of uses of a data structure or operation. Substructural type systems are

particularly useful for constraining interfaces that provide access to system
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resources such as files, locks and memory. Each of these resources undergoes

a series of changes of state throughout its lifetime. Files, as we have seen, may

be open or closed; locks may be held or not; and memory may be allocated or

deallocated. Substructural type systems provide sound static mechanisms for

keeping track of just these sorts of state changes and preventing operations

on objects in an invalid state.

The bulk of this chapter will focus on applications of substructural type

systems to the control of memory resources. Memory is a pervasive resource

that must be managed carefully in any programming system so it makes an

excellent target of study. However, the general principles that we establish

can be applied to other sorts of resources as well.

1.1 Structural Properties

Most of the type systems in this book allow unrestricted use of variables in the

type checking context. For instance, each variable may be used once, twice,

three times, or not at all. A precise analysis of the properties of such variables

will suggest a whole new collection of type systems.

To begin our exploration, we will analyze the simply­typed lambda calcu­

lus, which is reviewed in Figure 1­1. In this discussion, we are going to be

particularly careful when it comes to the form of the type­checking context Γ .

We will consider such contexts to be simple lists of variable­type pairs. The

"," operator appends a pair to the end of the list. We also write (Γ1, Γ2) for

the list that results from appending Γ2 onto the end of Γ1. As usual, we al­

low a given variable to appear at most once in a context and to maintain this

invariant, we implicitly alpha­convert bound variables before entering them

into the context.

We are now in position to consider three basic structural properties sat­

isfied by our simply­typed lambda calculus. The first property, exchange,

indicates that the order in which we write down variables in the context is

irrelevant. A corollary of exchange is that if we can type check a term with

the context Γ , then we can type check that term with any permutation of the

variables in Γ . The second property, weakening, indicates that adding extra,

unneeded assumptions to the context, does not prevent a term from type

checking. Finally, the third property, contraction, states that if we can type

check a term using two identical assumptions (x2:T1 and x3:T1) then we can

check the same term using a single assumption.

1.1.1 Lemma [Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T then

Γ1, x2:T2, x1:T1, Γ2 ` t : T 2

1.1.2 Lemma [Weakening]: If Γ1, Γ2 ` t : T then Γ1, x1:T1, Γ2 ` t : T 2
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Syntax

b ::= booleans:

true true

false false

t ::= terms:

x variable

b boolean

if t then t else t conditional

λx:T.t abstraction

t t application

T ::= types:

Bool booleans

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Typing Γ ` t : T

Γ1, x:T, Γ2 ` x : T
(T­Var)

Γ ` b : Bool
(T­Bool)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

(T­If)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

Figure 1­1: Simply­typed lambda calculus with booleans

1.1.3 Lemma [Contraction]: If Γ1, x2:T1, x3:T1, Γ2 ` t : T2 then

Γ1, x1:T1, Γ2 ` [x2 , x1][x3 , x1]t : T2 2

1.1.4 Exercise [Recommended, «]: Prove that exchange, weakening and contrac­

tion lemmas hold for the simply­typed lambda calculus. 2

A substructural type system is any type system that is designed so that one

or more of the structural properties do not hold. Different substructural type

systems arise when different properties are withheld.

• Linear type systems ensure that every variable is used exactly once by

allowing exchange but not weakening or contraction.

• Affine type systems ensure that every variable is used at most once by

allowing exchange and weakening, but not contraction.

• Relevant type systems ensure that every variable is used at least once by

allowing exchange and contraction, but not weakening.

• Ordered type systems ensure that every variable is used exactly once and

in the order in which it is introduced. Ordered type systems do not allow

any of the structural properties.
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The picture below can serve as a mnemonic for the relationship between

these systems. The system at the bottom of the diagram (the ordered type sys­

tem) admits no structural properties. As we proceed upwards in the diagram,

we add structural properties: E stands for exchange; W stands for weakening;

and C stands for contraction. It might be possible to define type systems con­

taining other combinations of structural properties, such as contraction only

or weakening only, but so far researchers have not found applications for

such combinations. Consequently, we have excluded them from the diagram.

ordered (none)

linear (E)

affine (E,W) relevant (E,C)

unrestricted (E,W,C)

The diagram can be realized as a relation between the systems. We say system

q1 is more restrictive than system q2 and write q1vq2 when system q1 exhibits

fewer structural rules than system q2. Figure 1­2 specifies the relation, which

we will find useful in the coming sections of this chapter.

1.2 A Linear Type System

In order to safely deallocate data, we need to know that the data we deallo­

cate is never used in the future. Unfortunately, we cannot, in general, deduce

whether data will be used after execution passes a certain program point: The

problem is clearly undecidable. However, there are a number of sound, but

useful approximate solutions. One such solution may be implemented using

a linear type system. Linear type systems ensure that objects are used exactly

once, so it is completely obvious that after the use of an object, it may be

safely deallocated.
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q ::= system:

ord ordered

lin linear

rel relevant

aff affine

un unrestricted

ord v lin (Q­OrdLin)

lin v rel (Q­LinRel)

lin v aff (Q­LinAff)

rel v un (Q­RelUn)

aff v un (Q­AffUn)

q v q (Q­Reflex)

q1 v q2 q2 v q3

q1 v q3

(Q­Trans)

Figure 1­2: A relation between substructural type systems

Syntax

Figure 1­3 presents the syntax of our linear language, which is an extension

of the simply­typed lambda calculus. The main addition to be aware of, at

this point, are the type qualifiers q that annotate the introduction forms for

all data structures. The linear qualifier (lin) indicates that the data structure

in question will be used (i.e., appear in the appropriate elimination form) ex­

actly once in the program. Operationally, we deallocate these linear values

immediately after they are used. The unrestricted qualifier (un) indicates that

the data structure behaves as in the standard simply­typed lambda calculus.

In other words, unrestricted data can be used as many times as desired and

its memory resources will be automatically recycled by some extra­linguistic

mechanism (a conventional garbage collector).

Apart from the qualifiers, the only slightly unusual syntactic form is the

elimination form for pairs. The term split t1 as x,y in t2 projects the first

and second components from the pair t1 and calls them x and y in t2. This

split operation allows us to extract two components while only counting

a single use of a pair. Extracting two components using the more conven­

tional projections π1 t1 and π2 t1 requires two uses of the pair t1. (It is also

possible, but a bit tricky, to provide the conventional projections.)

To avoid dealing with an unnecessarily heavy syntax, we adopt a couple

abbreviations in our examples in this section. First, we omit all unrestricted

qualifiers and only annotate programs with the linear ones. Second, we freely

use n­ary tuples (triples, quadruples, unit, etc.) in addition to pairs and also

allow multi­argument functions. The latter may be defined as single­argument

functions that take linear pairs (triples, etc) as arguments and immediately

split them upon entry to the function body. Third, we often use ML­style type
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Syntax

q ::= qualifiers:

lin linear

un unrestricted

b ::= booleans:

true true

false false

t ::= terms:

x variable

q b boolean

if t then t else t conditional

q <t,t> pair

split t as x,y in t split

q λx:T.t abstraction

t t application

P ::= pretypes:

Bool booleans

T*T pairs

T→T functions

T ::= types:

q P qualified pretype

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Figure 1­3: Linear lambda calculus: Syntax

declarations, value declarations and let expressions where convenient; they

all have the obvious meanings.

Typing

To ensure that linear objects are used exactly once, our type system maintains

two important invariants.

1. Linear variables are used exactly once along every control­flow path.

2. Unrestricted data structures may not contain linear data structures. More

generally, data structures with less restrictive type may not contain data

structures with more restrictive type.

To understand why these invariants are useful, consider what could hap­

pen if either invariant is broken. When considering the first invariant, as­

sume we have constructed a function free that uses its argument and then

deallocates it. Now, if we allow a linear variable (say x) to appear twice, a

programmer might write <free x,free x>, or, slightly more deviously,

(λz.λy.<free z,free y>) x x.

In either case, the program ends up attempting to use and then free x after it

has already been deallocated, causing the program to crash.

Now consider the second invariant and suppose we allow a linear data

structure (call it x) to appear inside an unrestricted pair (un <x,3>). We can
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Context Split Γ = Γ1 ◦ Γ2

∅ =∅ ◦∅ (M­Empty)

Γ = Γ1 ◦ Γ2

Γ , x:un P = (Γ1, x:un P) ◦ (Γ2, x:un P)
(M­Un)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = (Γ1, x:lin P) ◦ Γ2
(M­Lin1)

Γ = Γ1 ◦ Γ2

Γ , x:lin P = Γ1 ◦ (Γ2, x:lin P)
(M­Lin2)

Figure 1­4: Linear lambda calculus: Context splitting

get exactly the same effect as above by using the unrestricted data structure

multiple times:

let z = un <x,3> in

split z as x1,_ in

split z as x2,_ in

<free x1,free x2>

Fortunately, our type system ensures that none of these situations can occur.

We maintain the first invariant through careful context management. When

type checking terms with two or more subterms, we pass all of the unre­

stricted variables in the context to each subterm. However, we split the linear

variables between the different subterms to ensure each variable is used ex­

actly once. Figure 1­4 defines a relation, Γ = Γ1 ◦ Γ2, which describes how to

split a single context in a rule conclusion (Γ ) into two contexts (Γ1 and Γ2) that

will be used to type different subterms in a rule premise.

To check the second invariant, we define the predicate q(T) (and its exten­

sion to contexts q(Γ)) to express the types T that can appear in a q­qualified

data structure. These containment rules state that linear data structures can

hold objects with linear or unrestricted type, but unrestricted data structures

can only hold objects with unrestricted type.

• q(T) if and only if T = q′ P and qvq′

• q(Γ) if and only if (x:T) ∈ Γ implies q(T)

Recall, we have already defined qvq′ such that it is reflexive, transitive and

linvun.

Now that we have defined the rules for containment and context splitting,

we are ready for the typing rules proper, which appear in Figure 1­5. Keep in

mind that these rules are constructed anticipating a call­by­value operational

semantics.

It is often the case when designing a type system that the rules for the

base cases, variables and constants, are hardly worth mentioning. However,
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Typing Γ ` t : T

un (Γ1, Γ2)

Γ1, x:T, Γ2 ` x : T
(T­Var)

un (Γ)

Γ ` q b : q Bool
(T­Bool)

Γ1 ` t1 : q Bool

Γ2 ` t2 : T Γ2 ` t3 : T

Γ1 ◦ Γ2 ` if t1 then t2 else t3 : T
(T­If)

Γ1 ` t1 : T1 Γ2 ` t2 : T2

q(T1) q(T2)

Γ1 ◦ Γ2 ` q <t1,t2> : q (T1*T2)
(T­Pair)

Γ1 ` t1 : q (T1*T2)

Γ2, x:T1, y:T2 ` t2 : T

Γ1 ◦ Γ2 ` split t1 as x,y in t2 : T
(T­Split)

q(Γ) Γ , x:T1 ` t2 : T2

Γ ` q λx:T1.t2 : q T1→T2

(T­Abs)

Γ1 ` t1 : q T11→T12 Γ2 ` t2 : T11

Γ1 ◦ Γ2 ` t1 t2 : T12

(T­App)

Figure 1­5: Linear lambda calculus: Typing

in substructural type systems these cases have a special role in defining the

nature of the type system, and subtle changes can make all the difference.

In our linear system, the base cases must ensure that no linear variable is

discarded without being used. To enforce this invariant in rule (T­Var), we

explicitly check that Γ1 and Γ2 contain no linear variables using the condition

un (Γ1, Γ2). We make a similar check in rule (T­Bool). Notice also that rule (T­

Var) is written carefully to allow the variable x to appear anywhere in the

context, rather than just at the beginning or at the end.

1.2.1 Exercise [«]: What is the effect of rewriting the variable rule as follows?

un (Γ)

Γ , x:T ` x : T
(T­BrokenVar)

The inductive cases of the typing relation take care to use context splitting

to partition linear variables between various subterms. For instance, rule (T­

If) splits the incoming context into two parts, one of which is used to check

subterm t1 and the other which is used to check both t2 and t3. As a result,

a particular linear variable will occur once in t2 and once in t3. However, the

linear object bound to the variable in question will be used (and hence de­

allocated) exactly once at run time since only one of t2 or t3 will be executed.

The rules for creation of pairs and functions make use of the containment

rules. In each case, the data structure’s qualifier q is used in the premise of

the typing rule to limit the sorts of objects it may contain. For example, in the

rule (T­Abs), if the qualifier q is un then the variables in Γ , which will inhabit

the function closure, must satisfy un (Γ). In other words, they must all have



1.2 A Linear Type System 11

unrestricted type. If we omitted this constraint, we could write the follow­

ing badly behaved functions. (For clarity, we have retained the unrestricted

qualifiers in this example rather than omitting them.)

type T = un (un bool → lin bool)

val discard =

lin λx:lin bool.

(lin λf:T.lin true) (un λy:un bool.x)

val duplicate =

lin λx:lin bool.

(lin λf:T.lin <f (un true),f (un true)>)) (un λy:un bool.x)

The first function discards a linear argument x without using it and the sec­

ond duplicates a linear argument and returns two copies of it in a pair. Hence,

in the first case, we fail to deallocate x and in the second case, a subsequent

function may project both elements of the pair and use x twice, which would

result in a memory error as x would be deallocated immediately after the first

use. Fortunately, the containment constraint disallows the linear variable x

from appearing in the unrestricted function (λy:bool. x).

Now that we have defined our type system, we should verify our intended

structural properties: exchange for all variables, and weakening and contrac­

tion for unrestricted variables.

1.2.2 Lemma [Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T then

Γ1, x2:T2, x1:T1, Γ2 ` t : T. 2

1.2.3 Lemma [Unrestricted Weakening]: If Γ ` t : T then

Γ , x1:un P1 ` t : T. 2

1.2.4 Lemma [Unrestricted Contraction]:

If Γ , x2:un P1, x3:un P1 ` t : T3 then

Γ , x1:un P1 ` [x2 , x1][x3 , x1]t : T3. 2

Proof: The proofs of all three lemmas follow by induction on the structure

of the appropriate typing derivation. 2

Algorithmic Linear Type Checking

The inference rules provided in the previous subsection give a clear, con­

cise specification of the linearly­typed programs. However, these rules are

also highly non­deterministic and cannot be implemented directly. The pri­

mary difficulty is that to implement the non­deterministic splitting operation,
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Algorithmic Typing Γin ` t : T;Γout

Γ1, x:un P, Γ2 ` x : un P;Γ1, x:un P, Γ2
(A­UVar)

Γ1, x:lin P, Γ2 ` x : lin P;Γ1, Γ2 (A­LVar)

Γ ` q b : q Bool;Γ (A­Bool)

Γ1 ` t1 : q Bool;Γ2

Γ2 ` t2 : T;Γ3 Γ2 ` t3 : T;Γ3

Γ1 ` if t1 then t2 else t3 : T;Γ3
(A­If)

Γ1 ` t1 : T1;Γ2 Γ2 ` t2 : T2;Γ3

q(T1) q(T2)

Γ1 ` q <t1,t2> : q (T1*T2);Γ3
(A­Pair)

Γ1 ` t1 : q (T1*T2);Γ2

Γ2, x:T1, y:T2 ` t2 : T;Γ3

Γ1 ` split t1 as x,y in t2 :

T;Γ3 ÷ (x:T1, y:T2)

(A­Split)

q=un⇒ Γ1 = Γ2 ÷ (x:T1)

Γ1, x:T1 ` t2 : T2;Γ2

Γ1 ` q λx:T1.t2 : q T1→T2;Γ2 ÷ (x:T1)

(A­Abs)

Γ1 ` t1 : q T11→T12;Γ2 Γ2 ` t2 : T11;Γ3

Γ1 ` t1 t2 : T12;Γ3
(A­App)

Figure 1­6: Linear lambda calculus: Algorithmic type checking

Γ = Γ1 ◦ Γ2, we must guess how to split an input context Γ into two parts. For­

tunately, it is relatively straightforward to restructure the type checking rules

to avoid having to make these guesses. This restructuring leads directly to a

practical type checking algorithm.

The central idea is that rather than splitting the context into parts before

checking a complex expression composed of several subexpressions, we can

pass the entire context as an input to the first subexpression and have it

return the unused portion as an output. This output may then be used to

check the next subexpression, which may also return some unused portions

of the context as an output, and so on. Figure 1­6 makes these ideas concrete.

It defines a new algorithmic type checking judgment with the form Γin `

t : T;Γout , where Γin is the input context, some portion of which will be

consumed during type checking of t, and Γout is the output context, which

will be synthesized alongside the type T.

There are several key changes in our reformulated system. First, the base

cases for variables and constants allow any context to pass through the judg­

ment rather than restricting the number of linear variables that appear. In

order to ensure that linear variables are used, we move these checks to the

rules where variables are introduced. For instance, consider the rule (A­Split).

The second premise has the form

Γ2, x:T1, y:T2 ` t2 : T;Γ3

If T1 and T2 are linear, then they should be used in t2 and should not appear

in Γ3. Conversely, T1 and T2 are unrestricted, then they will always appear
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in Γ3, but we should delete them from the final outgoing context of the rule

so that the ordinary scoping rules for the variables are enforced. To handle

both the check that linear variables do not appear and the removal of unre­

stricted variables, we use a special “context difference” operator (÷). Using

this operator, the final outgoing context of the rule (A­Split) is defined to be

Γ3 ÷ (x:T1, y:T2). Formally, context difference is defined as follows.

Γ ÷∅ = Γ

Γ1 ÷ Γ2 = Γ3 (x:lin P) 6∈ Γ3

Γ1 ÷ (Γ2, x:lin P) = Γ3

Γ1 ÷ Γ2 = Γ3 Γ3 = Γ4, x:un P, Γ5

Γ1 ÷ (Γ2, x:un P) = Γ4, Γ5

Notice that this operator is undefined when we attempt to take the dif­

ference of two contexts, Γ1 and Γ2, that contain bindings for the same linear

variable (x:lin P). If the undefined quotient Γ1 ÷ Γ2 were to appear anywhere

in a typing rule, the rule itself would not be considered defined and could not

be part of a valid typing derivation.

The rule for abstraction (A­Abs) also introduces a variable and hence it also

uses context difference to manipulate the output context for the rule. Ab­

stractions must also satisfy the appropriate containment conditions. In other

words, rule (A­Abs) must check that unrestricted functions do not contain

linear variables. We perform this last check by verifying that when the func­

tion qualifier is unrestricted, the input and output contexts from checking the

function body are the same. This equivalence check is sufficient because if a

linear variable was used in the body of an unrestricted function (and hence

captured in the function closure), that linear variable would not show up in

the outgoing context.

It is completely straightforward to check that every rule in our algorithmic

system is syntax directed and that all our auxiliary functions including con­

text membership tests and context difference are easily computable. Hence,

we need only show that our algorithmic system is equivalent to the simpler

and more elegant declarative system specified in the previous section. The

proof of equivalence can be a broken down into the two standard compo­

nents: soundness and completeness of the algorithmic system with respect to

the declarative system. However, before we can get to the main results, we

will need to show that our algorithmic system satisfies some basic structural

properties of its own. In the following lemmas, we use the notation L(Γ) and

U(Γ) to refer to the list of linear and unrestricted assumptions in Γ respec­

tively.
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1.2.5 Lemma [Algorithmic Monotonicity]: If Γ ` t : T;Γ ′ then U(Γ ′) = U(Γ)

and L(Γ ′) ⊆ L(Γ). 2

1.2.6 Lemma [Algorithmic Exchange]: If Γ1, x1:T1, x2:T2, Γ2 ` t : T;Γ3 then

Γ1, x2:T2, x1:T1, Γ2 ` t : T;Γ ′3 and Γ3 is the same as Γ ′3 up to transposition of

the bindings for x1 and x2. 2

1.2.7 Lemma [Algorithmic Weakening]: If Γ ` t : T;Γ ′ then Γ , x:T′ ` t : T;

Γ
′, x:T′. 2

1.2.8 Lemma [Algorithmic Linear Strengthening]: If Γ , x:lin P ` t : T;

Γ
′, x:lin P then Γ ` t : T;Γ ′. 2

Each of these lemmas may be proven directly by induction on the initial

typing derivation. The algorithmic system also satisfies a contraction lemma,

but since it will not be necessary in the proofs of soundness and complete­

ness, we have not stated it here.

1.2.9 Theorem [Algorithmic Soundness]: If Γ1 ` t : T;Γ2 and L(Γ2) = ∅ then

Γ1 ` t : T. 2

Proof: As usual, the proof is by induction on the typing derivation. The struc­

tural lemmas we have just proven are required to push through the result, but

it is mostly straightforward. 2

1.2.10 Theorem [Algorithmic Completeness]: If Γ1 ` t : T then Γ1 ` t : T;Γ2

and L(Γ2) = ∅. 2

Proof: The proof is by induction on the typing derivation. 2

Operational Semantics

To make the memory management properties of our language clear, we will

evaluate terms in an abstract machine with an explicit store. As indicated in

Figure 1­7, stores are a sequence of variable­value pairs. We will implicitly

assume that any variable appears at most once on the left­hand side of a pair

so the sequence may be treated as a finite partial map.

A value is a pair of a qualifier together with some data (a prevalue w). For

the sake of symmetry, we will also assume that all values are stored, even

base types such as booleans. As a result, both components of any pair will be

pointers (variables).

We define the operation of our abstract machine using a context­based,

small­step semantics. Figure 1­7 defines the computational contexts E, which
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w ::= prevalues:

b boolean

<x,y> pair

λx:T.t abstraction

v ::= values:

q w qualified prevalue

S ::= stores:

∅ empty context

S, x, v store binding

E ::= evaluation contexts:

[ ] context hole

if E then t else t if context

q <E,t> fst context

q <x,E> snd context

split E as x,y in t split context

E t fun context

x E arg context

Figure 1­7: Linear lambda calculus: Run­time data

are terms with a single hole. Contexts define the order of evaluation of terms—

they specify the places in a term where a computation can occur. In our case,

evaluation is left­to­right since, for example, there is a context with the form

E t indicating that we can reduce the term in the function position before re­

ducing the term in the argument position. However, there is no context with

the form t E. Instead, there is only the more limited context x E, indicating

that we must reduce the term in the function position to a pointer x before

proceeding to evaluate the term in the argument position. We use the nota­

tion E[t] to denote the term composed of the context E with its hole plugged

by the computation t.

The operational semantics, defined in Figure 1­8, is factored into two re­

lations. The first relation, (S;t) -→ (S′;t′), picks out a subcomputation to

evaluate. The second relation, (S;t) -→β (S′;t′), does all the real work. In

order to avoid creation of two sets of operational rules, one for linear data,

which is deallocated when used, and one for unrestricted data, which is never

deallocated, we define an auxiliary function, S
q
∼ x, to manage the differences.

(S1,x, v,S2)
lin
∼ x = S1,S2

S
un
∼ x = S

Aside from these details, the operational semantics is standard.

Preservation and Progress

In order to prove the standard safety properties for our language, we need to

be able to show that programs are well­formed after each step in evaluation.

Hence, we will define typing rules for our abstract machine. Since these typing

rules are only necessary for the proof of soundness, and have no place in an
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Top­level Evaluation (S;t) -→ (S′;t′)

(S;t) -→β (S;t′)

(S;E[t]) -→ (S;E[t′])
(E­Ctxt)

Evaluation (S;t) -→β (S′;t′)

(S;q b) -→β (S, x, q b;x) (E­Bool)

S(x) = q true

(S;if x then t1 else t2) -→β (S
q
∼ x;t1)

(E­If1)

S(x) = q false

(S;if x then t1 else t2) -→β (S
q
∼ x;t2)

(E­If2)

(S;q <y,z>) -→β (S, x, q <y,z>;x) (E­Pair)

S(x) = q <y1,z1>

(S;split x as y,z in t) -→β

(S
q
∼ x;[y, y1][z, z1]t)

(E­Split)

(S;q λy:T.t) -→β (S, x, q λy:T.t;x)

(E­Fun)

S(x1) = q λy:T.t

(S;x1 x2) -→β (S
q
∼ x1;[y, x2]t)

(E­App)

Figure 1­8: Linear lambda calculus: Operational semantics

implementation, we will extend the declarative typing rules rather than the

algorithmic typing rules.

Figure 1­9 presents the machine typing rules in terms of two judgments,

one for stores and the other for programs. The store typing rules generate a

context that describes the available bindings in the store. The program typ­

ing rule uses the generated bindings to check the expression that will be

executed.

With this new machinery in hand, we are able to prove the standard progress

and preservation theorems.

1.2.11 Theorem [Preservation]: If ` (S;t) and (S;t) -→ (S′;t′) then

` (S′;t′). 2

1.2.12 Theorem [Progress]: If ` (S;t) then (S;t) -→ (S′;t′) or t is a value. 2

1.2.13 Exercise [Recommended, «]: You will need a substitution lemma to com­

plete the proof of preservation. Is the following the right one?

Conjecture: Let Γ3 = Γ1 ◦ Γ2. If Γ1, x:T ` t1 : T1 and Γ2 ` t : T then

Γ3 ` [x, t]t1 : T1. 2

1.2.14 Exercise [«««, 3]: Prove progress and preservation using TAPL, Chapters 9

and 13, as an approximate guide. 2
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Store Typing ` S : Γ

` ∅ :∅ (T­EmptyS)

` S : Γ1 ◦ Γ2 Γ1 ` lin w : T

` S,x, lin w : Γ2,x:T
(T­NextlinS)

` S : Γ1 ◦ Γ2 Γ1 ` un w : T

` S,x, un w : Γ2,x:T
(T­NextunS)

Program Typing ` (S;t)

` S : Γ Γ ` t : T

` (S;t)
(T­Prog)

Figure 1­9: Linear lambda calculus: Program typing

1.3 Extensions and Variations

Most features found in modern programming languages can be defined to

interoperate successfully with linear type systems, although some are trickier

than others. In this section, we will consider a variety of practical extensions

to our simple linear lambda calculus.

Sums and Recursive Types

Complex data structures, such as the recursive data types found in ML­like

languages, pose little problem for linear languages. To demonstrate the cen­

tral ideas involved, we extend the syntax for the linear lambda calculus with

the standard introduction and elimination forms for sums and recursive types.

The details are presented in Figure 1­10.

Values with sum type are introduced by injections q inlP t or q inrP t,

where P is T1+T2, the resulting pretype of the term. In the first instance, the

underlying term t must have type T1, and in the second instance, the under­

lying term t must have type T2. The qualifier q indicates the linearity of the

argument in exactly the same way as for pairs. The case expression will exe­

cute its first branch if its primary argument is a left injection and its second

branch if its primary argument is a right injection. We assume that + binds

more tightly that → but less tightly than *.

Recursive types are introduced with a rollP t expression, where P is the

recursive pretype the expression will assume. Unlike all the other introduc­

tion forms, roll expressions are not annotated with a qualifier. Instead, they

take on the qualifier of the underlying expression t. The reason for this dis­

tinction is that we will treat this introduction form as a typing coercion that

has no real operational effect. Unlike functions, pairs or sums, recursive data

types have no data of their own and therefore do not need a separate quali­

fier to control their allocation behavior. To simplify the notational overhead
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t ::= terms:

... as before

q inlP t left inj.

q inrP t right inj.

case t (inl x ⇒ t | inr y ⇒ t) case

rollP t roll into rec type

unroll t unroll from rec type

fun f(x:T1):T2.t recursive fun

P ::= pretypes:

... as before

a pretype variables

T1+T2 sum types

rec a.T recursive types

Typing Γ ` t : T

Γ ` t : T1 q(T1) q(T2)

Γ ` q inlT1+T2 t : q (T1+T2)
(T­Inl)

Γ ` t : T2 q(T1) q(T2)

Γ ` q inrT1+T2 t : q (T1+T2)
(T­Inr)

Γ1 ` t : q (T1+T2)

Γ2, x:T1 ` t1 : T Γ2, y:T2 ` t2 : T

Γ1 ◦ Γ2 ` case t (inl x ⇒ t1 | inr y ⇒ t2) : T
(T­Case)

Γ ` t : [a, P]q P1 P = rec a.q P1

Γ ` rollP t : q P

(T­Roll)

Γ ` t : P P = rec a.q P1

Γ ` unroll t : [a, P]q P1

(T­Unroll)

un (Γ) Γ , f:un T1→T2, x:T1 ` t : T2

Γ ` fun f(x:T1):T2.t : un T1→T2

(T­TFun)

Figure 1­10: Linear lambda calculus: Sums and recursive types

of sums and recursive types, we will normally omit the typing annotations on

their introduction forms in our examples.

In order to write computations that process recursive types, we add recur­

sive function declarations to our language as well. Since the free variables in

a recursive function closure will be used on each recursive invocation of the

function, we cannot allow the closure to contain linear variables. Hence, all

recursive functions are unrestricted data structures.

A simple but useful data structure is the linear list of Ts:

type T llist = rec a.lin (unit + lin (T * lin a))

Here, the entire spine (aside from the terminating value of unit type) is linear

while the underlying T objects may be linear or unrestricted. To create a fully

unrestricted list, we simply omit the linear qualifiers on the sum and pairs

that make up the spine of the list:

type T list = rec a.unit + T * a
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After defining the linear lists, the memory conscious programmer can write

many familiar list­processing functions in a minimal amount of space. For

example, here is how we map an unrestricted function across a linear list.

Remember, multi­argument functions are abbreviations for functions that ac­

cept linear pairs as arguments.

fun nil(_:unit) : T2 llist =

roll (lin inl ())

fun cons(hd:T2, tl:T2 llist) : T2 llist =

roll (lin inr (lin <hd,tl>))

fun map(f:T1→T2, xs:T1 llist) : T2 llist =

case unroll xs (

inl _ ⇒ nil()

| inr xs ⇒

split xs as hd,tl in

cons(f hd,map lin <f,tl>))

In this implementation of map, we can observe that on each iteration of the

loop, it is possible to reuse the space deallocated by split or case operations

for the allocation operations that follow in the body of the function (inside

the calls to nil and cons).

Hence, at first glance, it appears that map will execute with only a constant

space overhead. Unfortunately, however, there are some hidden costs as map

executes. A typical implementation will store local variables and temporaries

on the stack before making a recursive call. In this case, the result of f hd will

be stored on the stack while map iterates down the list. Consequently, rather

than having a constant space overhead, our map implementation will have an

O(n) overhead, where n is the length of the list. This is not too bad, but we

can do better.

In order to do better, we need to avoid implicit stack allocation of data

each time we iterate through the body of a recursive function. Fortunately,

many functional programming languages guarantee that if the last operation

in a function is itself a function call then the language implementation will

deallocate the current stack frame before calling the new function. We name

such function calls tail calls and we say that any language implementation

that guarantees that the current stack frame will be deallocated before a tail

call is tail­call optimizing.

Assuming that our language is tail­call optimizing, we can now rewrite map

so that it executes with only a constant space overhead. The main trick in­

volved is that we will explicitly keep track of both the part of the input list we

have yet to process and the ouput list that we have already processed. The
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output list will wind up in reverse order, so we will reverse it at the end. Both

of the loops in the code, mapRev and reverse are tail­recursive functions.

That is, they end in a tail call and have a space­efficient implementation.

fun map(f:T1→T2, input:T1 llist) : T2 llist =

reverse(mapRev(f,input,nil()),nil())

and mapRev(f:T1→T2,

input:T1 llist,

output:T2 llist) : T2 llist =

case unroll input (

inl _ ⇒ output

| inr xs ⇒

split xs as hd,tl in

mapRev (f,tl,cons(f hd,output)))

and reverse(input:T2 llist, output:T2 llist)

case unroll input (

inl _ ⇒ output

| inr xs ⇒

split xs as hd,tl in

reverse(tl,cons(hd,output)))

This link reversal algorithm is a well­known way of traversing a list in

constant space. It is just one of a class of algorithms developed well before

the invention of linear types. A similar algorithm was invented by Deutsch,

Schorr, and Waite for traversing trees and graphs in constant space. Such con­

stant space traversals are essential parts of mark­sweep garbage collectors—

at garbage collection time there is no extra space for a stack so any traversal

of the heap must be done in constant space.

1.3.1 Exercise [«««]: Define a recursive type that describes linear binary trees

that hold data of type T in their internal nodes (nothing at the leaves). Write

a constant­space function treeMap that produces an identically­shaped tree

on output as it was given on input, modulo the action of the function f that

is applied to each element of the tree. Feel free to use reasonable extensions

to our linear lambda calculus including mutually recursive functions, n­ary

tuples and n­ary sums. 2

Polymorphism

Parametric polymorphism is a crucial feature of almost any functional lan­

guage, and our linear lambda calculus is no exception. The main function of

polymorphism in our setting is to support two different sorts of code reuse.
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1. Reuse of code to perform the same algorithm, but on data with different

shapes.

2. Reuse of code to perform the same algorithm, but on data governed by

different memory management strategies.

To support the first kind of polymorphism, we will allow quantification

over pretypes. To support the second kind of polymorphism, we will allow

quantification over qualifiers. A good example of both sorts of polymorphism

arises in the definition of a polymorphic map function. In the code below, we

use a and b to range over pretype variables as we did in the previous section,

and p to range over qualifier variables.

type (p1,p2,a) list =

rec a.p1 (unit + p1 (p2 a * (p1,p2,a) list))

map :

∀a,b.

∀pa,pb.

lin ((pa a → pb b)*(lin,pa,a) list)→(lin,pb,b) list

The type definition in the first line defines lists in terms of three parameters.

The first parameter, p1, gives the usage pattern (linear or unrestricted) for the

spine of the list, while the second parameter gives the usage pattern for the

elements of the list. The third parameter is a pretype parameter, which gives

the (pre)type of the elements of list. The map function is polymorphic in the

argument (a) and result (b) element types of the list. It is also polymorphic

(via parameters pa and pb) in the way those elements are used. Overall, the

function maps lists with linear spines to lists with linear spines.

Developing a system for polymorphic, linear type inference is a challenging

research topic, beyond the scope of this book, so we will assume that, unlike

in ML, polymorphic functions are introduced explicitly using the syntax Λa.t

or Λp.t. Here, a and p are the type parameters to a function with body t. The

body does not need to be a value, like in ML, since we will run the polymorphic

function every time a pretype or qualifier is passed to the function as an

argument. The syntax t′ [P] or t′ [q] applies the function t′ to its pretype

or qualifier argument. Figure 1­11 summarizes the syntactic extensions to the

language.

Before we get to writing the map function, we will take a look at the poly­

morphic constructor functions for linear lists. These functions will take a

pretype parameter and two qualifier parameters, just like the type definition

for lists.
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q ::= qualifiers:

... as before

p polymorphic qualifier

t ::= terms:

... as before

q Λa.t pretype abstraction

t [P] pretype application

q Λp.t qualifier abstraction

t [q] qualifier application

P ::= pretypes:

... as before

∀a.T pretype polymorphism

∀p.T qualifier polymorphism

Figure 1­11: Linear lambda calculus: Polymorphism syntax

val nil : ∀a,p2.(lin,p2,a) list =

Λa,p2.roll (lin inl ())

val list :

∀a,p2.lin (p2 a * (lin,p2,a) list)→(lin,p2,a) list =

Λa,p2.

λcell : lin (p2 a * (lin,p2,a) list).

roll (lin inr (lin cell))

Now our most polymorphic map function may be written as follows.

val map =

Λa,b. Λpa,pb.

fun aux(f:(pa a → pb b),

xs:(lin,pa,a) list)) : (lin,pb,b) list =

case unroll xs (

inl _ ⇒ nil [b,pb] ()

| inr xs ⇒ split xs as hd,tl in

cons [b,pb] (pb <f hd,map (lin <f,tl>)>))

In order to ensure that our type system remains sound in the presence

of pretype polymorphism, we add the obvious typing rules, but change very

little else. However, adding qualifier polymorphism, as we have done, is a

little more involved. Before arriving at the typing rules themselves, we need

to adapt some of our basic definitions to account for abstract qualifiers that

may either be linear or unrestricted.

First, we need to ensure that we propagate contexts containing abstract

qualifiers safely through the other typing rules in the system. Most impor­

tantly, we add additional cases to the context manipulation rules defined in

the previous section. We need to ensure that linear hypotheses are not du­

plicated and therefore we cannot risk duplicating unknown qualifiers, which

might turn out to be linear. Figure 1­12 specifies the details.
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Context Split Γ = Γ1 ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ , x:p P = (Γ1, x:p P) ◦ Γ2
(M­Abs1)

Γ = Γ1 ◦ Γ2

Γ , x:p P = Γ1 ◦ (Γ2, x:p P)
(M­Abs2)

Figure 1­12: Linear context manipulation rules

∆ ::= type contexts:

∅ empty

∆, a pretype var.

∆, p qualifier var.

Typing ∆; Γ ` t : T

q(Γ) ∆, a; Γ ` t : T

∆; Γ ` q Λa.t : q ∀a.T
(T­PAbs)

∆; Γ ` t : q ∀a.T FV(P) ⊆ ∆

∆; Γ ` t [P] : [a, P]T
(T­PApp)

q(Γ) ∆, p; Γ ` t : T

∆; Γ ` q Λp.t : q ∀p.T
(T­QAbs)

∆; Γ ` t : q1 ∀p.T FV(q) ⊆ ∆

∆; Γ ` t [q] : [p, q]T
(T­QApp)

Figure 1­13: Linear lambda calculus: Polymorphic typing

Second, we need to conservatively extend the relation on type qualifiers

q1vq2 so that it is sound in the presence of qualifier polymorphism. Since

the linear qualifier is the least qualifier in the current system, the following

rule should hold.

lin v p (Q­LinP)

Likewise, since un is the greatest qualifier in the system, we can be sure the

following rule is sound.

p v un (Q­PUn)

Aside from these rules, we will only be able to infer that an abstract qual­

ifier p is related to itself via the general reflexivity rule. Consequently, lin­

ear data structures can contain abstract ones; abstract data structures can

contain unrestricted data structures; and data structure with qualifier p can

contain other data with qualifier p.

In order to define the typing rules for the polymorphic linear lambda cal­

culus proper, we need to change the judgment form to keep track of the type

variables that are allowed to appear free in a term. The new judgment uses

the type context ∆ for this purpose. The typing rules for the introduction and

elimination forms for each sort of polymorphism are fairly straightforward

now and are presented in Figure 1­13.
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The typing rules for the other constructs we have seen are almost un­

changed. One relatively minor alteration is that the incoming type context

∆ will be propagated through the rules to account for the free type variables.

Unlike term variables, type variables can always be used in an unrestricted

fashion; it is difficult to understand what it would mean to restrict the use

of a type variable to one place in a type or term. Consequently, all parts of ∆

are propagated from the conclusion of any rule to all premises. We also need

the occasional side condition to check that whenever a programmer writes

down a type, its free variables are contained in the current type context ∆.

For instance the rules for function abstraction and application will now be

written as follows.

q(Γ) FV(T1) ⊆ ∆ ∆; Γ , x:T1 ` t2 : T2

∆; Γ ` q λx:T1.t2 : q T1→T2

(T­Abs)

∆; Γ1 ` t1 : q T1→T2 ∆; Γ2 ` t2 : T1

∆; Γ1 ◦ Γ2 ` t1 t2 : T2

(T­App)

The most important way to test our system for faults is to prove the type

substitution lemma. In particular, the proof will demonstrate that we have

made safe assumptions about how abstract type qualifiers may be used.

1.3.2 Lemma [Type Substitution]:

1. If ∆, p; Γ ` t : T and FV(q) ∈ ∆ then ∆; [p, q]Γ ` [p, q]t : [p, q]T

2. If ∆, a; Γ ` t : T and FV(P) ∈ ∆ then ∆; [a, P]Γ ` [a, P]t : [a, P]T 2

1.3.3 Exercise [«]: Sketch the proof of the type substitution lemma. What struc­

tural rule(s) do you need to carry out the proof? 2

Operationally, we will choose to implement polymorphic instantiation us­

ing substitution. As a result, our operational semantics changes very little.

We only need to specify the new computational contexts and to add the eval­

uation rules for polymorphic functions and application as in Figure 1­14.

Arrays

Arrays pose a special problem for linearly typed languages. If we try to pro­

vide an operation fetches an element from an array in the usual way, perhaps

using an array index expression a[i], we would need to reflect the fact that

the ith element (and only the ith element) of the array had been “used.” How­

ever, there is no simple way to reflect this change in the type of an array as the

usual form of array types (array(T)) provides no mechanism to distinguish

between the properties of different elements of the array.
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E ::= evaluation contexts:

E [P] pretype app context

E [q] qualifier app context

(S;q Λa.t) -→β (S, x, q Λa.t;x) (E­PFun)

S(x) = q Λa.t

(S;x [P]) -→β (S
q
∼ x;[a, P]t)

(E­PApp)

(S;q Λp.t) -→β (S, x, q Λp.t;x) (E­QFun)

S(x) = q Λp.t

(S;x [q1]) -→β (S
q
∼ x;[p, q1]t)

(E­QApp)

Figure 1­14: Linear lambda calculus: Polymorphic operational semantics

We dodged this problem when we constructed our tuple operations by

defining a pattern matching construct that simultaneously extracted all of

the elements of a tuple. Unfortunately, we cannot follow the same path for

arrays because in modern languages like Java and ML, the length of an array

(and therefore the size of the pattern) is unknown at compile time.

Another non­solution to the problem is to add a special built­in iterator

to process all the elements in an array at once. However, this last prevents

programmers from using arrays as efficient, constant­time, random­access

data structures; they might as well use lists instead.

One way out of this jam is to design the central array access operations so

that, unlike the ordinary “get” and “set” operations, they preserve the number

of pointers to the array and the number of pointers to each of its elements.

We avoid our problem because there is no change to the array data structure

that needs to be reflected in the type system. Using this idea, we will be able

to allow programmers to define linear arrays that can hold a collection of

arbitrarily many linear objects. Moreover, programmers will be able to access

any of these linear objects, one at a time, using a convenient, constant­time,

random­access mechanism.

So, what are the magic pointer­preserving array access operations? Actu­

ally, we need only one: a swap operation with the form swap (a[i],t). The

swap replaces the ith element of the array a (call it t′) with t and returns a

(linear) pair containing the new array and t′. Notice the number of pointers

to t and t′ does not change during the operation. If there was one pointer

to t (as an argument to swap) before the call, then there is one pointer to t

afterward (from within the array a) and vice versa for t′. If, in addition, all of

the elements of a had one pointer to them before the swap, then they will all

have one pointer to them after the swap as well. Consequently, we will find

it easy to type the swap operation, even when it works over linear arrays of

linear objects.
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In addition to swap, we provide functions to allocate an array given its list

of elements (array), to determine array length (length) and to deallocate

arrays (free). The last operation is somewhat unusual in that it takes two

arguments a and f, where a is an array of type lin array(T) and f is a

function with type T→unit that is run on each element of T. The function

may be thought of as a finalizer for the elements; it may be used to deallocate

any linear components of the array elements, thereby preserving the single

pointer property.

Our definition of arrays is compatible with the polymorphic system from

the previous subsection, but for simplicity, we formalize it in the context of

the simply­typed lambda calculus (see Figure 1­15).

1.3.4 Exercise [Recommended, «]: The typing rule for array allocation (T­Array)

contains the standard containment check to ensure that unrestricted arrays

cannot contain linear objects. What kinds of errors can occur if this check is

omitted? 2

1.3.5 Exercise [««, 3]: With the presence of mutable data structures, it is possible

to create cycles in the store. How should we modify the store typing rules to

take this into account? 2

The swap and free functions are relatively low­level operations. Fortu­

nately, it is easy to build more convenient, higher­level abstractions out of

them. For instance, the following code defines some simple functions for ma­

nipulating linear matricies of unrestricted integers.

type iArray = lin array(int)

type matrix = lin array(iArray)

fun dummy(x:unit):iArray = lin array()

fun freeElem(x:int):unit = ()

fun freeArray(a:iArray):unit = free(a,freeElem)

fun freeMatrix(m:matrix):unit = free(m,freeArray)

fun get(a:matrix,i:int,j:int):lin (matrix * int) =

split swap(a[i],dummy()) as a,b in

split swap(b[j],0) as b,k in

split swap(b[j],k) as b,_ in

split swap(a[i],b) as a,junk in

freeArray(junk);

lin <a,k>



1.3 Extensions and Variations 27

P ::= pretypes:

... as before

array(T) array pretypes

t ::= terms:

... as before

q array(t, . . .,t) array creation

swap(t[t],t) swap

length(t) length

free(t,t) deallocate

w ::= prevalues:

... as before

array[n,x, . . .,x] array

E ::= evaluation contexts:

... as before

q array(v, . . .,v,E,t, . . .,t)

array context

swap(E(t),t) swap context

swap(v(E),t) swap context

swap(v(v),E) swap context

length(E) length context

free(E,t) free context

free(v,E) free context

Typing Γ ` t : T

q(T) Γ ` ti : T (for 1 ≤ i ≤ n)

Γ ` q array(t1, . . .,tn) : q array(T)

(T­Array)

Γ ` t1 : q1 array(T1)

Γ ` t2 : q2 int Γ ` t3 : T1

Γ ` swap(t1[t2],t3) :

lin (q1 array(T1) * T1)

(T­Swap)

Γ ` t : q array(T)

Γ ` length(t) : lin (q array(T) * int)

(T­Length)

Γ ` t1 : q array(T) Γ ` t2 : T → unit

Γ ` free(t1,t2) : unit

(T­Free)

Evaluation (S;t) -→β (S
′;t′)

(S;q array(x0, . . .,xn−1)) -→β
((S, x, q array[n,x0, . . .,xn−1];x)

(E­Array)

S(xi) = qi j

S = S1, xa , q array[n, . . .,xj, . . .], S2

S′ = S1, xa , q array[n, . . .,xe, . . .], S2

(S; swap(xa[xi],xe))

-→β (S
′ qi∼ xi;lin <xa,xj>)

(E­Swap)

S(x) = q array[n,x0, . . .,xn−1]

(S;length(x)) -→β (S;lin <x,un n>)

(E­Length)

S(xa) = q array[n,x0, . . .,xn−1]

(S;free(xa,xf))

-→β (S
q
∼ xa;App(xf,x0, . . .,xn−1))

(E­Free)

where

App(xf,·) = ()

App(xf,x0,. . . ) = xf x0;App(xf,. . .)

Figure 1­15: Linear lambda calculus: Arrays
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fun set(a:matrix,i:int,j:int,e:int):matrix =

split swap(a[i],dummy()) as a,b in

split swap(b[j],e) as b,_ in

split swap(a[i],b) as a,junk in

freeArray(junk);

a

1.3.6 Exercise [««, 3]: Use the functions provided above to write matrix­matrix

multiply. Your multiply function should return an integer and deallocate both

arrays in the process. Use any standard integer operations necessary. 2

In the examples above, we needed some sort of dummy value to swap into

an array to replace the value we wanted to extract. For integers and arrays

it was easy to come up with one. However, when dealing with polymorphic

or abstract types, it may not be possible to conjure up a value of the right

type. Consequently, rather than manipulating arrays with type q array(a)

for some abstract type a, we may need to manipulate arrays of options with

type q array(a + unit). In this case, when we need to read out a value, we

always have another value (inr ()) to swap in in its place. Normally such

operations are called destructive reads; they are a common way to preserve

the single pointer property when managing complex structured data.

Reference Counting

Array swaps and destructive reads are dynamic techniques that can help over­

come a lack of compile­time knowledge about the number of uses of a par­

ticular object. Reference counting is another dynamic technique that serves a

similar purpose. Rather than restricting the number of pointers to an object

to be exactly one, we can allow any number of pointers to the object and keep

track of that number dynamically. Only when the last reference is used will

the object be deallocated.

There are various ways to integrate reference counts into the current sys­

tem. Here, we choose the simplest, which is to add a new qualifier rc for

reference­counted data structures, and operations that allow the programmer

to explicitly increment (inc) and decrement (dec) the counts (see Figure 1­16).

More specifically, the increment operation takes a pointer argument, incre­

ments the reference count for the object pointed to, and returns two copies

of the pointer in a (linear) pair. The decrement operation takes two argu­

ments, a pointer and a function, and works as follows. In the case the object

pointed to (call it x) has a reference count of 1 before the decrement, the

function is executed with x as a linear argument. Since the function treats x
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Syntax

q ::= qualifiers:

... as before

rc ref. count

t ::= terms:

... as before

inc(t) increment count

dec(t,t) decrement count

Qualifier Relations

rc v un (Q­RCUn)

lin v rc (Q­LinRC)

Typing Γ ` t : T

Γ ` t : rc P

Γ ` inc(t) : lin (rc P * rc P)
(T­Inc)

Γ ` t1 : rc P Γ ` t2 : lin P → unit

Γ ` dec(t1,t2) : unit

(T­Dec)

Figure 1­16: Linear lambda calculus: Reference counting syntax and typing

linearly, it will deallocate x before it completes. In the other case, when x has

a reference count greater than 1, the reference count is simply decremented

and the function is not called; unit is returned as the result of the operation.

The main typing invariant in this system is that whenever a reference­

counted variable appears in the static type­checking context, there is one

dynamic reference count associated with it. Linear typing will ensure the

number of references to an object is properly preserved.

The new rc qualifier should be treated in the same manner as the linear

qualifier when it comes to context splitting. In other words, a reference­

counted variable should be placed in exactly one of the left­hand context

or the right­hand context (not both). In terms of containment, the rc quali­

fier sits between unrestricted and linear qualifiers: A reference­counted data

structure may not be contained in unrestricted data structures and may not

contain linear data structures. Figure 1­16 presents the appropriate qualifier

relation and typing rules for our reference counting additions.

In order to define the execution behavior of reference­counted data struc­

tures, we will define a new sort of stored value with the form rc(n) w. The

integer n is the reference count: it keeps track of the number of times the

value is referenced elsewhere in the store or in the program.

The operational semantics for the new commands and reference­counted

pairs and functions are summarized in Figure 1­17. Several new bits of no­

tation show up here to handle the relatively complex computation that must

go on to increment and decrement reference counts. First, in a slight abuse

of notation, we allow q to range over static qualifiers un, lin and rc as well

as dynamic qualifiers un, lin and rc(n). Context will disambiguate the two
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different sorts of uses. Second, we extend the notation S
q
∼x so that q may

be rc(n) as well as lin and un. If n is 1 then S
rc(n)
∼ x removes the binding

x,rc(n) w from S. Otherwise, S
rc(n)
∼ x replaces the binding x,rc(n) w with

x,rc(n­1) w. Finally, given a store S and a set of variables X, we define the

function incr(S;X), which produces a new store S′ in which the reference

count associated with any reference­counted variables x∈X is increased by 1.

To understand how the reference counting operational semantics works,

we will focus on the rules for pairs. Allocation and use of linear and unre­

stricted pairs stays unchanged from before as in rules (E­Pair’) and (E­Split’).

Rule (E­PairRC) specifies that allocation of reference­counted pairs is simi­

lar to allocation of other data, except for the fact that the dynamic reference

count must be initialized to 1. Use of reference­counted pairs is identical to

use of other kinds of pairs when the reference count is 1: We remove the

pair from the store via the function S
rc(n)
∼ x as shown in rule and substi­

tute the two components of the pair in the body of the term as shown in

(E­Split’). When the reference count is greater than 1, rule (E­SplitRC) shows

there are additional complications. More precisely, if one of the components

of the pair, say y1, is reference­counted then y1’s reference count must be

increased by 1 since an additional copy of y1 is substituted through the body

of t. We use the incr function to handle the possible increase. In most re­

spects, the operational rules for reference­counted functions follow the same

principles as reference­counted pairs. Increment and decrement operations

are also relatively straightforward.

In order to state and prove the progress and preservation lemmas for our

reference­counting language, we must generalize the type system slightly. In

particular, our typing contexts must be able specify the fact that a particular

reference should appear exactly n times in the store or current computation.

Reference­counted values in the store are described by these contexts and

the context­splitting relation is generalized appropriately. Figure 1­18 sum­

marizes the additional typing rules.

1.3.7 Exercise [«««, 3]: State and prove progress and preservation lemmas for

the simply­typed linear lambda calculus (functions and pairs) with reference

counting. 2

1.4 An Ordered Type System

Just as linear type systems provide a foundation for managing memory allo­

cated on the heap, ordered type systems provide a foundation for managing

memory allocated on the stack. The central idea is that by controlling the
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v ::= values:

... as before

rc(n) w ref­counted value

E ::= evaluation contexts:

... as before

inc(E) inc context

dec(E,t) dec context

dec(x,E) dec context

Evaluation (S;t) -→β (S
′;t′)

(q ∈ {un,lin})

(S;q <y,z>) -→β (S, x, q <y,z>;x)

(E­Pair’)

(S;rc <y,z>) -→β
(S, x, rc(1) <y,z>;x)

(E­PairRC)

S(x) = q <y1,z1>

(q ∈ {un,lin,rc(1)})

(S;split x as y,z in t) -→β

(S
q
∼ x;[y, y1][z, z1]t)

(E­Split’)

S(x) = rc(n) <y1,z1> (n > 1)

incr(S;{y1,z1}) = S′

(S;split x as y,z in t) -→β

((S′
rc(n)
∼ x);[y, y′1][z, z′1]t)

(E­SplitRC)

(q ∈ {un,lin})

(S;q λy:T.t) -→β (S, x, q λy:T.t;x)
(E­Fun’)

(S;rc λy:T.t) -→β
(S, x, rc(1) λy:T.t;x)

(E­FunRC)

S(x1) = q λy:T.t

(q ∈ {un,lin,rc(1)})

(S;x1 x2) -→β (S
q
∼ x1;[y, x2]t)

(E­App’)

S(x1) = rc(n) λy:T.t

(n > 1 and X = FV(λy:T.t))

incr(S;X) = S′

(S;x1 x2) -→β (S′
rc(n)
∼ x1;[y, x2]t)

(E­AppRC)

incr(S;{x}) = S′

(S;inc(x)) -→β (S
′;lin <x,x>)

(E­Inc)

(S(x) = rc(n) w) (n > 1)

(S;dec(x,xf)) -→β (S
rc(n)
∼ x;un ())

(E­Dec1)

S = S1,x, rc(1) w,S2

S′ = S1,x, lin w,S2

(S;dec(x,xf)) -→β (S′;xf x)
(E­Dec2)

Figure 1­17: Linear lambda calculus: Reference counting operational semantics

exchange property, we are able to guarantee that certain values, those values

allocated on the stack, are used in a first­in/last­out order.

To formalize this idea, we organize the store into two parts: a stack, which

is a sequence of locations that can be accessed on one end (the “top”) and

a heap, which is like the store described in previous sections of this chap­

ter. Pairs, functions and other objects introduced with unrestricted or linear

qualifiers are allocated on the heap as before. And as before, when a linear

pair or function is used, it is deallocated. Also, we allow programmers to allo­

cate simple data structures on the stack. Without the exchange property, an

ordered object can only be used when it is at the top of the stack. When this

happens, the ordered object is popped off the top of the stack.
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Syntax

Γ ::= typing contexts:

... as before

Γ , x:rc(n)P rc(n) context

Store Typing

` S : Γ1 ◦ Γ2 Γ1 ` rc w : rc P

` S,x, rc(n) w : Γ2,x:rc(n) P
(T­NextrcS)

Context Splitting

Γ = Γ1 ◦ Γ2 n = i + j

Γ , x:rc(n)P =

(Γ1, x:rc(i)P) ◦ (Γ2, x:rc(j)P)

(M­RC)

(when i or j is 0, the corresponding binding is

removed from the context)

Variable Typing

un (Γ1, Γ2)

Γ1, x:rc(1)P, Γ2 ` x : rc P
(T­RCVar)

Figure 1­18: Linear lambda calculus: Reference counting run­time typing

Syntax

The overall structure and mechanics of the ordered type system are very

similar to the linear type system developed in previous sections. Figure 1­19

presents the syntax. One key change from our linear type system is that we

have introduced an explicit sequencing operation let x = t1 in t2 that first

evaluates the term t1, binds the result to x, and then continues with the eval­

uation of t2. This sequencing construct gives programmers explicit control

over the order of evaluation of terms, which is crucial now that we are intro­

ducing data that must be used in a particular order. Terms that normally can

contain multiple nested subexpressions such as pair introduction and func­

tion application are syntactically restricted so that their primary subterms

are variables and the order of evaluation is clear.

The other main addition is a new qualifier ord that marks data allocated on

the stack. We only allow pairs and values with base type to be stack­allocated;

functions are allocated on the unordered heap. Therefore, we declare types

ord T1 → T2 and terms ord λx:T.t to be syntactically ill­formed.

Ordered assumptions are tracked in the type checking context Γ like other

assumptions. However, they are not subject to the exchange property. More­

over, the order that they appear in Γ mirrors the order that they appear on

the stack, with the rightmost position representing the stack’s top.

Typing

The first step in the development of the type system is to determine how

assumptions will be used. As before, unrestricted assumptions can be used
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Syntax

q ::= qualifiers:

ord ordered

lin linear

un unrestricted

t ::= terms:

x variable

q b Boolean

if t then t else t conditional

q <x,y> pair

split t as x,y in t split

q λx:T.t abstraction

x y application

let x = t in t sequencing

P ::= pretypes:

Bool booleans

T*T pairs

T→T functions

T ::= types:

q P qualified pretype

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Figure 1­19: Ordered lambda calculus: Syntax

as often as the programmer likes but linear assumptions must be used ex­

actly once along every control flow path. Ordered assumptions must be used

exactly once along every control flow path,in the order in which they appear.

As before, the context splitting operator (Γ = Γ1 ◦ Γ2) helps propagate as­

sumptions properly, separating the context Γ into Γ1 and Γ2. Some sequence

of ordered assumptions taken from the left­hand side of Γ are placed in Γ1

and the remaining ordered assumptions are placed in Γ2. Otherwise, the split­

ting operator works the same as before. In the typing rules, the context Γ2

is used by the first subexpression to be evaluated (since the top of the stack

is at the right) and Γ1 is used by the second subexpression to be evaluated.

Formally, we define the "=" relation in terms of two subsidiary relations: "=1,"

which places ordered assumptions in Γ1, and "=2," which places ordered as­

sumptions in Γ2. See Figure 1­20.

The second step in the development of the type system is to determine the

containment rules for ordered data structures. Previously, we saw that if an

unrestricted object can contain a linear object, a programmer can write func­

tions that duplicate or discard linear objects, thereby violating the central

invariants of the system. A similar situation arises if linear or unrestricted

objects can contain stack objects; in either case, the stack object might be

used out of order, after it has been popped off the stack. The typing rules

use the qualifier relation q1vq2, which specifies that ordvlinvun, to ensure

such problems do not arise.

The typing rules for the ordered lambda calculus appear in Figure 1­21. For

the most part, the containment rules and context splitting rules encapsulate
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Context Split Γ = Γ1 ◦ Γ2

Γ =2 Γ1 ◦ Γ2

Γ = Γ1 ◦ Γ2
(M­Top)

∅ =1 ∅◦∅ (M­Empty)

Γ =1 Γ1 ◦ Γ2

Γ , x:ord P =1 (Γ1, x:ord P) ◦ Γ2
(M­Ord1)

Γ =2 Γ1 ◦ Γ2

Γ , x:ord P =2 Γ1 ◦ (Γ2, x:ord P)
(M­Ord2)

Γ =1 Γ1 ◦ Γ2

Γ =2 Γ1 ◦ Γ2
(M­1to2)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:lin P =1,2 (Γ1, x:lin P) ◦ Γ2
(M­LinA)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:lin P =1,2 Γ1 ◦ (Γ2, x:lin P)
(M­LinB)

Γ =1,2 Γ1 ◦ Γ2

Γ , x:un P =1,2 (Γ1, x:un P) ◦ (Γ2, x:un P)
(M­Un)

Figure 1­20: Ordered lambda calculus: Context splitting

the tricky elements of the type system. The rules for pairs illustrate how this

is done. The rule for introducing pairs (T­OPair) splits the incoming context

into two parts, Γ1 and Γ2; any ordered assumptions in Γ2 will represent data

closer to the top of the stack than Γ1. Therefore, if the pair (x) and its two

components x1 and x2 are all allocated on the stack, then the pointer x will

end up on top, x2 next and x1 on the bottom. The elimination rule for pairs

(T­OSplit) is careful to maintain the proper ordering of the context. As above,

the rule splits the context into Γ1 and Γ2, where Γ2, which represents data on

top of the stack, is used in a computation t1 that generates a pair. The context

Γ1, x1:T1, x2:T2 is used to check t2. Notice that if both components of the

pair, x1 and x2, were allocated on the stack when the pair was introduced,

they reappear back in the context in the appropriate order.

Consider the following function, taking a boolean and a pair allocated se­

quentially at the top of the stack. The boolean is at the very top of the stack

and the integer pair is next (the top is to the right). If the boolean is true,

it leaves the components of the pair (two unrestricted integers) in the same

order as given; otherwise, it swaps them.

λx:ord (ord (int * int) * bool).

split x as p,b in

if b then

p

else

split p as i1,i2 in

ord <i2,i1>
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Typing Γ ` t : T

un (Γ1, Γ2)

Γ1, x:T, Γ2 ` x : T
(T­OVar)

un (Γ)

Γ ` q b : q Bool
(T­OBool)

Γ2 ` t1 : q Bool

Γ1 ` t2 : T Γ1 ` t3 : T

Γ1 ◦ Γ2 ` if t1 then t2 else t3 : T
(T­OIf)

Γ1 ` x1 : T1 Γ2 ` x2 : T2

q(T1) q(T2)

Γ1 ◦ Γ2 ` q <x1,x2> : q (T1*T2)
(T­OPair)

Γ2 ` t1 : q (T1*T2)

Γ1, x1:T1, x2:T2 ` t2 : T

Γ1 ◦ Γ2 ` split t1 as x1,x2 in t2 : T

(T­OSplit)

q(Γ) Γ , x:T1 ` t2 : T2

Γ ` q λx:T1.t2 : q T1→T2

(T­OAbs)

Γ1 ` x1 : q T11→T12 Γ2 ` x2 : T11

Γ1 ◦ Γ2 ` x1 x2 : T12

(T­OApp)

Γ2 ` t1 : T1

Γ1, x:T1 ` t2 : T2

Γ1 ◦ Γ2 ` let x = t1 in t2 : T2

(T­OLet)

Figure 1­21: Ordered lambda calculus: Typing

Operational Semantics

To define the operational semantics for our new ordered type system, we will

divide our previous stores into two parts, a heap H and a stack K. Both are

just a list of bindings as stores were before (see Figure 1­22). We also define a

couple of auxiliary functions. The first says what it means to add a binding to

the store. This is straightforward: unrestricted and linear bindings are added

to the heap and ordered bindings are added to the top of the stack.

(H;K),x, ord w = (H;K,x, ord w)

(H;K),x, lin w = (H,x, lin w;K)

(H;K),x, un w = (H,x, un w;K)

The second function specifies how to remove a binding from the store.

Notice that ordered deallocation will only remove the object at the top of the

stack.

(H;K,x, v)
ord
∼ x = H;K

(H1,x, v,H2;K)
lin
∼ x = H1,H2;K

(H;K)
un
∼ x = H;K

With these simple changes, the evaluation rules from previous sections can

be reused essentially unchanged. However, we do need to add the evaluation

context for sequencing (let x = E in t) and its evaluation rule:

(S;let x = x1 in t2) -→β (S;[x, x1]t1) (E­Let)
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S ::= stores:

H;K complete store

H ::= heap:

∅ empty heap

H, x, lin w linear heap binding

H, x, un w unrestricted heap binding

K ::= stack:

∅ empty stack

K, x, ord w stack binding

Figure 1­22: Ordered lambda calculus: Operational semantics

1.4.1 Exercise [Recommended, «]: Write a program that demonstrates what can

happen if the syntax of pair formation is changed to allow programmers to

write nested subexpressions (i.e., we allow the term ord <t1,t2> rather than

the term ord <x,y>). 2

1.4.2 Exercise [Recommended, ««]: Demonstrate the problem with allowing or­

dered functions (i.e., admitting the syntax ord λx:T1.t and ord T1 → T2) by

writing a well­typed program that uses ordered functions and gets stuck. 2

1.4.3 Exercise [«««]: Modify the language so that programmers can use stack­

allocated, ordered functions. There are many solutions to this problem, some

more sophisticated than others. 2

1.5 Further Applications

Memory management applications make good motivation for substructural

type systems and provides a concrete framework for studying their proper­

ties. However, substructural types systems, and their power to control the

number and order of uses of data and operations, have found many appli­

cations outside of this domain. In the following paragraphs, we informally

discuss a few of them.

Controlling Temporal Resources

We have studied several ways that substructural type systems can be used to

control physical resources such as memory and files. What about controlling

the temporal resources? Amazingly, substructural type systems can play a

role here as well: Careful crafting of a language with an affine type system,

where values are used at most once, can ensure that computations execute in

polynomial time.



1.5 Further Applications 37

To begin, we will allow our polynomial time language to contain affine

booleans, pairs and (non­recursive) functions. In addition, to make things in­

teresting, we will add affine lists to our language, which have constructors

nil and cons and a special iterator to recurse over objects with list type.

Such iterators have the following form.

iter (stop ⇒ t1 | x with y ⇒ t2)

If t1 has type T and t2 also has type T (under the assumption that x has type

T1 and y has type T1 list), our iterator defines a function from T1 lists to

objects with type T. Operationally, the iterator does a case to see whether its

input list is nil or cons(hd,tl) and executes the corresponding branch. We

can define the operation of iterators using two simple rules.1

iter (stop ⇒ t1 | hd with rest ⇒ t2) nil -→β t1 (E­IterNil)

iter (stop ⇒ t1 | hd with rest ⇒ t2) v2 -→
∗
β v′2

iter (stop ⇒ t1 | hd with rest ⇒ t2) cons(v1,v2) -→β
[hd, v1][rest, v′2]t2

(E­IterCons)

In the second rule, the iterator is invoked inductively on v2, giving the result

v′2, which is used in term t2. The familar append function below illustrates

the use of iterators.

val append : T list→T list→T list =

iter (

stop ⇒ λ(l:T list).l

| hd with rest ⇒ λ(l:T list).cons(hd,rest l))

When applied to a list l1, append builds up a function that expects a second

list l2 and concatenates l2 to the end of l1. Clearly, append is a polynomial

time function, a linear­time one in fact, but it is straightforward to write ex­

ponential time algorithms in the language as we have defined it so far. For

instance:

val double : T list→T list =

iter (stop ⇒ nil | hd with rest ⇒ cons(hd,cons(hd,rest)))

val exp : T list→T list =

iter (stop ⇒ nil | hd with rest ⇒ double (cons(hd,rest)))

1. Since we are not interested in memory management here, we have simplified our opera­

tional semantics from previous parts of this chapter by deleting the explicit store and using

substitution instead. The operational judgment has the form t -→βt
′ and, in general, is defined

similarly to the operational systems in TAPL.
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The key problem here is that it is trivial to write iterators like double that

increase the size of their arguments. After constructing one of these, we can

use it as the inner loop of another, like exp, and cause an exponential blow­

up in running time. But this is not the only problem. Higher­order functions

make it even easier to construct exponential­time algorithms:

val compose =

λ(fg:(T list→T list) * (T list→T list)).

λ(x:T list).

split fg as f,g in f (g x)

val junk : T

val exp2 : T list→T list→T list =

iter (

stop ⇒ λ(l:T list).cons(junk,l)

| hd with rest ⇒ λ(l:T list).compose <rest,rest> l)

Fortunately, a substructural type system can be used to eliminate both

problems by allowing us to define a class of non­size­increasing functions

and by preventing the construction of troublesome higher­order functions,

such as exp2.

The first step is to demand that all user­defined objects have affine type.

They can be used zero or one times, but not more. This restriction immedi­

ately rules out programs such as exp2. System defined operators like cons

can be used many times.

The next step is to put mechanisms in place to prevent iterators from in­

creasing the size of their inputs. This can be achieved by altering the cons

constructor so that it can only be applied when it has access to a special

resource with type R.

operator cons : (R,T,T list) → T list

There is no constructor for resources with type R so they cannot be generated

out of thin air; we can only apply fcons as many times as we have resources.

We also adapt the syntax for iterators as follows.

iter (stop ⇒ t1 | hd with tl and r ⇒ t2)

Inside the second clause of the iterator, we are only granted a single resource

(r) with which to allocate data. Consequently, we can allocate at most one

cons cell in t2. This provides us with the power to rebuild a list of the same

size, but we cannot write a function such as double that doubles the length

of the list or exp that causes an exponential increase in size. To ensure that
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a single resource from an outer scope does not percolate inside the iterator

and get reused on each iteration of the loop, we require that iterators be

closed, mirroring the containment rules for recursive functions defined in

earlier sections of this chapter.

Although restricted to polynomial time, our language permits us to write

many useful functions in a convenient fashion. For instance, we can still write

append much like we did before. The resource we acquire from destructing

the list during iteration can be used to rebuild the list later.

val append : T list → T list → T list =

iter (

stop ⇒ λ(l:T list).l

| hd with rest and r ⇒ λ(l:T list). cons(r,hd,rest l))

We can also write double if our input list comes with appropriate credits,

in the form of unused resources.

val double : (T*R) list → T list =

iter (

stop ⇒ nil

| hd with rest and r1 ⇒

split hd as x,r2 in cons(r1,hd,cons(r2,hd,rest)))

Fortunately, we will never be able to write exp, unless, of course, we are

given an exponential number of credits in the size of the input list. In that

case, our function exp would still only run in linear time with respect to our

overall input (list and resources included).

The proof that all (first­order) functions we can define in this language run

in polynomial time uses some substantial domain theory that lies outside

the scope of this book. However, the avid reader should see Section 1.6 for

references to the literature where these proofs can be found.

Compiler Optimizations

Many compiler optimizations are enabled when we know that there will be at

most one use or at least one use of a function, expression or data structure.

If there is at most one use of an object then we say that object has affine

type. If there is at least one use then we say the object has relevant (or strict)

type. The following sorts of optimizations employ usage information directly;

several of them have been implemented in the Glasgow Haskell Compiler.

• Floating in bindings. Consider the expression let x = e in (λy....x...).

Is it a good idea to float the binding inside the lambda and create the new



40 1 Substructural Type Systems

expression λy.let x = e in (...x...)? The answer depends in part on

how many times the resulting function is used. If it is used at most once,

the optimization might be a good one: we may avoid computing e and will

never compute it more than once.

• Inlining expressions. In the example above, if we have the further informa­

tion that x itself is used at most once inside the body of the function, then

we might want to substitute the expression e for x. This may give rise to

further local optimizations at the site where e is used. Moreover, if it turns

out that e is used zero times (as opposed to one time) we will have saved

ourselves the trouble of computing it.

• Thunk update avoidance. In lazy functional languages such as Haskell,

evaluation of function parameters is delayed until the parameter is ac­

tually used in the function body. In order to avoid recomputing the value

of the parameter each time it is used, implementers make each parameter

a thunk—a reference that may either hold the computation that needs to

be run or the value itself. The first time the thunk is used, the computation

will be run and will produce the necessary result. In general, this result is

stored back in the thunk for all future uses of the parameter. However, if

the compiler can determine that the data structure is used as most once,

this thunk update can be avoided.

• Eagerness. If we can tell that a Haskell expression is used at least once,

then we can evaluate it right away and avoid creating a thunk altogether.

The optimizations described above may be implemented in two phases. The

first phase is a program analysis that may be implemented as affine and/or

relevant type inference. After the analysis phase, the compiler uses the infor­

mation to transform programs. Formulating compiler optimizations as type

inference followed by type­directed translation has a number of advantages

over other techniques. First, the language of types can be used to communi­

cate optimization information across modular boundaries. This can facilitate

the process of scaling intra­procedural optimizations to inter­procedural op­

timizations. Second, the type information derived in one optimization pass

can be maintained and propagated to future optimization passes or into the

back end of the compiler where it can be used to generate Typed Assembly

Language or Proof­Carrying Code, as discussed in Chapters 4 and 5.

1.6 Notes

Substructural logics are very old, dating back to at least Orlov (1928), who ax­

iomatized the implicational fragment of relevant logic. Somewhat later, Moh
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(1950) and Church (1951) provided alternative axiomatizations of the rele­

vant logic now known as R. In the same time period, Church was developing

his theory of the lambda calculus at Princeton University, and his λI calculus

(1941), which disallowed abstraction over variables that did not appear free

in the body of the term, was the first substructural lambda calculus. Lambek

(1958) introduced the first “ordered logic,” and used it to reason about natu­

ral language sentence structure. More recently, Girard (1987) developed linear

logic, which gives control over both contraction and weakening, and yet pro­

vides the full power of intuitionistic logic through the unrestricted modality

“!”. O’Hearn and Pym (1999) show that the logic of bunched implications pro­

vides another way to recapture the power of intuitionistic logic while giving

control over the structural rules.

For a comprehensive account of the history of substructural logics, please

see Došen (1993), who is credited with coining the phrase “substructural

logic,” or Restall (2005). Restall’s textbook on substructural logics (2000) pro­

vides good starting point to those looking to study the technical details of

either the proof theory or model theory for these logics.

Reynolds pioneered the study of substructural type systems for program­

ming languages with his development of syntactic control of interference

(1978; 1989), which prevents two references from being bound to the same

variable and thereby facilitates reasoning about Algol programs. Later, Gi­

rard’s development of linear logic inspired many researchers to develop func­

tional languages with linear types. One of the main applications of these new

type systems was to control effects and enable in­place update of arrays in

pure functional languages.

Lafont (1988) was the one of the first to study programming languages

with linear types, developing a linear abstract machine. He was soon followed

by many other researchers, including Baker (1992) who informally showed

how to compile Lisp into a linear assembly language in which all allocation,

deallocation and pointer manipulation is completely explicit, yet safe. An­

other influential piece of work is due to Chirimar, Gunter, and Riecke (1996)

who developed an interpretation of linear logic based on reference count­

ing. The reference counting scheme described here is directly inspired by the

work of Chirimar et al., but the technical setup is slightly different; we have

explicit operations to increment and decrement reference counts whereas in­

crementing and decrementing counts in Chirimar’s system is done implicitly.

Stephanie Weirich suggested the invariant for proving our reference count­

ing system sound. Turner and Wadler (1999) summarize two computational

interpretations that arise directly through the Curry­Howard isomorphism

from Girard’s linear logic. They differ from the account given in this chapter

as neither account has both shared, usable data structures and deallocation.

Unfortunately, these two features together appear incompatible with a type
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system derived directly from linear logic and its single unrestricted modality.

The development of practical linear type systems with two classes of type,

one linear and one unrestricted, began with Wadler’s work (1990) in the early

nineties. The presentation given in this chapter is derived from Wadler’s work

and is also inspired by work from Wansbrough and Peyton Jones (1999) and

Walker and Watkins (2001). Wansbrough and Peyton Jones included qualifier

subtyping and bounded parametric polymorphism in their system in addition

to many of the features described here. Walker and Watkins added reference

counting features to a language with linear types and also memory regions.

The idea of formulating the system with a generic context splitting operator

was taken from Cervesato and Pfenning’s presentation of Linear LF (2002).

The algorithmic type system described in section 1­5 solves what is com­

monly known in the linear logic programming and theorem proving literature,

as the resource management problem. Many of the ideas for the current pre­

sentation came from work by Cervesato, Hodas, and Pfenning (2000), who

solve the more general problem that arises when linear logic’s additive con­

nectives are considered. Hofmann takes a related approach when solving the

type inference problem for a linearly­typed functional language (1997a).

The ordered type system developed here is derived from Polakow and Pfen­

ning’s ordered logic (1999), in the same way that the practical linear type

systems mentioned above emerged from linear logic. It was also inspired by

the ordered lambda calculus of Petersen, Harper, Crary, and Pfenning (2003),

though there are some technical differences. Ahmed and Walker (2003) and

Ahmed, Jia, and Walker (2003) use an ordered, modal logic to specify memory

invariants and have integrated the logical specifications into a low­level typed

language. Igarashi and Kobayashi (2002) have used ordered types to explore

the more general problem of resource usage analysis. In addition, they have

developed effective type inference algorithms for their type systems.

Recently, O’Hearn (2003) has proposed bunched typing, a new form of sub­

structural typing, to control interference between mutable variables, gener­

alizing Reynolds’s earlier work on syntactic control of interference. These

bunched types were derived from earlier work by O’Hearn and Pym (1999)

on bunched logic. Together, Reynolds, Ishtiaq, and O’Hearn (Reynolds, 2000;

Ishtiaq and O’Hearn, 2001) have used bunched logic to develop a system for

verifying programs that explicitly allocate and deallocate data.

Analysis and reasoning about the time and space complexity of programs

has always been an important part of computer science. However, the use

of programming language technology, and type systems in particular, to au­

tomatically constrain the complexity of programs is somewhat more recent.

For instance, Bellantoni and Cook (1992) and Leivant (1993) developed pred­

icative systems that control the use and complexity of recursive functions.
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It is possible to write all, and only, the polynomial­time functions in their

system. However, it is not generally possible to compose functions and there­

fore many “obviously” polynomial­time algorithms cannot be coded naturally

in their system. Girard (1998), Hofmann (2000; 1999), and Bellantoni, Niggl,

and Schwichtenberg (2000) show how linear type systems can be used to al­

leviate some of these difficulties. The material presented in this chapter is

derived from Hofmann’s work.

One of the most successful and extensive applications of substructural

type systems in programming practice can be found in the Concurrent Clean

programming language (Nöcker, Smetsers, van Eekelen, and Plasmeijer, 1991).

Clean is a commercially developed, pure functional programming language. It

uses uniqueness types (Barendsen and Smetsers, 1993), which are a variant of

linear types, and strictness annotations (Nöcker and Smetsers, 1993) to help

support concurrency, I/O and in­place update of arrays. The implementation

is fast and is fully supported by a wide range of program development tools

including an Integrated Development Environment for project management

and GUI libraries, all developed in Clean itself.

Substructural type systems have also found gainful employment in the in­

termediate languages of the Glasgow Haskell Compiler. For instance, Turner,

Wadler, and Mossin (1995) and Wansbrough and Peyton Jones (1999) showed

how to use affine types and affine type inference to optimize programs as

discussed earlier in this chapter. They also use extensive strictness analysis

to avoid thunk creation.

Recently, researchers have begun to investigate ways to combine substruc­

tural type systems with dependent types and effect systems such as those

described in Chapters 2 and 3. The combination of both dependent and sub­

structural types provides a very powerful tool for enforcing safe memory

management and more general resource­usage protocols. For instance, De­

Line and Fähndrich developed Vault (2001; 2002), a programming language

that uses static capabilities (Walker, Crary, and Morrisett, 2000) (a hybrid

form of linear types and effects) to enforce a variety of invariants in Microsoft

Windows device drivers including locking protocols, memory management

protocols and others. Cyclone (Jim et al., 2002; Grossman et al., 2002), a

completely type­safe substitute for C, also uses linear types and effects to

grant programmers fine­grained control over memory allocation and deallo­

cation. In each of these cases, the authors do not stick to the pure linear types

described here. Instead, they add coercions to the language to allow linearly­

typed objects to be temporarily aliased in certain contexts, following a long

line of research on this topic (Wadler, 1990; Odersky, 1992; Kobayashi, 1999;

Smith, Walker, and Morrisett, 2000; Aspinall and Hofmann, 2002; Foster, Ter­

auchi, and Aiken, 2002; Aiken, Foster, Kodumal, and Terauchi, 2003).





2 Dependent Types

David Aspinall and Martin Hofmann

In the most general sense, dependent types are type­valued functions. This

definition includes, for example, the type operators of Fω such as Pair. When

applied to two types S and T, this yields the type Pair S T whose elements

are pairs (s,t) of elements s from S and t from T (see TAPL, Chapter 29).

However, the terminology “dependent types” is usually used to indicate a

particular class of type­valued functions: those functions which send terms

to types. In this chapter we study this kind of dependency.

2.1 Motivations

We begin the chapter by looking at a few representative examples of where

type­term dependency occurs naturally.

Programming with Vectors and Format Strings

The prototypical example of programming with dependent types is intro­

duced by the type family of vectors (one­dimensional arrays):

Vector :: Nat → ∗

This kinding assertion states that Vector maps a natural number k:Nat to

a type. The idea is that the type Vector k contains vectors of length k of

elements of some fixed type, say data.

To use vectors, we need a way of introducing them. A useful initialization

function takes a length n, a value t of type data, and returns a vector with n

The system studied in this chapter is the dependently typed lambda­calculus, λLF (Figures 2­1,

2­2), extended with Σ­types (Figure 2­5) and the Calculus of Constructions (Figure 2­7). The

associated OCaml implementation, called deptypes, can be found on the book’s web site.
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elements all set to t. The typing of such an init function is written like this,

init : Πn:Nat. data → Vector n

and the application init k t has type Vector k.

The type of init introduces the dependent product type (or “Pi type”), writ­

tenΠx:S.T. This type generalizes the arrow type of the simply typed lambda­

calculus. It is the type of functions which map elements s:S to elements of

[x , s]T. In contrast to the simply­typed case, the result type of a function

with a Π­type can vary according to the argument supplied. According to

Seldin (2002), the Π­type goes back to Curry and is thus almost as old as the

lambda calculus itself.

A more interesting way of building up vectors is given by the constant

empty vector empty : Vector 0 and a constructor for building longer vectors:

cons : Πn:Nat. data → Vector n → Vector (n+1).

The typing of cons expresses that cons takes three arguments: a natural

number n, an element of type data, and a vector of length n. The result is

a vector of length n+1. This means that, for example, if v : Vector 5 and

x : data, then cons 5 x v : Vector 6.

The dependent product type Πx:S.T is somewhat analogous to the uni­

versal type ∀X.T of System F. The type of a term t with type ∀X.T also

varies with the argument supplied; but in the case of a type abstraction, the

argument is a type rather than a term. If A is a type, then t A:[X , A]T. In

System F (and Fω), type variation occurs only with type arguments, whereas

in dependent type theory it may occur with term­level arguments.

The reader familiar with programming with ordinary arrays will have real­

ized that by using a type of arrays instead of vectors we could avoid depen­

dent typing. The initialization function for one­dimensional arrays could be

given the simple type Nat → data → Array, where Array is the type of arrays

with entries of type data. The point of the dependent typing is that it reveals

more information about the behavior of a term, which can be exploited to

give more precise typings and exclude more of the badly behaved terms in a

type system. For example, with the dependent type of vectors, we can type a

function that returns the first element of a non­empty vector:

first : Πn:Nat.Vector(n+1) → data

The function first can never be applied to an empty vector—non­emptiness

is expressed within the type system itself! This is a useful gain. With ordinary

arrays instead of dependently­typed vectors, we would need some special

way to deal with the case when first is applied to the empty array. We

could return an ad­hoc default element, or we might use a language­based
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exception mechanism to indicate the error. Either mechanism is more clumsy

than simply prohibiting illegal applications of first from being written.

We suggested that Πx:S.T generalizes the function space S→T of simply

typed lambda calculus. In fact, we can treat S→T simply as an abbreviation:

S→T = Πx:S.T where x does not appear free in T

For example, Πx:Nat.Nat is exactly equivalent to Nat → Nat. We will con­

tinue to write the arrow → whenever possible, to increase readability.

Another favorite example of a function with a useful dependent typing is

sprintf of the C language.1 Recall that sprintf accepts a format string and

list of arguments whose types must correspond to the declarations made

in the format string. It then converts the given arguments into a string and

returns it. A simplified form of sprintf might have the typing:

sprintf : Πf:Format. Data(f) → String

where we suppose that Format is a type of valid print formats (for exam­

ple, considered as character lists) and that Data(f) is the type of data cor­

responding to format f. The function Data(f) evaluates the type that the

format string describes, which might include clauses like these:

Data([]) = Unit

Data("%d"::cs) = Nat * Data(cs)

Data("%s"::cs) = String * Data(cs)

Data(c::cs) = Data(cs)

This example is rather different to the case of vectors. Vectors are uniform:

we introduce operations that are parametric in the length n, and the family

of types Vector n is indexed by n. In the case of format strings, we use case

analysis over values to construct the type Data(f) which depends on f in

an arbitrary way. Unsurprisingly, this non­uniform kind of dependent type is

more challenging to deal with in practical type systems for programming.

2.1.1 Exercise [«]: Suggest some dependent typings for familiar data types and

their operations. For example, consider matrices of size n * m and the typing

of matrix multiplication, and a type of dates where the range of the day is

restricted according to the month. 2

1. A sprintf­like formating function can also be typed in ML without dependent types if

formats are represented as appropriate higher­order functions rather than strings. For details

see Danvy (1998).
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The Curry­Howard Correspondence

A rather different source for dependent typing is the Curry­Howard corre­

spondence, also known by the slogan propositions­as­types (Howard, 1980).

Under this correspondence simple types correspond to propositions in the

implicational fragment of constructive logic. A formula has a proof if and

only if the corresponding type is inhabited. For instance, the formula

((A→B) → A) → (A→B) → B

is valid in constructive logic and at the same time is inhabited, namely by

λf.λu.u(f u). The underlying philosophical idea behind this correspondence

is that a constructive proof of an implication A =⇒ B ought to be understood

as a procedure that transforms any given proof of A into a proof of B.

If propositions are types, then proofs are terms. We can introduce a type

constructor Prf which maps a formula A (understood as a type) into the type

of its proofs Prf A, and then a proof of A =⇒ B becomes a λ­term of type

Prf A → Prf B. Often the type constructor Prf is omitted, notationally identi­

fying a proposition with the type of its proofs. In that case, a proof of A =⇒ B

is simply any term of type A→B.

Generalizing the correspondence to first­order predicate logic naturally

leads to dependent types: a predicate B over type A is viewed as a type­

valued function on A; a proof of the universal quantification ∀x:A.B(a)

is—constructively—a procedure that given an arbitrary element x of type A

produces a proof of B(x). Hence under the Curry­Howard correspondence

we should identify universal quantification with dependent product: a proof

of ∀x:A.B(x) is a member of Πx:A.B(x). Indeed, Per Martin­Löf, one of the

protagonists of dependent typing (1984), was motivated by this extension. In

particular, he introduced type­theoretic equivalents to existential quantifica­

tion (Σ­types) and equality (identity types), used in the next example.

An important application of the Curry­Howard correspondence is that it

allows one to freely mix propositions and (programming language) types. For

example, an indexing function ith(n) to access elements of vectors of length

n could be given the type

Πn:Nat.Πl:Nat.Lt(l,n)→Vector(n)→T

where Lt(l,n) is the proposition asserting that l is less than n. Perhaps more

interestingly, we can package up types with axioms restricting their elements.

For instance, the type of binary, associative operations on some type T may

be given as

Σm:T→T→T.Πx:T.Πy:T.Πz:T.Id (m(x,m(y,z))) (m(m(x,y),z))
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Here Σx:A.B(x) is the type of pairs (a,b) where a:A and b:B(a) and Id t1 t2

is the type of proofs of the equality t1=t2. In Martin­Löf’s type theory existen­

tial quantification is rendered with Σ­types, the idea being that a constructive

proof of ∃x:A.B(x) would consist of a member a of type A and a proof, thus

a member, of B(a)—in other words, an element of Σa:A.B(a).

2.1.2 Exercise [«]: Write down a type which represents a constructive version of

the axiom of choice, characterised by: if for every element a of a type A there

exists an element b of B such that P(a,b) then there exists a function f map­

ping an arbitrary x:A to an element of B such that P(x, f x). 2

2.1.3 Exercise [«]: Suppose that f : A→C, g : B→C are two functions with equal

target domain. Using set­theoretic notation we can form their pullback as

{(a,b) ∈ A× B | f a = g b}. Define an analogous type using Σ and Id. 2

Logical Frameworks

Dependent types have also found application in the representation of other

type theories and formal systems. Suppose that we have an implementation

of dependent types and want to get a rough­and­ready typechecker for simply

typed lambda calculus. We may then make the following declarations:

Ty :: ∗

Tm :: Ty → ∗

base : Ty

arrow : Ty → Ty → Ty

app : ΠA:Ty.ΠB:Ty.Tm(arrow A B) → Tm A →Tm B

lam : ΠA:Ty.ΠB:Ty.(Tm A → Tm B) → Tm(arrow A B)

Here Ty represents the type of simple type expressions and for A:Ty the

type Tm A represents the type of lambda terms of type A. We have a constant

base:Ty representing the base type and a function arrow representing the

formation of arrow types. As for terms we have a function app that accepts

to types A,B, a term of type arrow A B, a term of type A and yields a term of

type B: the application of the two.

Somewhat intriguingly, the function corresponding to lambda abstraction

takes a “function” mapping terms of type A to terms of type B and returns a

term of type arrow A B. This way of using functions at one level to represent

dependencies at another level is particularly useful for representing syntax

with binders, and the technique is known as higher­order abstract syntax.

We can now represent familiar terms such as the identity on A:Ty by

idA = lam A A (λx:Tm A.x)
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or the Church numeral 2 on type A by

two = λA:Ty.lam A (arrow (arrow A A) A)

(λx:Tm A.lam _ _ (λf:Tm(arrow A A).

app _ _ f (app _ _ f x)))

(replacing some obvious type arguments by underscores to aid readability).

Logical frameworks are systems which provide mechanisms for represent­

ing syntax and proof systems which make up a logic. The exact representation

mechanisms depend upon the framework, but one approach exemplified in

the Edinburgh Logical Framework (Harper, Honsell, and Plotkin, 1993) is sug­

gested by the slogan judgments­as­types, where types are used to capture the

judgments of a logic.2

2.1.4 Exercise [«]: Write down some typing declarations which introduce a judg­

ment expressing an evaluation relation for the representation of simply typed

terms shown above. You should begin with a type family Eval which is pa­

rameterized on a simple type A and two terms of type Tm A, and declare four

terms which represent the rules defining the compatible closure of one­step

beta­reduction. 2

2.2 Pure First­Order Dependent Types

In this section we introduce one of the simplest systems of dependent types,

in a presentation called λLF. As the name suggests, this type system is based

on a simplified variant of the type system underlying the Edinburgh LF, men­

tioned above. The λLF type theory generalizes simply typed lambda­calculus

by replacing the arrow type S→T with the dependent product type Πx:S.T

and by introducing type families. It is pure, in the sense that it has only Π­

types; it is first­order, in the sense that it does not include higher­order type

operators like those of Fω. Under the Curry­Howard correspondence, this

system corresponds to the ∀,→­fragment of first­order predicate calculus.

Syntax

The main definition of λLF appears in Figure 2­1 and 2­2. The terms are

the same as those of the simply typed lambda calculus λ→. The types in­

clude type variables X which can be declared in the context but never appear

bound. Type variables range over proper types as well as type familes such as

2. Judgments are the statements of a logic or a type system. For example, well­formedness,

derivability, well­typedness. In LF these judgments are represented as types and derivations of

a judgment are represented as members.
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λLF

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

T ::= types:

X type/family variable

Πx:T.T dependent product type

T t type family application

K ::= kinds:

∗ kind of proper types

Πx:T.K kind of type families

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , X::K type variable binding

Well­formed kinds Γ ` K

Γ ` ∗ (Wf­Star)

Γ ` T :: ∗ Γ , x:T ` K

Γ ` Πx:T.K
(Wf­Pi)

Kinding Γ ` T :: K

X :: K ∈ Γ Γ ` K

Γ ` X :: K
(K­Var)

Γ ` T1 :: ∗ Γ , x:T1 ` T2 :: ∗

Γ ` Πx:T1.T2 :: ∗
(K­Pi)

Γ ` S :: Πx:T.K Γ ` t : T

Γ ` S t : [x, t]K
(K­App)

Γ ` T :: K Γ ` K≡K′

Γ ` T :: K′
(K­Conv)

Typing Γ ` t : T

x:T ∈ Γ Γ ` T :: ∗

Γ ` x : T
(T­Var)

Γ ` S :: ∗ Γ , x:S ` t : T

Γ ` λx:S.t : Πx:S.T
(T­Abs)

Γ ` t1 : Πx:S.T Γ ` t2 : S

Γ ` t1 t2 : [x, t2]T
(T­App)

Γ ` t : T Γ ` T ≡ T′ :: ∗

Γ ` t : T′
(T­Conv)

Figure 2­1: First­order dependent types (λLF)

Vector :: Nat → *. We may use type and term variables declared in a fixed

initial context to simulate the built­in types and operators of a programming

language.3 Apart from variables, types may be dependent products or type

family applications. The latter allow us to instantiate families, for example,

to give types such as Vector k for k:Nat.

Kinds allow us to distinguish between proper types and type families.

Proper types have kind ∗ while type families have dependent product kinds

of the form Πx:T.K.

Contexts may bind term variables and type variables.

3. Strictly speaking, we should consider a signature as a special form of context and con­

sider the term and type variables declared in it to be the constants of the language. This isn’t

necessary when we move to richer type theories in which it is possible to define data types.
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λLF

Kind Equivalence Γ ` K ≡ K′

Γ ` T1 ≡ T2 :: ∗ Γ ,x:T1 ` K1 ≡ K2

Γ ` Πx:T1.K1 ≡ Πx:T2.K2

(QK­Pi)

Γ ` K

Γ ` K ≡ K
(QK­Refl)

Γ ` K1 ≡ K2

Γ ` K2 ≡ K1

(QK­Sym)

Γ ` K1 ≡ K2 Γ ` K2 ≡ K3

Γ ` K1 ≡ K3

(QK­Trans)

Type Equivalence Γ ` S ≡ T :: K

Γ ` S1 ≡ T1 :: ∗ Γ ,x:T1 ` S2 ≡ T2 :: ∗

Γ ` Πx:S1.S2 ≡ Πx:T1.T2 :: ∗

(QT­Pi)

Γ ` S1 ≡ S2 :: Πx:T.K Γ ` t1 ≡ t2 : T

Γ ` S1 t1 ≡ S2 t2 : [x, t1]K
(QT­App)

Γ ` T : K

Γ ` T ≡ T :: K
(QT­Refl)

Γ ` T ≡ S :: K

Γ ` S ≡ T :: K
(QT­Sym)

Γ ` S ≡ U :: K Γ ` U ≡ T :: K

Γ ` S ≡ T :: K
(QT­Trans)

Term Equivalence Γ ` t1≡t2 : T

Γ ` S1 ≡ S2 :: ∗ Γ , x:S1 ` t1 ≡ t2 : T

Γ ` λx:S1.t1 ≡ λx:S2.t2 : Πx:S1.T

(Q­Abs)

Γ ` t1 ≡ s1 : Πx:S.T Γ ` t2 ≡ s2 : S

Γ ` t1 t2 ≡ s1 s2 : [x, t2]T
(Q­App)

Γ ,x:S ` t : T Γ ` s : S

Γ ` (λx:S.t) s ≡ [x, s]t : [x, s]T
(Q­Beta)

Γ ` t : Πx:S.T x 6∈ FV(t)

Γ ` λx:T.t x ≡ t : Πx:S.T
(Q­Eta)

Γ ` t : T

Γ ` t ≡ t : T
(Q­Refl)

Γ ` t ≡ s : T

Γ ` s ≡ t : T
(Q­Sym)

Γ ` s ≡ u : T Γ ` u ≡ t : T

Γ ` s ≡ t : T
(Q­Trans)

Figure 2­2: First­order dependent types (λLF)—Equivalence rules

Typechecking Rules

The rules in Figure 2­1 define three judgment forms, for checking kind for­

mation, kinding, and typing.

The characteristic typing rules of the system are the abstraction and appli­

cation rules for terms, altered to use Π­types. The abstraction introduces a

dependent product type, checking that the domain type S is well­formed:

Γ ` S :: ∗ Γ , x:S ` t : T

Γ ` λx:S.t : Πx:S.T
(T­Abs)

The term application rule eliminates a term with this type, substituting the

operand in the Π­type:

Γ ` t1 : Πx:S.T Γ ` t2 : S

Γ ` t1 t2 : [x, t2]T
(T­App)



2.2 Pure First­Order Dependent Types 53

The well­formedness check in T­Abs uses the kinding rules to ensure that S

is a type. Notice that this check may again invoke the typing rules, in the rule

K­App, which checks the instantiation of a type family. The kind formation

judgment also invokes the well­formedness of types (in the first premise of

Wf­Pi), so the three judgment forms are in fact mutually defined. One conse­

quence is that proofs of properties in this system typically proceed by simul­

taneous proofs for the different judgment forms, using derivation height as

an overall measure or alternatively simultaneous structural induction.

There are two conversion rules, K­Conv and T­Conv, which allow us to

replace a kind or type with another one that is equivalent.

Kinds have the general form Πx1:T1. . . .xn:Tn.∗ but in the typing rules

we only ever need to check for proper types with kind ∗. Nevertheless, we

include the K­Conv to ensure that kinding is closed under conversion within

the Ti . There is no mechanism for forming kinds by abstraction, so the only

way to construct an object of a kind other than ∗ is by declaring it in the

context.

Equivalence Rules

One of the main questions in any type system is when two types should be

considered equivalent. Type equivalence is in particular needed in the appli­

cation rules T­App and K­App. To show that some actual argument has an

acceptable type for a function or type family, we may need to use the rule

T­Conv to convert the type. In fact, the algorithmic typing rules introduced

later on show that this is the only place where type equivalence is needed.

But what should our notion of type equivalence be? Without adding spe­

cial equality axioms, we can consider natural notions of equality which arise

from the type structure. With dependent types, a natural notion is to equate

types that differ only in their term components, when those term compo­

nents themselves should be considered equal. So the question is reduced to

considering notions of term equality.

A first example is a type­family application containing a β­redex, since we

consider β­equivalent λ­terms to be equal: T ((λx:S.x) z) ≡ T z. A slightly

different and more concrete example is two different applications of the

Vector family: Vector (3 + 4) ≡ Vector 7. It seems reasonable that a type­

checker should accept each of these pairs of types as being equivalent. But

we quickly come across more complex equivalences involving more com­

putation, or even, requiring proof in the general case. For example, sup­

posing x is an unknown value of type Nat and f:Nat → Nat is a function

whose behavior is known. If it happens that f x=7 for all x then we have

Vector (f x) ≡ Vector 7, but this equality could be more difficult to add

to an automatic typechecker.
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The question of what form of type equivalence to include in a system of de­

pendent types is therefore a central consideration in the design of the system.

Many different choices have been studied, leading to systems with funda­

mentally different character. The most notable distinction between systems

is whether or not typechecking is decidable.

In the first case, we may choose to include only basic equalities which are

manifestly obvious. This is the viewpoint favored by Martin­Löf, who consid­

ers definitional equality to be the proper notion of equivalence. The first two

equalities above are definitional: 3 + 4 is definitionally equal to 7 by the rules

of computation for addition. Alternatively, one may prefer to include as many

equalities as possible, to make the theory more powerful. This is the approach

followed, for example, in the type theory implemented by the NuPrl system

(1986). This formulation of type theory includes type equivalences like the

third example above, which may require arbitrary computation or proof to

establish. In such a type system, typechecking is undecidable.

For λLF, we axiomatize definitional equality based on the type structure,

which includes β and η equality on lambda terms. It is possible to define this

using a relation of equality defined via compatible closure of untyped reduc­

tion (this is the approach followed by Pure Type Systems, see Section 2.7).

Instead, we give a declarative, typed definition of equivalence, using rules

which follow the same pattern as the typing rules. The advantage of this ap­

proach is that it is more extensible than the “untyped” approach and avoids

the need to establish properties of untyped reduction. See Chapter 6 in this

volume for further explanation of the issues here.

The rules for equivalence are shown in Figure 2­2. Again there are three

judgments, for equivalence of each of the syntactic categories of terms, types,

and kinds. The only interesting rules are Q­Beta and Q­Eta which introduce

β and η­equivalence on terms; the remaining rules are purely structural and

express that equivalence is a congruence.

2.3 Properties

In this section we mention some basic properties of λLF. We don’t go very far:

in Section 2.4 we introduce an algorithmic presentation of λLF which allows

us to establish further properties indirectly but rather more easily.

Basic Properties

The following properties use some additional notation. Inclusion is defined

between contexts as Γ ⊆ ∆ iff x:T ∈ Γ implies x:T ∈ ∆, in other words,
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Γ ⊆ ∆ means that ∆ is a permutation of an extension of Γ . We write Γ ` J

for an arbitrary judgment, amongst the six defined in Figures 2­1 and 2­2. We

write Γ ` K,K′ to stand for both Γ ` K and Γ ` K′, and similarly for other

judgments.

2.3.1 Lemma [Permutation and Weakening]: Suppose Γ ⊆ ∆. Then Γ ` J implies

∆ ` J. 2

2.3.2 Lemma [Substitution]: If Γ , x:S, ∆ ` J and Γ ` s : S, then Γ , [x , s]∆ `

[x, s]J. 2

2.3.3 Lemma [Agreement]: Judgments in the system are in agreement, as follows:

1. If Γ ` T :: K then Γ ` K.

2. If Γ ` t : T then Γ ` T :: ∗.

3. If Γ ` K ≡ K′ then Γ ` K, K′.

4. If Γ ` T ≡ T′ :: K then Γ ` T, T′ :: K.

5. If Γ ` t ≡ t′ : T then Γ ` t, t′ : T. 2

2.3.4 Exercise [««, 3]: Prove the lemmas above. 2

Strong Normalization

As an auxiliary device for the soundness and completeness of algorithmic

typechecking we will now introduce general beta reduction which permits

reductions within the scope of abstractions.

We define beta reduction on λLF terms by the four rules:

t1 -→β t
′
1

λx:T1.t1 -→β λx:T1.t
′
1

(Beta­Abs)

t1 -→β t
′
1

t1 t2 -→β t
′
1 t2

(Beta­App1)

t2 -→β t
′
2

t1 t2 -→β t1 t
′
2

(Beta­App2)

(λx:T1.t1) t2 -→β [x, t2]t1 (Beta­AppAbs)

Notice that this reduction does not go inside the type labels of λ abstractions.

The following central result is required to ensure completeness and termi­

nation of typechecking, proved in the next section.



56 2 Dependent Types

2.3.5 Theorem [Strong normalization]: The relation -→β is strongly normaliz­

ing on well­typed terms. More precisely, if Γ ` t:T then there is no infinite

sequence of terms (ti)i≥1 such that t = t1 and ti -→β ti+1 for i ≥ 1. 2

Proof: This can be proved by defining a reduction­preserving translation

from λLF to the simply­typed lambda­calculus as follows. First, for every type

variable X, no matter of what kind, we introduce a simple type variable X\.

Second, for each type expression T, no matter of what kind, we define a sim­

ple type expression T\ by Πx:S.T\ = S\→T\ and (T t)\ = T\. Finally, the

mapping −\ is extended to terms and contexts by applying it to all type ex­

pressions occurring within.

Now we can show by induction on typing derivations in λLF that Γ ` t:T

implies Γ\ ` t\:T\, from which the result follows by the strong normalization

theorem for β­reduction of the simply typed lambda calculus. 2

Since -→β is finitely branching, this implies that for each term t there exists

a number µ(t) such that if (ti)1≤i≤k is a reduction sequence starting from t,

that is, t=t1 and ti -→β ti+1 for 1 ≤ i < k then k ≤ µ(t). A term t′ such that

t -→β∗ t′ and t′ 6 -→β is called a (β) normal form of t. Since -→β is confluent,

see below, normal forms are unique and we may write t′ = nf(t).

2.3.6 Theorem: The relation -→β is confluent. 2

2.3.7 Exercise [«««, 3]: Prove the theorem in the following way: first show that

-→β is locally confluent in the sense that if t -→β t1 and t -→β
∗ t2 then

t1 -→β
∗ t′ and t2 -→β t′ for some t′. Then conclude confluence using the

fact that -→β is strongly normalizing. This last part is a standard result from

term rewriting known as Newman’s Lemma.

Alternatively, you can prove confluence directly using Tait–Martin­Löf’s

method of parallel reduction, see TAPL, Chapter 30. 2

2.4 Algorithmic Typing and Equality

To implement λLF, we need to find a formulation of the system that is closer

to an algorithm. As usual, we follow the strategy of reformulating the rules

to be syntax­directed, so that they can be used to define an algorithm going

from premises to conclusion (see the description of the implementation in

Section 2.9) . We also need an algorithm for deciding type equivalence.

The algorithmic presentation of λLF is shown in Figures 2­3 and 2­4. The

judgments mirror the defining presentation, with the addition of a context

checking judgment. (This is used only to check an initial context: the rules

otherwise maintain context well­formation when extending contexts going

from conclusions to premises.)
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The non­syntax­directed rules K­conv and T­conv are removed. To replace

T­conv, we add equivalence testing in the algorithmic rules for applications,

KA­app and TA­app.

The equivalence testing rules in Figure 2­4 assume that they are invoked

on well­typed phrases. We show these rules with contexts Γ to facilitate ex­

tensions to type­dependent equalities or definitions in the context (used in

the implementation), although in the rules for pure λLF, the context plays no

role in equivalence testing.

The equivalence testing algorithm on terms that is suggested by these rules

is similar to the one described in Chapter 6, but we do not make use of type

information. (Similarly, the type equivalence rules do not record kinds.) The

algorithmic judgment Γ ñ̀ s ≡ t for arbitrary terms is defined mutually with

Γ ñ̀ s ≡wh t which is defined between weak head normal forms. Weak head

reduction is a subset of the β reduction -→β, defined by the rules:

t1 -→wh t
′
1

t1 t2 -→wh t
′
1 t2

(WH­App1)

(λx:T1.t1) t2 -→wh [x, t2]t1 (WH­AppAbs)

Weak head reduction only applies β­reduction in the head position. The im­

plementation described in Section 2.9 adds expansion of definitions to this

reduction; see Chapter 9 for a thorough treatment of how to do this.

2.4.1 Theorem [Weak head normal forms]: If Γ ` t:T then there exists a unique

term t′ = whnf(t) such that t -→wh
∗ t′ 6 -→wh. 2

The theorem is a direct consequence of Theorem 2.3.5 and of the fact that

-→wh is deterministic (a partial function).

Correctness of the Algorithm

We will now show that the typechecking algorithm defined by the algorithmic

rules is sound, complete, and terminates on all inputs.

Since the algorithm checks the context only as it is extended, and (for ef­

ficiency) does not check the type of variables in the leaves, we can only ex­

pect to show soundness for contexts which are well­formed. The soundness

lemma makes use of an auxiliary algorithmic judgment for context formation:

ñ̀∅ (WFA­Empty)

ñ̀ Γ Γ ñ̀ T :: ∗

ñ̀ Γ , x:T
(WFA­Tm)

ñ̀ Γ Γ ñ̀ K

ñ̀ Γ , X::K
(WFA­Ty)
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Algorithmic kind formation Γ ñ̀ K

Γ ñ̀ ∗ (WFA­Star)

Γ ñ̀ T :: ∗ Γ , x:T ñ̀ K

Γ ñ̀ Πx:T.K
(WFA­Pi)

Algorithmic kinding Γ ñ̀ T :: K

X :: K ∈ Γ

Γ ñ̀ X :: K
(KA­Var)

Γ ñ̀ T1 :: ∗ Γ , x:T1 ñ̀ T2 :: ∗

Γ ñ̀ Πx:T1.T2 :: ∗
(KA­Pi)

Γ ñ̀ S :: Πx:T1.K Γ ñ̀ t : T2

Γ ñ̀ T1 ≡ T2

Γ ñ̀ S t : [x, t]K
(KA­App)

Algorithmic typing Γ ñ̀ t : T

x:T ∈ Γ

Γ ñ̀ x : T
(TA­Var)

Γ ñ̀ S :: ∗ Γ , x:S ñ̀ t : T

Γ ñ̀ λx:S.t : Πx:S.T
(TA­Abs)

Γ ñ̀ t1 : Πx:S1.T Γ ñ̀ t2 : S2

Γ ñ̀ S1 ≡ S2

Γ ñ̀ t1 t2 : [x, t2]T
(TA­App)

Figure 2­3: Algorithmic presentation of λLF

Algorithmic kind equivalence Γ ñ̀ K ≡ K′

Γ ñ̀ ∗ ≡ ∗ (QKA­Star)

Γ ñ̀ T1 ≡ T2 Γ ,x:T1 ñ̀ K1 ≡ K2

Γ ñ̀ Πx:T1.K1 ≡ Πx:T2.K2

(QKA­Pi)

Algorithmic type equivalence Γ ñ̀ S ≡ T

Γ ñ̀ X ≡ X (QTA­Var)

Γ ñ̀ S1 ≡ T1 Γ ,x:T1 ñ̀ S2 ≡ T2

Γ ñ̀ Πx:S1.S2 ≡ Πx:T1.T2

(QTA­Pi)

Γ ñ̀ S1 ≡ S2 Γ ñ̀ t1 ≡ t2

Γ ñ̀ S1 t1 ≡ S2 t2

(QTA­App)

Algorithmic term equivalence Γ ñ̀ s ≡ t

Γ ñ̀ whnf(s) ≡wh whnf(t)

Γ ñ̀ s ≡ t
(QA­WH)

Γ ñ̀ x ≡wh x (QA­Var)

Γ ,x:S ñ̀ t1 ≡ t2

Γ ñ̀ λx:S.t1 ≡wh λx:S.t2

(QA­Abs)

Γ ñ̀ s1 ≡wh s2 Γ ñ̀ t1 ≡wh t2

Γ ñ̀ s1 t1 ≡wh s2 t2

(QA­App)

Γ ,x:S ñ̀ s x ≡ t s not a λ

Γ ñ̀ s ≡wh λx:S.t
(QA­Nabs1)

Γ ,x:S ñ̀ s ≡ t x t not a λ

Γ ñ̀ λx:S.s ≡wh t
(QA­Nabs2)

Figure 2­4: Algorithmic presentation of λLF—Equivalence rules
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2.4.2 Lemma [Soundness of algorithmic λLF]: Each of the algorithmic judgments

is sound, in the following sense:

1. If Γ ñ̀ K then Γ ` K.

2. If Γ ñ̀ T :: K then Γ ` T :: K.

3. If Γ ñ̀ t : T then Γ ` t : T.

4. If Γ ñ̀ K,K′ and Γ ñ̀ K ≡ K′, then Γ ` K ≡ K′.

5. If Γ ñ̀ T,T′ :: K and Γ ñ̀ T ≡ T′ then Γ ` T ≡ T′ :: K.

6. If Γ ñ̀ t,t′ : T and Γ ñ̀ t ≡ t′ then Γ ` t ≡ t′ :: K.

where in each case, we additionally assume ñ̀ Γ . 2

Proof: By induction on algorithmic derivations. 2

To establish completeness of algorithmic subtyping and later on termina­

tion we need to induct on the length of normalization sequences which we

formalize as follows.

Recall that µ(s) denotes an upper bound on the length of any -→β reduc­

tion sequence starting from s. We write |s| for the size of the term s.

2.4.3 Definition: We associate anω2­valued weight to each judgment arising in a

possible derivation of an equality judgment by

w(∆ ñ̀ s1 ≡ s2) = w(∆ ñ̀ s1 ≡wh s2)+ 1

w(∆ ñ̀ s1 ≡wh s2) =ω · (µ(s1)+ µ(s2))+ |s1| + |s2| + 1. 2

2.4.4 Lemma [Completeness of algorithmic λLF]: Each of the algorithmic judg­

ments is complete, in the following sense:

1. If Γ ` K then Γ ñ̀ K.

2. If Γ ` T : K then for some K′, we have Γ ñ̀ T : K′ and Γ ñ̀ K ≡ K′ and Γ ñ̀ K′.

3. If Γ ` t : T then for some T′, we have Γ ñ̀ t : T′ and Γ ñ̀ T ≡ T′ and

Γ ñ̀ T′ :: ∗.

4. If Γ ` t1 ≡ t2 : T then Γ ñ̀ t1 ≡ t2.

5. If Γ ` T1 ≡ T2 :: K then Γ ñ̀ T1 ≡ T2. 2
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Proof: One first proves that each of the declarative rules is admissible in the

algorithmic system. The result then follows by induction on derivations in

the declarative system. The only rules that are not immediately obvious are

the transitivity rules for equivalence of kinds, types, and terms, and the rule

Q­App. These two are left as exercises with solutions. 2

2.4.5 Exercise [«««]: Show that rule QT­Trans is admissible for the algorithmic

system in the sense that whenever Γ ` ti:T for i = 1,2,3 and Γ ñ̀ t1 ≡ t2 and

Γ ñ̀ t2 ≡ t3 then Γ ñ̀ t1 ≡ t3. 2

2.4.6 Exercise [«««]: Show that rule Q­App is admissible for the algorithmic sys­

tem in the sense that whenever Γ ` t1 t2 : T and Γ ` s1 s2 : T and Γ ñ̀ t1 ≡

s1 and Γ ñ̀ t2 ≡ s2 then Γ ñ̀ t1t2 ≡ s1s2. 2

Given soundness and completeness, we also want to know that our algo­

rithm terminates on all inputs. This also demonstrates the decidability of the

original judgments.

2.4.7 Theorem [Termination of typechecking]: The algorithmic presentation

yields a terminating algorithm for typechecking. 2

We highlight the crucial ideas of the proof of Theorem 2.4.7 here; the de­

tails are left to the diligent reader (Exercise 2.4.9 below). The equivalence

judgment Γ ñ̀ t1 ≡ t2 introduces a possible source of nontermination when

invoked on non­well­typed terms (for example, Ω = ∆∆ where ∆ = λx:A.x x).

Here, computation of weak head normal form runs into an infinite loop. We

must be careful that equivalence testing is called only on well­typed terms.

The crucial termination property for term equality that we need is captured

by the following lemma.

2.4.8 Lemma: Suppose that Γ ` t1:T1 and Γ ` t2:T2. Then the syntax­directed

backwards search for a derivation of Γ ñ̀ t1 ≡ t2 always terminates. Equiva­

lently, there is no infinite derivation ending in Γ ñ̀ t1 ≡ t2. 2

Proof: We claim that the weight of any premise of a rule is always less than

the weight of the conclusion which excludes any infinite derivation tree. In

other words we argue by induction on the length of reduction sequences

and, subordinately, on the size of terms. This property is obviously satis­

fied for QA­WH, QA­Abs, QA­App. To deal with rule QA­Nabs1 (and similarly,

QA­Nabs2) note that s must be of the form y u1 ... un whereby µ(s x) =

µ(s). The size, however, goes down, as the λ­symbol has disappeared. 2

2.4.9 Exercise [«««, 3]: Complete the proof of 2.4.2, 2.4.4, and 2.4.7. 2
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Properties of λLF

We can use the algorithmic presentation of λLF to prove additional properties

enjoyed by the main definition. We just mention one example: type preserva­

tion under β­reduction.

2.4.10 Theorem [Preservation]: If Γ ` t : T and t -→β t
′, then Γ ` t′ : T also. 2

Proof: We show a slightly restricted form of the theorem, for well­formed

contexts Γ . More precisely, well­formed contexts are those which can be built

using the same rules as for ñ̀ Γ (page 57), but in the declarative system; the

corresponding assertion is written ` Γ . It is easy to extend the completeness

lemma to show that ` Γ implies ñ̀ Γ .

The crucial case is that of an outermost β­reduction (Beta­AppAbs), when

t = (λx:T1.t1) t2 for some T1, t1, t2.

By Lemma 2.4.4, we know that Γ ñ̀ (λx:T1.t1) t2 : T′ for some T′ with

Γ ñ̀ T≡T′ and Γ ñ̀ T′ :: ∗. The first judgment must have been derived with

TA­App preceded by TA­Abs, so we have the derivability of

Γ ñ̀ T1 :: ∗ Γ ñ̀ T1 ≡ S1 Γ , x:T1 ñ̀ t1 : S2 Γ ñ̀ t2 : S1

in the algorithmic system, with T′ = [x, t2]S2.

By the above and the assumptions about Γ , we have ñ̀ Γ , x:T1. Hence

by Lemma 2.4.2, we can go back to get analogs of the statements above in

the declarative system. For the last case, to establish the equivalence Γ `

T1 ≡ S1 :: ∗ we use Lemma 2.3.3 to get Γ ` S1 :: ∗ and then Γ ñ̀ S1 :: ∗.

Now by T­Conv we have Γ ` t2:S2 and so with substitution, Lemma 2.3.2,

we get Γ ` [x, t2]t1 : [x, t2]S2 and then the result follows using T­Conv

again, with another hop between the systems and Lemma 2.3.3, to show the

equivalence Γ ` [x, t2]S2 ≡ T :: ∗. 2

2.4.11 Exercise [«««, 3]: Generalize the proof above to arbitrary contexts Γ . 2

2.5 Dependent Sum Types

Figure 2­5 shows extensions to λLF to add dependent sum (or “Sigma”) types,

written Σx:T1.T2. Dependent sums were motivated briefly in the introduc­

tion. They generalize ordinary product types in a similar way to the way

that dependent products generalize ordinary function spaces. The degener­

ate non­dependent case, when x does not appear free in T2, amounts to the

ordinary product, written as T1 × T2.

We extend the terms and types of λLF given in Figure 2­1 with pairs, projec­

tion operations, and the type constructor itself. Notice that the pair (t1,t2)
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Extends λLF (2­1 and 2­2)

New syntax

t ::= . . . terms:

(t, t:Σx:T.T) typed pair

t.1 first projection

t.2 second projection

T ::= . . . types:

Σx:T.T dependent sum type

Kinding Γ ` T :: K

Γ ` S :: ∗ Γ , x:S ` T :: ∗

Γ ` Σx:S.T :: ∗
(K­Sigma)

Typing Γ ` t : T

Γ ` Σx:S.T :: ∗

Γ ` t1 : S Γ ` t2 : [x, t1]T

Γ ` (t1,t2:Σx:S.T) : Σx:S.T
(T­Pair)

Γ ` t : Σx:S.T

Γ ` t.1 : S
(T­Proj1)

Γ ` t : Σx:S.T

Γ ` t.2 : [x, t.1]T
(T­Proj2)

Term Equivalence Γ ` t1≡t2 : T

Γ ` Σx:S.T :: ∗

Γ ` t1 : S Γ ` t2 : [x, t1]T

Γ ` (t1,t2:Σx:S.T).1 ≡ t1 : S
(Q­Proj1)

Γ ` Σx:S.T :: ∗

Γ ` t1 : S Γ ` t2 : [x, t1]T

Γ ` (t1,t2:Σx:S.T).2 ≡ t2 : [x, t1]T
(Q­Proj2)

Γ ` t : Σx:S.T

Γ ` (t.1, t.2:Σx:S.T) ≡ t : Σx:S.T

(Q­SurjPair)

Figure 2­5: Dependent sum types

is annotated explicitly with a type Σx:T1.T2 in the syntax. The reason for this

is that the type of such a pair cannot be reconstructed from the types of t1

and t2 alone. For example, if S:T→∗ and x:T and y:S x the pair (x,y) could

have both Σz:T.S z and Σz:T.S x as a type.

The most cluttered typing rule is the one which introduces a dependent

pair, T­Pair. It must check first that the Σ­type itself is allowed, and then that

each component has the requested type. The projection rules are straightfor­

ward: compare the second projection with the rule T­App in Figure 2­1.

The equality relation on terms is extended to Σ­types by three rules. The

first two define the elimination behavior of projections on a pair (compare

with the beta rule for Π­types). The third rule, Q­SurjPair, is known as sur­

jective pairing. This rule is a form of eta rule for Σ­types: it states that every

pair can be formed using the pair constructor.

Algorithmic Typing with Dependent Sum Types

To extend the algorithm to deal with Σ­types, we first extend the notions of

beta and weak­head reduction. In both, the main clause is projection on a
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Extends λLF algorithm (2­3 and 2­4)

Algorithmic kinding Γ ñ̀ T :: K

Γ ñ̀ T1 :: ∗ Γ , x:T1 ñ̀ T2 :: ∗

Γ ñ̀ Σx:T1.T2 :: ∗
(KA­Sigma)

Algorithmic typing Γ ñ̀ t : T

Γ ñ̀ Σx:T1.T2 :: ∗

Γ ñ̀ t1 : T′1 Γ ñ̀ T′1 ≡ T1

Γ ñ̀ t2 : T′2 Γ ñ̀ T′2 ≡ [x, t1]T2

Γ ñ̀ (t1,t2:Σx:T1.T2) : Σx:T1.T2

(TA­Pair)

Γ ñ̀ t : Σx:T1.T2

Γ ñ̀ t.1 : T1

(TA­Proj1)

Γ ñ̀ t : Σx:T1.T2

Γ ñ̀ t.2 : [x, t.1]T2

(TA­Proj2)

Algorithmic type equivalence Γ ñ̀ S ≡ T

Γ ñ̀ S1 ≡ T1 Γ ,x:T1 ñ̀ S2 ≡ T2

Γ ñ̀ Σx:S1.S2 ≡ Σx:T1.T2

(QTA­Sigma)

Algorithmic term equivalence Γ ñ̀ t ≡wh t′

Γ ñ̀ ti ≡ t′i

Γ ñ̀ (t1,t2:T) ≡wh (t
′
1,t

′
2:T

′)
(QA­Pair)

Γ ñ̀ ti ≡ t.i t not a pair

Γ ñ̀ (t1,t2:T) ≡wh t
(QA­Pair­NE)

Γ ñ̀ t.i ≡ ti t not a pair

Γ ñ̀ t ≡wh (t1,t2:T)
(QA­NE­Pair)

Figure 2­6: Algorithmic typing for Σ­types

pair. Beta reduction also allows reduction inside the components of a pair.

(t1,t2:T).i -→β ti (Beta­ProjPair)

t -→β t′

t.i -→β t′.i
(Beta­Proj)

t1 -→β t
′
1

(t1,t2:T) -→β (t
′
1,t2:T)

(Beta­Pair1)

t2 -→β t
′
2

(t1,t2:T) -→β (t1,t
′
2:T)

(Beta­Pair2)

Weak head reduction just has two new cases:

(t1,t2:T).i -→wh ti (WH­ProjPair)

t -→wh t
′

t.i -→wh t
′.i

(WH­Proj)

Using the weak head reduction, the algorithmic typing and equality judg­

ments are extended with the rules in Figure 2­6 to deal with Σ­types.

2.5.1 Exercise [«««, 3]: Extend Lemmas 2.4.2, 2.4.4 and 2.4.7 to Σ­types. (No sur­

prises are to be expected.) 2
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Extends λLF (2­1 and 2­2)

New syntax

t ::= . . . terms:

all x:T.t universal quantification

T ::= . . . types:

Prop propositions

Prf family of proofs

Kinding Γ ` T :: K

Γ ` Prop :: ∗ (K­prop)

Γ ` Prf :: Πx:Prop. ∗ (K­prf)

Typing Γ ` t : T

Γ ` T :: ∗ Γ ,x : T ` t : Prop

Γ ` all x:T.t : Prop
(T­All)

Type Equivalence Γ ` S ≡ T :: K

Γ ` T :: ∗ Γ ,x:T ` t : Prop

Γ ` Prf (all x:T.t) ≡ Πx:T.Prf t :: ∗
(QT­All)

Figure 2­7: The Calculus of Constructions (CC)

2.6 The Calculus of Constructions

The Calculus of Constructions (CC), one of the most famous systems of de­

pendent types, was introduced by Coquand and Huet (1988) as a setting for

all of constructive mathematics. While it has turned out that CC needs to be

extended with certain features (in particular inductive types [Mohring, 1986]),

its simplicity in relationship to its expressivity is unprecedented.

In our framework CC can be formulated as an extension of λLF which has

a new basic type Prop and a new type family Prf. Elements of the type

Prop represent propositions, and also “datatypes” such as the type of nat­

ural numbers (we use the term “datatype” to refer to usual programming

language types, as opposed to types of proofs of a proposition). Propositions

and datatypes are identified in CC by taking the Curry­Howard isomorphism

as an identity. The type family Prf assigns to each proposition or datatype

p : Prop the type Prf p of its proofs, or, in the case of datatypes, its mem­

bers. CC has one new term former all x:T.t, and two rules which relate it

to Prf. The additions to λLF are shown in Figure 2­7.

In most presentations and implementations of CC the type Prf t is nota­

tionally identified with the term t. This is convenient and enhances readabil­

ity, however, we will not adopt it for the sake of compatibility. The original

formulation of CC went as far as using the same notation, namely (x:A) for

all three binders: Π,all,λ. That did not enhance readability at all and was

thus given up after some time!

CC contains Fω as a subsystem by an obvious translation. For example,

here is the type of an encoding of natural numbers in CC:



2.6 The Calculus of Constructions 65

nat = all a:Prop.all z:Prf a.all s:Prf a →Prf a. a

Recall that A→B abbreviates Πx:A.B.

Notice that nat is a member of type Prop. The natural numbers inhabit the

type Prf nat. Accordingly, we have

zero = λa:Prop.λz:Prf a.λs:Prf a → Prf a.z : Prf nat

succ = λn:Prf nat.λa:Prop.λz:Prf a.

λs:Prf a → Prf a.s(n a z s) : Prf nat → Prf nat

add = λm:Nat.λn:Nat.m nat n succ : Prf nat → Prf nat → Prf nat

Regarding higher­order polymorphism here is how we define existential types

in CC:

exists = λf:A→Prop.all c:Prop.all m:(Πx:Prop.Prf (f x)→Prf c).c

Here A is any type; we obtain System F’s existential types with A=Prop; we

obtain existential quantification over natural numbers with A=Nat.

2.6.1 Exercise [«, 3]: Define the term corresponding to existential introduction

of type: Πf:A→Prop.Πa:Prop.Πi:Prf (f a).Prf (exists f). 2

Conversely, existential elimination corresponds to applying a term of type

exists f to an appropriately typed argument.

2.6.2 Exercise [«««, 3]: Formalize the translation from Fω into CC. 2

The combination of type dependency and impredicativity à la System F

yields an astonishing expressive power. For example, we can define Leibniz

equality as follows:

eq = λa:Prop.λx:Prf a.λy:Prf a.

all p:Prf a→Prop.all h:Prf (p x).p y

: Πa:Prop.Prf a → Prf a → Prop

We can now prove reflexivity of equality by exhibiting an inhabitant of the

type Πa:Prop. Πx:Prf a. Prf (eq a x x). Indeed,

eqRefl = λa:Prop. λx:Prf a. λp:Prf a → Prop. λh:Prf (p x).h

is such a term.

2.6.3 Exercise [««, 3]: State and prove symmetry and transitivity of equality. 2

In a similar way, we can define other logical primitives such as boolean con­

nectives and quantifiers and then prove mathematical theorems. Occasionally

we have to assume additional axioms. For example, induction for the natural

numbers can be stated, but not proved; it is thus convenient to work under

the assumption:
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natInd : Πp:Prf nat →Prop.Prf (p zero)

→ (Πx:Prf nat.Prf (p x) → Prf (p(succ x)))

→ Πx:Prf nat.Prf (p x)

With that assumption in place we can for example prove associativity of ad­

dition in the form of a term of type:

Πx:Prf nat.Πy:Prf nat.Πz:Prf nat.

Prf (eq nat (add x (add y z)) (add (add x y) z))

2.6.4 Exercise [«««]: Find such a term. 2

The task of finding proof terms inhabiting types is greatly simplified by

an interactive goal­directed theorem prover such as LEGO (Luo and Pollack,

1992; Pollack, 1994) or Coq (Barras et al., 1997), or a structure­driven text

editor for programming, such as Agda or Alfa (Coquand, 1998; Hallgren and

Ranta, 2000).

Algorithmic Typing and Equality for CC

We will now consider algorithmic typechecking for the pure CC. The beta

reduction relation is extended with a clause for all:

t -→β t
′

all x:T.t -→β all x:T.t′
(Beta­All)

2.6.5 Theorem: The relation -→β is strongly normalizing on well­typed terms of

CC. 2

Proof: One can prove this directly using Tait’s reducibility method; see, for

example, Coquand and Huet (1988) or Luo and Pollack (1992). Alternatively,

we can define a reduction­preserving mapping from CC into Fω by “forget­

ting” type dependency—e.g., by mappingeq a t1 t2 to ∀P.P → P . Therefore,

an alleged infinite reduction sequence in CC would entail an infinite reduction

sequence in Fω. The details are beyond the scope of this survey. 2

With this result in place it is now possible to establish soundness, complete­

ness, and termination of algorithmic typing. The additional rules for the al­

gorithm (extending those for λLF) are presented in Figure 2­8.

The Calculus of Inductive Constructions

The fact that induction cannot be proved is a flaw of the impredicative en­

coding of datatypes. Not only is it aesthetically unappealing to have to make
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Extends λLF algorithm (2­3 and 2­4)

Algorithmic kinding Γ ñ̀ T :: K

Γ ñ̀ Prop :: ∗ (KA­Prop)

Γ ñ̀ t:Prop

Γ ñ̀ Prf t :: ∗
(KA­Prf)

Algorithmic typing Γ ñ̀ t : T

Γ ñ̀ T :: ∗ Γ ,x:T ñ̀ t : Prop

Γ ñ̀ all x:T.t : Prop
(QT­All­E)

Algorithmic type equivalence Γ ñ̀ S ≡ T

t -→wh all x:T1.t2

Γ ñ̀ S1 ≡ T1 Γ ,x:S1 ñ̀ S2 ≡ Prf t2

Γ ñ̀ Πx:S1.S2 ≡ Prf t

(QKA­Pi­Prf)

Γ ñ̀ Πx:S1.S2 ≡ Prf t

Γ ñ̀ Prf t ≡ Πx:S1.S2

(QKA­Prf­Pi)

Γ ñ̀ s ≡ t

Γ ñ̀ Prf s ≡ Prf t
(QKA­Prf)

Algorithmic term equivalence Γ ñ̀ t ≡wh t′

Γ ñ̀ S1 ≡ T1 Γ ,x:S1 ñ̀ s ≡ t

Γ ñ̀ all x:S.s ≡wh all x:T.t
(QA­All­E)

Figure 2­8: Algorithmic typing for CC

assumptions on an encoding; more seriously, the assumption of natInd de­

stroys the analog of the progress theorem (see TAPL, §8.3). For example, the

following term does not reduce to a canonical form:

natInd (λx:Prf nat.nat) zero (λx:Prf nat.λy:Prf nat.zero) zero

For these reasons, Mohring (1986) and subsequent authors (Werner, 1994;

Altenkirch, 1993) have combined CC with inductive definitions as originally

proposed (for a predicative system) by Martin­Löf (1984). In the thus obtained

Calculus of Inductive Constructions (CIC) as implemented in the Coq theorem

prover (Barras et al., 1997) we can declare the type nat:Prop as an induc­

tive type with constructors zero:Prf nat and succ:Prf nat→Prf nat. This

generates a constant:

natInd : Πp:Prf nat→Prop.Prf (p zero) →

(Πx:Prf nat.Prf (p x) → Prf (p(succ x))) →

Πx:Prf nat.Prf (p x)

which obeys the following equality rules:

natInd p hz hs zero ≡ hz

natInd p hz hs (succ n) ≡ hs n (natInd p hz hs n)

This clearly provides induction, but it also allows us to define primitive re­

cursive functions such as addition by
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add = λx:Prf nat.λy:Prf nat.natInd (λx:nat.nat)

y (λy:nat.λr:nat.succ r) x

Notice that we instantiated natInd with the constant “predicate” λx:nat.nat.

The mechanism of inductive definitions is not restricted to simple induc­

tive types such as nat. CIC, as well as Martin­Löf’s predicative systems (as

implemented in ALF [Magnusson and Nordström, 1994]) admit the inductive

definition of type families as well. For example, with nat already in place we

may define an inductive family

vector : Prf nat → Prop

with constructors nil : Prf (vector zero) and

cons : Πx:Prf nat. Prf nat →

Prf (vector x) → Prf (vector(succ x))

The (automatically generated) induction principle then has the typing

vecInd : Πp:Πx:nat.Prf (vector x) → Prop.

Prf (p zero nil) →

(Πx:Prf nat.Πy:Prf (vector x).

Πa:Prf nat.Prf (p y)→Prf (cons x a y)) →

Πx:Prf nat.Πy:Prf (vector x).Prf (p x y)

2.6.6 Exercise [««, 3]: What are the equality rules for this induction principle by

analogy with the equations for natInd? 2

Let us see how we can define the exception­free first function from the

introduction for these vectors. We first define an auxiliary function first′

that works for arbitrary vectors by

first’ = vecInd (λx:Prf nat.λv:Prf (vector x).nat)

zero

(λx:Prf nat.λy:Prf (vector x).

λa:Prf nat.λprev:Prf nat.a) :

Πx:Prf nat.Πv:Prf (vector x).Prf nat

This function obeys the equations:

first’ zero nil = zero

first’ (succ x) (cons x a y) = a

We obtain the desired function first by instantiation

first = λx:Prf nat.λy:Prf (vector (succ x)).

first’ (succ x) y
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The default value zero can be omitted in a system like ALF which allows

the definition of dependently­typed functions by pattern matching. In that

system one would merely declare the type of first and write down the single

pattern

first x (cons x a y) = a

ALF can then work out that this defines a total function. The extension of pat­

tern matching to dependent types was introduced in Coquand (1992) which

also contains beautiful examples of proofs (as opposed to programs) defined

by pattern matching. McBride (2000) has studied translations of such pat­

tern matching into traditional definitions using recursion/induction princi­

ples like vecInd.

2.6.7 Exercise [«««, 3]: Define using vecInd a function

concat : Πx:Prf nat.Πy:Prf nat.Prf (vector x) →

Prf (vector y) →

Prf (vector (add x y))

How does it typecheck? 2

As a matter of fact, the CIC goes beyond the type system sketched here in

that it allows quantification over kinds, so, for example, the “predicate” p in

natInd may be an arbitrary type family. This means that using the constant

family p = λx:nat.Prop we can define a function eqZero: Prf nat → Prop

which equals true when applied to zero and false on all other arguments.

This facility turns out to be useful to define the exception­free first function

on vectors which was presented in the introduction.

Another additional feature of the CIC is the separation of propositions and

datatypes into two disjoint universes Prop and Set. Both behave like our

Prop, the difference lies in a program extraction feature that maps develop­

ments in the CIC to programs in an extension of Fω with inductive types

and general recursion. Types and terms residing in Prop are deleted by this

translation; only types and terms in Set are retained. In this way, it is possi­

ble to extract correct programs from formal correctness proofs. Details can

be found in Paulin­Mohring (1989).

Sigma Types in CC

It is unproblematic and useful to combine CC with Σ­types as described in

Section 2.5 and Figure 2­5. This allows one to form types of algebraic struc­

tures, for instance
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Semigrp = Σa:Prop.Σop:Prf a → Prf a → Prf a.

Πx:Prf a.Πy:Prf a.Πz:Prf a.

Prf (eq a (op x (op y z)) (op (op x y) z));

This system is contained in Luo’s Extended Calculus of Constructions (ECC)

(1994) which additionally permits Π and Σ quantification over kinds. For con­

sistency reasons which we will briefly describe next this requires an infinite

hierarchy of ever higher kinds ∗0, ∗1, ∗2, .... For instance, in ECC one has

ΣX:∗3. X : ∗4

ECC has been implemented in the LEGO system (Luo and Pollack, 1992).

It is quite another matter to ask for a reflection of Σ­types into the universe

Prop of datatypes and propositions, by analogy with the way all is treated.

The temptation is to introduce a term former ex y:T.t : Prop when x:T `

t:Prop, together with an equality rule asserting that

Pr (ex y:T.t) ≡ Σy:T.Prf t.

Coquand (1986) has shown that the resulting system is unsound in the sense

that all types are inhabited and strong normalization fails. Intuitively, the

reason is that in this system we are able to define

prop = ex x:Prop.nat

and now have a mapping i:Prop→Prf prop defined by

i = λx:Prop.(x,zero:prop)

as well as a left inverse j:Prf prop →Prop given by

j = λx:Prf prop.x.1.

Thus, we have reflected the universe Prop into one of its members, which

allows one to encode (after some considerable effort) one of the set­theoretic

paradoxes showing that there cannot be a set of all sets.

This must be contrasted with the impredicative existential quantifier exists

defined on page 65. The difference between exists and the hypothetical term

former ex is that exists does not allow one to project out the existential

witness in case it is of type Prop.

An existential quantifier which does not provide first and second projec­

tions, but only the impredicative elimination rule known from System F is

called a weak sum, weak Σ­type, or existential. In contrast, the Σ­types with

projections are sometimes called strong.

We conclude this section by remarking that it is unproblematic to have

“small” strong Σ­types in the CC, that is, if t1:Prop and x:Prf t1 ` t2:Prop

then σx:Prf t1.t2:Prop with the equivalence

Prf(σ x:Prf t1.t2) ≡ Σx:Prf t1.Prf t2.
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2.6.8 Exercise [«««, 3]: An “approximation” for σ x:Prf t1.t2 is given by

exists = all c:Prop.all b:Πx:Prf t1.Prf t2 → Prf c.c.

Define pairing and first projection for exists. Unfortunately, it is not possi­

ble to define a second projection. 2

2.7 Relating Abstractions: Pure Type Systems

The Calculus of Constructions is a very expressive system, but at first sight,

somewhat difficult to understand because of the rich mix of different “lev­

els” of typing (especially in its original formulation with Prf implicit). Given

a lambda term λx : S.t , we cannot tell without (possibly lengthy) further anal­

ysis of S and t whether this is a term­level function, a type abstraction, a type

family, a type operator, or something else.

Partly as an attempt to explain the fine structure of CC, Barendregt intro­

duced the lambda cube of typed calculi (briefly introduced in TAPL, Chapter

30), illustrated below:

Fω CC

F

�
�

�
�

·

�
�

�
�

· ·

λ→

�
�

�
�

λP

�
�

�
�

The cube relates previously known typed lambda calculi (recast within a

uniform syntax) to CC, by visualizing three “dimensions” of abstraction. In

the bottom left corner, we have λ→with ordinary term­term abstraction. Mov­

ing rightwards, we add the type­term abstraction characteristic of dependent

types: λP is the Lambda Cube’s version of our λLF. Moving upwards, we add

the term­type abstraction of System F, capturing polymorphism. Finally, mov­

ing towards the back plane of the cube, we add the higher­order type­type

abstraction characteristic of Fω.

Pure Type Systems

The type systems of the Lambda Cube, and many others besides, can be de­

scribed in the setting of pure type systems (Terlouw, 1989; Berardi, 1988;

Barendregt, 1991, 1992; Jutting, McKinna, and Pollack, 1994; McKinna and

Pollack, 1993; Pollack, 1994). There is an simple and elegant central defini­

tion of Pure Type System (PTS) using just six typing rules, which captures a
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λP

Syntax

t ::= terms:

s sort

x variable

λx:t.t abstraction

t t application

Πx:t.t dependent product type

s ::= sorts:

∗ sort of proper types

2 sort of kinds

Γ ::= contexts:

∅ empty context

Γ , x:T variable binding

Typing Γ ` t : T

Γ ` ∗: 2 (T­Star)

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ ` S : ∗ Γ , x:S ` t : T

Γ ` λx:S.t : Πx:S.T
(T­Abs)

Γ ` t1 : Πx:S.T Γ ` t2 : S

Γ ` t1 t2 : [x, t2]T
(T­App)

Γ ` S : si Γ , x:S ` T : sj

Γ ` Πx:S.T : sj
(T­Pi)

Γ ` t : T T ≡ T′ Γ ` T′ : s

Γ ` t : T′
(T­Conv)

where (si , sj) ∈ {(∗,∗), (∗,2)}.

Figure 2­9: First­order dependent types, PTS­style (λP)

large family of systems constructed using Π­types. This uniform presentation

allows one to establish basic properties for many systems at once, and also

to consider mappings between type systems (so­called PTS morphisms).

A presentation of λLF as a Pure Type System is given in Figure 2­9.

The first thing to notice about PTSs is that there is a single syntactic cate­

gory of terms, used to form types, terms, and abstractions and applications

of different varieties. Although formally there is a single syntactic category,

we use the same meta­variables as before, to aid intuition. (So the letters T

and K and also range over the syntactic category of terms, but the system will

determine that they are types and kinds, respectively).

To allow levels of types and kinds to be distinguished, the PTS framework

uses tokens called sorts to classify different categories of term, within the

formal system itself. The system λP requires two sorts: first, ∗, which is the

kind of all proper types, as used before, and second, 2, which is the sort

that classifies well­formed kinds. Judgments of the form Γ ` T : ∗ replace

Γ ` T :: ∗ from Figure 2­1, and judgments Γ ` K : 2 replace Γ ` K.

The rule T­Pi controls formation of Π­types, by restricting which sorts we

are allowed to quantify over. In turn, this restricts which λ­abstractions can

be introduced by T­Abs. For λLF, there are two instances of λ­abstraction and
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two instances of Π­formation. In the PTS presentation, these are captured by

the two pairs of sorts allowed in T­Pi. When si = sj = ∗, we have the first­

order dependent product type, and when sj = 2 we have the kind of type

families, corresponding respectively to K­Pi and Wf­Pi in Figure 2­1.

The conversion rule is the main point of departure. The equivalence rela­

tion s ≡ t in Pure Type Systems is defined between untyped terms, as the

compatible closure of β­reduction. This has a strong effect on the meta­

theory.

2.7.1 Exercise [««««]: Using the obvious mapping from the syntax of λLF into

the syntax of λP, give a proposition stating a connection between the two

presentations. Try to prove your proposition. 2

Systems of the Lambda­Cube and Beyond

The other systems of the Lambda Cube can be expressed using the same rules

as in Figure 2­9, with the single difference of changing the combinations of

pairs of sorts (si , sj) allowed in T­Pi. This controls which kind of abstractions

we can put into the context. The table below characterises the systems of the

Lambda Cube:

System PTS formation rules

λ→ { (∗,∗) }

λP { (∗,∗), (∗,2) }

F { (∗,∗), (2,∗) }

Fω { (∗,∗), (2,∗), (2, 2) }

CC { (∗,∗), (∗,2), (2,∗), (2, 2) }

Further PTSs are given by adjusting the axiom T­Star of Figure 2­9, which

is another parameter in the formal definition of PTS. For example, if we take

the axiom to be

Γ ` ∗: ∗ (T­TypeType)

(together with the T­Pi restriction of {(∗,∗)}), we obtain a system where ∗

is the sort of all types including itself. In this system, all types are inhab­

ited and there are non­normalizing terms (as in the result of Coquand, 1986

mentioned on page 70). Though this renders the logical interpretation of the

system meaningless, it is debatable whether such systems may nonetheless

be useful in some situations as type systems for programming languages.

For further details of Pure Type Systems, we refer the reader to the refer­

ences given at the end of the chapter.
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2.8 Programming with Dependent Types

The task of building practical programming languages with dependent types

is a topic of current research. Early languages include Pebble (Lampson and

Burstall, 1988) and Cardelli’s Quest (Cardelli and Longo, 1991). Programming

in Martin­Löf’s type theory is described in the monograph (Smith, Nordström,

and Petersson, 1990). More recently, Augustsson introduced a language called

Cayenne (1998), with a syntax based on the functional programming lan­

guage Haskell, and Xi and Pfenning studied the language Dependent ML,

based around a fragment of Standard ML (1998; 1999). The difference be­

tween Cayenne and Dependent ML goes beyond the choice of underlying lan­

guage, and serves to illustrate a fundamental design decision for practical

programming with dependent types.

Languages with Undecidable Typechecking

Given the expressivity of dependent types as illustrated in previous sections

it is natural and tempting to add them to a programming language. The

price for this expressivity is, however, the complexity of typechecking. As

we have explained, typechecking dependent types requires deciding equality

of terms as a subtask which in turn requires the underlying term language

to be strongly normalizing. On the other hand, most practical programming

languages provide general recursion with possible nontermination. Simply

adding dependent types to a Turing­complete term language invariably leads

to undecidable typechecking.

Of course, typechecking remains semi­decidable, so one can simply wait

for an answer for a reasonable amount of time before giving up and turning

the typechecker off. This is basically the (surprisingly successful) approach

undertaken in Cayenne. Another example is the theorem prover PVS (1996)

which includes a dependently­typed programming language (at the time of

writing, in an experimental stage), and also has semi­decidable typechecking.

In PVS, however, it is possible to resort to interactive theorem proving to aid

the type checker.

Undecidablef typechecking is not to the taste of all programming language

designers, and for reasons such as scalability, may not be suitable for general

application. The alternative is to consider dependently typed languages built

around standard programming language features, yet with low­complexity

typechecking algorithms. To achieve this one must sacrifice some of the gen­

erality of dependent types. Dependent ML (DML) is a proposal which follows

this approach, which we will investigate in more detail in the remainder of
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this section. A type system closely related to that of DML, but aimed at

Haskell, was studied by Zenger, under the name indexed types (1997).

Exactly because this class of type systems have the desirable feature that

they provide “static” typechecking independently from execution or equiva­

lence checking of terms, some authors prefer not to call them “dependent”

at all. The definition of dependent types given in Chapter 8 is slightly stricter

than ours, and contrasts statically typed languages like DML and Indexed

Types with languages where there is a lack of phase distinction between the

compilation and execution of a program (see page 305).

A Simplified Version of Dependent ML

The crucial idea behind DML is that type dependency on terms is not allowed

for arbitrary types, but only for certain index sorts. Typechecking gives rise

to well­behaved constraint systems on terms belonging to index sorts. Type­

checking and even (to an extent) type inference can then be reduced to a

constraint­solving problem over the index sorts, which is decidable.

In this presentation we fix the index sorts to be integer numbers and linear

subsets thereof, although Pfenning and Xi consider richer possibilities. We

also base the language on the lambda­calculi we have studied so far, rather

than a form of Standard ML.

Before going into details we will look at some simple examples concerning

vectors. We write int for the index sort of integers and assume a basic type

data and a basic type family Vector : int→∗ where Vector[n] denotes

arrays over data of length n as usual. Note that, for example, Vector[­1]

will be empty. Next, we introduce the constants

nil : Vector[0]

cons : Πn:int.data → Vector[n] → Vector[n+1]

and a construct for pattern matching obeying the following typing rule:

Γ ` t1 : Vector[i] Γ , i=0 ` t2 : T

Γ , n:int, x:data, l:Vector[n], i=n+1 ` t3:T

Γ ` match t1 with nil → t2 | cons[n](x,l) → t3 : T
(Match­Vector)

There are several things to notice here. Types distinguish between ordinary

non­dependent function spaces T1→T2 and type families indexed by index

sorts, Πx:I.T. Application for Π­types is written using square brackets. Con­

texts contain bindings of index variables to index sorts, type variables to

types, and constraints over terms of index sort. Here the constraints are equa­

tions; in general they may be propositions of some restricted form so as to

retain decidability.
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In our setting, nil, cons, and match are just interesting for their typing

behaviors. We might postulate the obvious conversion rules for instances of

match, to define a term equality judgment as studied earlier. But it is impor­

tant to realize that we needn’t do this for the purpose of typechecking, since

for DML­style systems term equality is completely decoupled from typing.

In examples we will allow the definition of recursive functions by first

declaring them with their type and then giving an accordingly typed imple­

mentation which may involve calls to the function being defined.4

Example: Appending Vectors

We want to define a function for appending two vectors. It should obey the

following typing:

append : Πm:int.Πn:int.Vector[m] → Vector[n] → Vector[m+n]

To do this we define the body of append as follows:

append­body = λm:int.λn:int.λl:Vector[m].λt:Vector[n].

match l with

nil → t

| cons[r](x,y) → cons[r+n](x,append[r][n](y,t)

We should prove that append­body has the same type as append. Let Γ =

m:int, n:int, l:Vector[m], t:Vector[n]. After applying the rule Match­Vector

backwards we are required to show that

Γ , m=0 ` t : Vector[m+n]

and

Γ , r:int, x:data, y:Vector[r], m=r+1 `

cons[r+n](x,append[r][n](y,t) : Vector[m+n]

For the first requirement, we notice that Γ , m=0 ` n=m+n:int from which the

claim will follow by the type conversion rule and the obvious type equivalence

which equates instances of Vector indexed by equal index terms:

Γ ` i=j

Γ ` Vector[i]=Vector[j]

This rule is an instance of QT­App for DML families.

For the second requirement, we first notice that, given the purported typing

of append, the append­subterm has type Vector[r+n], thus, by the typing of

cons the term itself has type Vector[r+n+1], but in the given context, this is

equal to Vector[m+n] hence the required typing follows by type conversion

again.

4. One can achieve this effect with a constant fixT : (T→T) → T for any type T.
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Example: Splitting a Vector

This example illustrates DML’s restricted form of Σ­types. Again, we have

both dependent sums indexed by index sorts, and non­dependent sums (i.e.,

ordinary cartesian products). We will use the following type abbreviation:

T(m) = Σp:int.Σq:{ i | p+i=m }.Vector[p] * Vector[q]

The type T(m) has elements of the form (p,(q,(k,l))), which we shall write

as (p,q,k,l) to avoid excessive parentheses. The terms p and q are integer

indices, obeying the constraint p+ q = m.

Now we can define a split function that partitions a vector into two pieces

of given lengths:

split : Πm:int.Vector[m] → T(m)

split­body = λm:int.λl:Vector[m].

match l with

nil ⇒ (0,0,nil,nil) : T(0)

| cons[r](x,y) ⇒ let (p,q,u,v) = split[r](y) in

if test(x) then (p+1, q, cons[p](x,u), v) : T(r+1)

else (p, q+1, u, cons[q](x,v)) : T(r+1)

where test(x) is some unspecified boolean­valued term. The typing of split

guarantees that the result vectors could be appended to form a vector with

the same length as the input. Notice that we can say that there is some pair

p and q such that p+q=m where m is the length of the input, but with the

restricted form of predicates in DML, we cannot say that p is equal to the

number of elements x from the input for which test(x) is true.

To see how split is typed, let Γ = m:int, l:Vector[m]. We have Γ ,m=0 `

T(0)=T(m) which deals with the first case of the match. For the second case,

we need to show

Γ ,p:int, q:int, p+q=r, u:Vector[p], v:Vector[q], r+1=m `

(p+1, q, cons[p](x,u), v) : T(r+1) = T(m)

and similarly for the else­branch of the if statement. Again this follows

from trivial equational reasoning, and the expected rules for sum types.

Definition of Simplified DML

Figure 2­10 summarizes the syntax of our simplified form of DML. Most of

the typing rules are routine, so we leave completing the system to exercises.

The definition of DML is closely related to λLF with Σ­types, except that

dependencies are restricted to special terms of index sorts, so there is a par­

titioning of the syntax. Index sorts comprise the integers and subsets of index
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DML

I ::= index sorts:

int index sort of integers

{x:I | P} subset sort

P ::= propositions:

P∧ P conjunction

i<=i index inequality

i ::= index terms:

x variable

q constant q ∈ Z

qi multiplication by q ∈ Z

i+i addition

t ::= terms:

x variable

λx:I.t index abstraction

t[i] index application

λx:T.t abstraction

t t application

(i, t) index pairing

(t, t) term pairing

let (x, y)=t in t projection

T ::= types:

X type/family variable

Πx:I.T indexed product

Σx:I.T indexed sum

T[i] type family application

T1 → T2 function type

T1 * T2 cartesian product

K ::= kinds:

∗ kind of proper types

Πx:I.K kind of type families

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Γ , x:I index variable binding

Γ , P constraint

Figure 2­10: Simplified Dependent ML (DML)

sorts. Subset formation is permitted only with respect to a restricted set of

predicates. In our case, these are conjunctions of linear inequalities (equal­

ity of two indices, i1=i2, can be defined as i1<=i2 ∧ i2<=i1). Index terms

themselves are restricted to variables, constants, addition of terms and mul­

tiplication by constants. Given an index sort, proposition, or index term I,

we write FIV(I) to stand for the free (index) variables of I. We use the same

category of variables for index variables and ordinary variables, but we can

tell from a typing context whether a variable ranges over index terms or or­

dinary terms. Given a context Γ , let IV(Γ) stand for the set of index variables

declared in Γ . A term I in the index syntax is well­formed in Γ just in case

FIV(I) ⊆ IV(Γ); no typing rules are needed to check well­formedness in the in­

dex syntax. For contexts, we assume as usual that no variable is bound more

than once, and moreover, that the free variables appearing in declarations

x:I and constratints P are declared earlier in the context.

Ordinary terms include index terms in application position and in the first

component of pairs. There are types depending on index terms, but there are

no types depending on ordinary terms. As a result, function space and carte­
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sian product cannot be defined as special cases of Π and Σ­types, but must

be included as primitives. Kinds are just as in LF, except that dependency is

restricted to index sorts I.

In the typing rules we assume given two semantically defined judgments:

Γ |= P P is a consequence of Γ

Γ |= i : I i:I follows from the assumptions of Γ

These judgments depend only on the index assumptions and propositions in

Γ , and their intention should be clear. For example, we have:

x:{y:int | y>=8}, z:int, z>=9 |= x+z >= 13

The judgments can be defined formally using the obvious interpretation of

the index syntax in Z (see Exercise 2.8.1).

In practice we are of course interested an algorithm for deriving the two

judgments. In our simplified version of DML, both judgments Γ |= P and

Γ |= i:I are decidable, and there are well­known methods which we can

use for handling linear equalities over the integers. In the case of a more

complicated index language the judgments might both be undecidable; for

instance, if we allow multiplication of index terms and existential quantifi­

cation in propositions then undecidability follows from the undecidability of

Hilbert’s 10th problem.

In the typing rules, the semantic judgment is used whenever we need to

check that an index term belongs to an index sort. For example, the rule for

type family application becomes:

Γ ` S :: Πx:I.K Γ |= i : I

Γ ` S[i] : [x, i]K
(DML­K­App)

The typing rules for the remainder of the language are defined similarly to

λLF and the simply­typed lambda calculus. For instance, we have the follow­

ing rule for index abstraction:

Γ , x:I ` t : T

Γ ` λx:I.t : Πx:I.T
(DML­I­Abs)

but for ordinary abstraction we introduce the arrow:

Γ , x:S ` t : T

Γ ` λx:S.t : S → T
(DML­T­Abs)

There are similarly two rules for pairing and for projections. For the projec­

tion of an indexed pair, we have the dependent case:

Γ ` t : Σx:I.T Γ , x:I, y:T ` t′ : T′

Γ ` let (x,y)=t in t′ : T′
(DML­I­Proj)
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We can also follow the same procedure as for λLF to formulate an algorith­

mic version of typing; the difference is that algorithmic type equality amounts

to checking of index constraints which can be performed semantically by con­

straint solving, without any normalization. In particular, equality of terms

is not intertwined with typechecking at all. The crucial rule for algorithmic

equality is

Γ ñ̀ S1 ≡ S2 Γ |= i1 = i2

Γ ñ̀ S1 i1 ≡ S2 i2

(DML­QIA­App)

where the second judgment is an instance of the semantic consequence judg­

ment Γ |= P.

2.8.1 Exercise [««]: Give a semantic interpretation of DML index syntax. Consid­

ering only the index variables in Γ , an index environment η is a function

from index variables to integers. Given this notion, we can define Γ |= P as

∀η. η |= Γ . =⇒ η |= P. Complete the definition. 2

2.8.2 Exercise [«««, 3]: Complete the presentation of DML by defining the type­

checking judgments and give an algorithm for typechecking. 2

Closing Example: Certifying Parameters

Several motivating application examples have been given for DML in the liter­

ature, including eliminating array bounds checks and unnecessary cases from

pattern matches. Rather than repeat those examples, we give a slightly differ­

ent kind of example to illustrate the use of DML­style typing to certify that

constraints are met on parameters of functions.5

The scenario is that we are programming for an embedded system which is

providing safety features for an onboard computer in an automobile. We are

provided with a system call:

brake : int * int → unit

where it is safety critical that whenever brake is called with parameters

(x,y) then some proposition P(x, y) must be satisfied, for example, a con­

junction of linear inequalities describing some “safe window.”

To guarantee this, we should try to type our main program under the fol­

lowing assumed typing for brake. Notice that brake is provided as a system

call, so we can assume an arbitrary typing for it.

brake : {(x,y) : int * int | P} → unit

5. This example is taken from the project Mobile Resource Guarantees (EU IST­2001­33149);

see http://www.lfcs.inf.ed.ac.uk/mrg.
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where P encodes P(x, y). Unfortunately, this typing does not quite fit into

the DML­framework since it unduly mixes index sorts and ordinary types.

To repair this, we introduce a type family Int : int → ∗ with the intuition

that Int(x) is a singleton type containing just the integer x, as a “run­time”

integer rather than an index term. We also need special typings for run­time

integers:

0 : Int(0)

1 : Int(1)

plus : Πx,y:int.Int(x) → Int(y) → Int(x+y)

timesq : Πx:int.Int(x) → Int(qx)

where q is a fixed integer. These typings allow us to reflect the index terms

in ordinary terms. Moreover, we need a type family Bool:int→∗ with the

intuition that Bool(x) contains true if 1<=x and Bool(x) contains false if

x<=0. Now we can suppose constants:

true : Πx:int|1<=x. Bool(x)

false : Πx:int|x<=0. Bool(x)

leq : Πx,y:int. Int(x) → Int(y) → Bool(1+y­x)

(where we write Πx:int|P.T as an abbreviation of Πx:{x:int | P}. T).

We also need a construct for case distinction obeying the following typing

rule:

Γ ` t1 : Bool(i) Γ , 1<=i ` t2 : T Γ , i<=0 ` t3:T

Γ ` if t1 then t2 else t3 : T

Notice that if we define boolean negation in terms of if­then­else then we

would obtain the typing:

not : Πx:int. Bool(x) → Bool(1­x)

because 1<=x |= 1­x<=0 and x<=0 |= 1<=1­x. Unfortunately, the derived typ­

ings for conjunction and disjunction are rather weak:

andalso,orelse : Πx,y:int.Bool(x)→Bool(y) → Σz:int.Bool(z)

Xi introduces a separate index sort of booleans with the usual operations on

the index level. This gives tighter typings for the boolean operations like

orelse : Πx,y:bool.Bool(x)→Bool(y)→Bool(x∧ y).

The price is that constraint solving for such a combined theory is much more

complex.

Returning to the example with the system call, let us suppose that the

linear constraint P simply states x+y<=10 and that the main function is just

a wrapper around brake that makes sure the constraint is actually met, i.e.

main(x,y) = if x+y<=10 then call brake(x,y) else call brake(0,0)
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Here is the corresponding DML version. We assume that the system call brake

satisfies the typing

brake : Πx,y:int|x+y<=10.Int(x) → Int(y) → unit

main : Πx,y:int.Int(x) → Int(y) → unit

main­body = λx,y:int.λxx:Int(x).λyy:Int(y).

if leq[x+y,10](plus[x,y](xx,yy))

then brake[x,y](xx,yy)

else brake[0,0](0,0)

Although this example is rather simple, it illustrates the general technique

for connecting index sort constraints to function calls. The fact that this def­

inition is type correct guarantees that the required safe window for calls to

brake is indeed always obeyed.

Summary and Outlook

We have shown the theory of a simplified fragment of Pfenning and Xi’s

DML demonstrating the important feature that typechecking amounts to con­

straint solving, for example, in the domain of integers, rather than normaliz­

ing terms. In this way, it becomes possible to retain decidability of typecheck­

ing in the presence of general recursion.

The DML examples show that index annotations are quite heavy. Fortu­

nately, most can be inferred automatically by a process known as elaboration.

It is plausible that in the examples we can reconstruct the annotations by re­

placing them by indeterminate linear terms in the index variables in scope

and then solving for the coefficients. In Xi’s thesis (1998), elaboration is pre­

sented in detail as a logic program in the style of our algorithmic subtyping.

One of the design criteria behind the original DML was to allow ordinary

Standard ML programs to be extended with additional type annotations. Cur­

rent research in dependent type systems for programming seeks further ad­

vances at the programming language level. The aim is to provide more com­

fortable high­level notations and new programming language abstractions for

applying dependent type theory. One example of this is by enriching pattern

matching, see McBride (2000) and McBride and McKinna (2004).

Underlying type theories such as CIC are amply expressive for this purpose;

the challenge lies in making these systems more convenient to use, by adding

programming language constructions, notational conveniences and advanced

inference techniques. Present implementations, oriented towards mathemat­

ical interactive proof development, need to be adapted to programming lan­

guage settings. These exciting developments leave much to be expected for

the future of programming with dependent types.
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2.9 Implementation of Dependent Types

In this final section we describe an OCaml implementation of the dependent

type theory described in preceding sections. The implementation allows dec­

larations and definitions of both terms and types. Typechecking occurs as

soon as a declaration or definition is given. A term may be given with a type,

which will be checked, or without, in which case one will be inferred. Similarly

for kinds. Finally, we can ask to normalise well­typed terms.

The typechecking algorithm proceeds by evaluating the rules in Figures 2­4

and 2­3 and the later tables extending these judgments. More precisely, we

have (simultaneously defined) functions:

val whnf : term → term

val typeof : context → term → ty

val kindof : context → ty → kind

val checkkind : context → kind → unit

val tyeqv : context → ty → ty → bool

val kindeqv : context → ty → ty → bool

val tmeqv : context → ty → ty → bool

These functions are implemented by encoding the algorithmic rules using

pattern matching. For example, the definition of tmeqv begins like so:

tmeqv ctx tm1 tm2 =

let tm1’ = whred true ctx tm1 in

let tm2’ = whred true ctx tm2 in

match (tm1’,tm2’) with

(TmVar(fi,i,j), TmVar(fi’,i’,j’)) → i=i’

| (TmAbs(_,x,tyS1,tmS2),TmAbs(_,y,tyT1,tmT2))→

let ctx’ = addbinding ctx x (VarBind(tyS1)) in

tmeqv ctx’ tmS2 tmT2

...

(the first argument of whred is a flag indicating whether to allow definitions

in the context to be expanded).

We stress that the implementation is a direct rendition of the syntax and

rules described earlier. It does not include any of the numerous desirable fea­

tures that make programming with dependent types more convenient, such

as argument synthesis (Harper and Pollack, 1991) or interactive, goal­directed

construction of terms. Conversely, because the implementation is simple, it

should be straightforward to experiment with extensions. The program is

built on the Fω implementation from TAPL and uses the same design and

data structures (see TAPL, Chapters 6, 7, and 30).
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We illustrate the use of the implementation by way of some examples.

Notice that the ASCII input to the system to produce a type like Πx:A.B is

Pi x:A.B.

Examples

With the commands

A : ∗;

Nat : ∗;

zero : Nat;

succ : Πn:Nat.Nat;

Vector : Πn:Nat.∗;

we declare variables A,Nat, constants zero and succ intended to denote zero

and successor on the natural numbers, and a type Vector depending on type

Nat. Note that the implementation does not support →; we must use Π­types

throughout. Next, we declare functions to form vectors by

nil : Vector zero

cons : Πn:Nat. Πx:A. Πv:Vector n. Vector (succ n)

allowing us to define a function for forming vectors of length three:

one = succ zero;two = succ one;

mkthree = λx:A.λy:A.λz:A.

cons two z (cons one y (cons zero x nil));

The implementation will respond by inferring the type of mkthree:

mkthree : Πx:A. Πy:A. Πz:A. Vector (succ two)

We can now partially apply mkthree to two elements of type A by

a:A; b:A;

mkthree a b;

resulting in the response

λz:A.

cons (succ (succ zero)) z

(cons (succ zero) b (cons zero a nil)) :

Πz:A.Vector(succ (succ (succ zero)))

This response exhibits two weaknesses of the implementation. First, defini­

tions are always expanded in results; this will in practice almost always lead

to unreadable outpt. Second, the first arguments to cons must be given ex­

plicitly and are printed out while they could be inferred from the types of the
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second arguments. Practical implementations of dependent types overcome

both these problems. For instance, in LEGO (Luo and Pollack, 1992), mkthree

would be defined (in our notation) as

mkthree = λx:A.λy:A.λz:A. cons z (cons y (cons x nil));

and the response to mkthree a b would be

λz:A.cons z (cons b (cons a nil))) : Πz:A.Vector three

For LEGO to know that the first argument to cons is implicit we must declare

cons by

Πn|Nat. Πx:A. Πv:Vector n. Vector (succ n)

where the bar indicates implicitness for argument synthesis.

Returning to our experimental checker, let us illustrate Σ­types. We declare

three types

A:∗; B:Πx:A.∗; C:Πx:A.Πy:B x.∗;

and define

S = Σx:A.Σy:B x.C x y;

Supposing

a:A; b:B a; c: C a b;

then we can form

(a,(b,c:Σy:B a.C a y):S);

which is an element of S. The first type annotation is actually redundant and

the implementation allows one to abbreviate the above by

(a,b,c:S)

If we declare

Q : Πx:S.∗;

x:S; y:Q x;

Then the following typecast succeeds

y:Q (x.1,x.2.1,x.2.2:S);

thus illustrating the built­in surjective pairing.

Here, finally, is the definition of natural numbers in CC:

nat = all a:Prop.all z:Prf a.all s:Πx:Prf a.Prf a. a;

Note that Prf always requires parentheses in the implementation.

We also remark that by default the implementation prints the weak­head

normal form of input terms. The β­normal form of a term t is printed with

the command Normal t.
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2.10 Further Reading

Dependent type theories have been widely investigated, much of the devel­

opment building on the pioneering work of Per Martin­Löf. This is not the

place for a comprehensive overview of the literature; rather we provide a few

pointers into work related to the developments in this chapter.

The Edinburgh Logical Framework and its type system are described in

Harper, Honsell, and Plotkin (1993). Our definition of λLF has the same type

structure, but omits signatures, and includes declarative equality judgments

rather than an untyped equivalence relation. A more complete recent devel­

opment which also includes equality judgments is in Harper and Pfenning

(2004).

Richer type theories than LF are considered in many places. The calculus

of constructions was introduced in Coquand and Huet (1988) and further

developed in related type theories (Mohring, 1986; Luo, 1994; Pollack, 1994).

Algorithms for typechecking with dependent types were first considered by

Coquand (1991), Cardelli (1986; 1988b), and also within the closely related

AUTOMATH system of de Bruijn (1980).

The best survey of Pure Type Systems remains Barendregt’s handbook arti­

cle (1992), which includes a description of the λ­Cube. Although the definition

of PTS is elegant and short, developing the meta­theory for PTSs has been sur­

prisingly challenging. Several important results and improvements have been

made since Barendregt’s article. For example, Pollack (1994), studied formal­

ization of the meta­theory of PTSs in type theory itself, Poll (1998) established

the expansion postponement property for the class of normalizing PTSs, and

Zwanenburg (1999) studied the addition of subtyping to PTSs.

Type theories which combine inductive types and quantification over kinds,

such as CIC, do not permit an easy normalization proof by translation into a

simply­typed normalizing sytem as was the case for the pure CC. Therefore,

strong normalization must be proved from scratch for those systems. So far

only partial proofs have been published for CIC as it is implemented in Coq;

the closest work so far is in the recent PhD thesis of Miquel (2001). For UTT

as implemented in LEGO, a strong normalization proof is given in Goguen

(1994), which introduces the idea of a typed operational semantics as a more

controlled way of managing reduction in a typed setting.

A topic we have not considered here is the semantics of dependent types.

There has been considerable study; see Hofmann (1997b) for a particular

approach and some comparison with the literature. Notable contributions

include Cartmell (1986), Erhard (1988), Streicher (1991), and Jacobs (1999).
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Effect Types and Region­Based Memory

Management

Fritz Henglein, Henning Makholm, and Henning Niss

Type­based program analysis is program analysis based on the concepts, the­

ories and technologies developed for type systems and employed in the defi­

nition of programming languages. It is a vast field of research with numerous

applications and considerable practical impact. Applications include strict­

ness analysis, data representation analysis, binding­time analysis, soft typing

(also called dynamic typing inference), boxing analysis, pointer aliasing, value

flow analysis (and all its applications), region­based memory management,

communication topology analysis, Year 2000 type analysis, cryptographic

protocol verification, locking, race detection, and others; see Palsberg (2001)

for an overview of additional applications.

This chapter presents type­based program analysis based on type and ef­

fect systems (or effect type systems) and illustrates their application in region­

based memory management, which is the chapter’s ultimate focus. Classical

type systems express properties of values, not the computations leading to

those values. Effect types describe all important effects of computation, not

just their results. Region­based memory management refers to programming

where heap data is allocated in individually managed regions that are explic­

itly allocated and deallocated. As we shall see, state­of­the­art region­based

memory management employs effect type systems to ensure region safety,

which guarantees that no accesses to unallocated or deallocated regions oc­

cur at run time.

3.1 Introduction and Overview

Region­based memory management has a well­developed theory, has been

subject to practice­oriented engineering, and is deployed in industrial­quality

language implementations and prototype systems. We provide a consolidated
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review of the state of the art in region­based memory management and use

it as an application domain to develop fundamental concepts of effect type

systems step by step.

Value Flow and Simple Effect Analyses

In §3.2, we introduce BL, a standard typed higher­order functional language.

Then we present an TL, an extension of BL, with atomic labels p (tags, names)

and corresponding tagging and untagging operations t at p and t ! p. Evalu­

ation of t at p equips the value v of t with label p resulting in a tagged value

〈v〉p; correspondingly, evaluation of t ! p′ simply checks that p in the value

〈v〉p of t equals label p′ before returning v. We present a type system which

ensures that the check in t ! p′ always succeeds. Thus, the labels and their

operations can be thought of as annotations that let us trace where values are

created and used at run­time; they express and make explicit value flow infor­

mation of the underlying BL program. The connection of TL and the value flow

information expressed in it to region­based memory management is a rein­

terpretation of labels as regions and tagging/untagging operations as region

access operations. An expression t at p is then reinterpreted as “evaluate t,

allocate it in the region bound to p, and return the corresponding pointer,”

and t ! p is reinterpreted as “evaluate t to a pointer into the region bound to

p and load its contents from there.” This leaves the problem of figuring out

when to allocate and deallocate a region. The basic idea is extracting lifetime

information about values living in a region ρ from typing derivations: If a

(sub)term t that contains uses of a region ρ can be typed such that ρ neither

occurs in the typing assumptions nor in the result, we take this to mean that

ρ does not need to exist before evaluating t or after. So we can evaluate t by

first allocating a new region ρ, then evaluating t, and finally deallocating ρ.

To express this we extend TL with a construct newρ.t and add straightfor­

ward evaluation and typing rules to give language STL. §3.2 concludes with

the observation that STL is unsound because the typing judgments do not

capture accesses to regions from the environment part in lexical closures;

that is, important properties of the computation (evaluation) itself are not

reflected in (the types of) the values produced by those computations.

The unsoundness motivates the use of effect type systems to capture ac­

cesses to regions during an evaluation. In §3.3, we introduce effect types

(types and effects), which represent relevant effects (accesses to regions) of

an evaluation together with the type of its result. The basic lifetime interpre­

tation of typing judgments for region allocation and deallocation with explicit

effects is then sound since all accesses to regions are represented in the effect

of an expression, as are those from the environment part of a lexical closure.



3.1 Introduction and Overview 89

Region­Based Effect Analyses

The development in §3.2 and §3.3 is focused on the conceptual roles of

types, effects, value flow information, and lifetime interpretation of typing

judgments. In particular, the type systems are monomorphic, and regions

cannot be passed as parameters. Turning our attention to realistic region­

based memory management, §3.4 extends the region annotations by adding

region abstraction and region application. This extension provides the basis

for region polymorphism, which is crucial for practicality. The key result of

this section is conditional correctness: If a region annotated program does not

run into an error (in particular, does not access an unallocated or deallocated

region) then it has the same result as the underlying program without region

annotations. This result by itself shows that region annotations may intro­

duce errors during evaluation, but do not otherwise change the semantics of

the underlying program. It is noteworthy that conditional correctness holds

for all region­annotated terms independent of any type system.

§3.5 presents TT, the Tofte–Talpin region type system, in a simplified form

and adapted to our setting. The main result in this section is type sound­

ness: no TT­annotated term can go wrong. Combining soundness with condi­

tional correctness we obtain correctness: A TT­annotated program produces

the same result as the underlying unannotated program. This section high­

lights the role of the type system: its job is to ensure soundness; conditional

correctness is already taken care of.

Region­Based Systems: Inference and Systems

There are usually many different well­annotated versions of a given underly­

ing program, all of which are correct. They do not have the same efficiency

characteristics: Some retain regions substantially longer during execution

than others. In §3.6 we turn to the question of how to automatically infer

“good” region annotations. Region inference is technically complex. The sec­

tion discusses the algorithmic techniques that have been used for TT infer­

ence and a number of restricted cases, providing pointers to the relevant

literature for detailed descriptions.

The Tofte–Talpin type system enforces a stack discipline on region allo­

cation and deallocation driven by a lexically scoped region­creation expres­

sion. §3.7 presents refinements of its standard implementation to accom­

plish better region performance for lexically scoped regions: region resetting

and delayed allocation/early deallocation. Furthermore, it discusses region

lifetime subtyping and systems where region allocation and deallocation are

decoupled altogether: calculus of capabilities for continuation passing style

programs and imperative regions.
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Finally, §3.8 surveys implementations with statically checked region­based

memory management: ML Kit with Regions, a Standard ML compiler; Cyclone

and Vault, which are type­safe C­like languages with explicit region manage­

ment and other novel extensions; and prototype systems for Java and Prolog.

It briefly reviews systems and libraries for region­based programming with no

static region safety guarantees, but with dynamic or no­region fault detection.

3.2 Value Flow by Typing with Labels

The language BL, also called Finitary PCF (Jung and Stoughton, 1993; Loader,

2001), is a simply typed lambda­calculus with general recursion (fix), Boolean

values and call­by­value semantics. It is the underlying language, for which

we shall develop region­based memory management based on effect type sys­

tems in this section. Its syntax and small­step operational semantics are given

in Figure 3­1.

Tagged Language

In this subsection we introduce TL, which is BL extended with explicit tagging

and untagging operations. Syntax and operational semantics are defined in

Figure 3­2, extending the definitions for BL in Figure 3­1.

The category of label variables ρ designates a denumerable set of label vari­

ables ρ0, ρ1, . . . . Like ordinary program variables, label variables are atomic

and have no internal structure. For convenience we may abbreviate label ex­

pression to label. Labels p can only consist of label variables for now. We shall

extend p later. Anticipating their reinterpretation later, we shall also call label

variables region variables and labels regions or places.

Operationally, evaluation of t at p consists of tagging the value of t with

label p. We write the result of tagging value v with p as 〈v〉p. The untagging

operation t at p′ evaluates t to a tagged value 〈v〉p, checks that its label p

matches p′ and, if so, returns the underlying value v. If the label does not

match, the evaluation gets stuck—it goes wrong. As we shall see, the typing

rules of TL guarantee that evaluation never goes wrong in this way for well­

typed terms.

The tagging and untagging operations serve to name certain sets of values

and to mark where such values are constructed and used. Note the following:

• Multiple subterms of a term may have the same label.

• Even though a label may occur only once in a program, it may tag multiple

values at run time; for example, in λx0.(x0 at ρ0) the same label ρ0 will
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Terms

t ::= terms:

v value expression

x variable

t t application

if t then t else t conditional

fix x.t recursion

v ::= value expressions:

λx.t abstraction

bv truth value

bv ::= truth values:

tt true

ff false

Evaluation rules t -→ t′

(λx.t12) v2 -→ [x, v2]t12 (E­Beta)

fix x.t -→ [x, fix x.t]t (E­FixBeta)

if tt then t2 else t3 -→ t2 (E­IfTrue)

if ff then t2 else t3 -→ t3 (E­IfFalse)

t1 -→ t′1

t1 t2 -→ t′1 t2

(E­App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(E­App2)

t1 -→ t′1

if t1
then t2

else t3
-→ if t′1

then t2

else t3

(E­If)

Types

T ::= types:

bool Boolean type

T→ T function type

Typing rules Γ ` t : T

x 6∈ Γ ′

Γ ,x : T, Γ ′ ` x : T
(T­Var)

Γ ` bv : bool (T­Bool)

Γ ` t1 : bool

Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T­If)

Γ ,x : T1 ` t : T2

Γ ` λx.t : T1 → T2

(T­Abs)

Γ ` t0 : T1 → T2 Γ ` t1 : T1

Γ ` t0 t1 : T2

(T­App)

Γ ,x : T ` t : T

Γ ` fix x.t : T
(T­Fix)

Derived form

let x = t1 in t2
def
= (λx.t2) t1

Figure 3­1: Base language BL

tag multiple values if the function is called multiple times with different

argument values.

• Labels let us distinguish values produced in different places even though

they are extensionally equal; for example, in a call f (tt at ρ0) (tt at ρ1)

we can keep track of the uses of both arguments separately even though

they are the same values.

• We distinguish between v at p and 〈v〉p. The former denotes an uneval­

uated expression, where v has not been tagged with p yet, and the lat­

ter denotes the result of performing the tagging. This distinction will be
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New terms

t ::= . . . terms:

t at p tagging

t ! p untagging

v ::= . . . value expressions:

〈v〉p tagged value

p ::= label expressions:

ρ label variable

New evaluation rules t -→ t′

t -→ t′

t at ρ -→ t′ at ρ
(E­Tag)

v at ρ -→ 〈v〉ρ (E­TagBeta)

t -→ t′

t ! ρ -→ t′ ! ρ
(E­Untag)

〈v〉ρ ! ρ -→ v (E­UntagBeta)

New types

T ::= . . . types:

T at p tagged value type

New typing rules Γ ` t : T

Γ ` t : T

Γ ` t at p : T at p
(T­Tag)

Γ ` t : T at p

Γ ` t ! p : T
(T­Untag)

Γ ` v : T

Γ ` 〈v〉p : T at p
(T­TagValue)

Figure 3­2: Tagged language, TL (extension of BL)

important when interpreting labels as regions later on: evaluation of the

former has the effect of accessing the region p whereas the latter does not.

A term is closed if it has no free occurrences of variables. (Closed terms

may have free occurrences of label variables.) A closed value expression is a

value.

We write t
t
-→ t′ if t -→ t′ can be derived from the TL evaluation rules;

that is, the evaluation rules of both Figures 3­1 and 3­2. A term t is final (or

a final state) if there is no term t′ such that t
t
-→ t′. Each value expression

is final. We call all final states that are not value expressions stuck (or stuck

states).

We write t ↓ t′ if t
t
-→
∗
t′ and t′ is final. We write t ↓ if there exists t′

such that t ↓ t′. If t has no final state and thus does not terminate we write

t ↑.

For simplicity we shall think of BL as a subset of TL. This is justified since

all BL­terms are also TL­terms and both evaluation and typing relations for

TL are conservative over BL. For emphasis we may write t
BL
-→ t′ if t

t
-→ t′

and t,t′ are BL­terms.
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Labels as Value Flow Information

The label erasure (or simply erasure) of a TL­term is the BL­term we obtain by

erasing all occurrences of at p, ! p and 〈.〉p in it. More precisely, we define

erasure and its inverse, completion, as follows:

3.2.1 Definition [Erasure, completion]: Let t ∈ TL. Then the erasure ‖t‖ of

term t is defined as follows:

‖x‖ = x

‖t1 t2‖ = ‖t1‖ ‖t2‖

‖if t1 then t2 else t3‖ = if ‖t1‖ then ‖t2‖ else ‖t3‖

‖fix x.t‖ = fix x.‖t‖

‖λx.t‖ = λx.‖t‖

‖tt‖ = tt

‖ff‖ = ff

‖t at p‖ = ‖t‖

‖t ! p‖ = ‖t‖∥∥∥〈v〉p
∥∥∥ = ‖v‖

Conversely, we call a TL­term t′ a completion of BL­term t if ‖t′‖ = t. 2

Note that erasures are BL­terms. Note also that erasures are closed under

substitution:

3.2.2 Proposition: ‖[x, t2]t1‖ = [x, ‖t2‖]‖t1‖ 2

A constructor/deconstructor completion (or con/decon completion) is a com­

pletion where each value expression is tagged and untagging takes place

in each destructive context; labels must not occur anywhere else. Formally,

con/decon completions are generated from t in Figure 3­3.

In a con/decon completion each value gets tagged when it is created, and

every such tag is checked and removed immediately before the underlying

untagged value is destructed—that is, when it is needed as the function in a

function application or as the Boolean test in a conditional. In this fashion

the label p in t ! p tells us which value expressions could have constructed

the value of t.

For this to be true, however, evaluations of TL­terms must not get stuck due

to label mismatch in a redex 〈v〉ρ ! ρ′. Intuitively, the reason for this is as

follows. It would be clearly wrong to conclude that evaluation of t ! ρ1 uses

a value constructed by a value expression labeled ρ1 in the original source
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Con/decon completion templates

t ::= :

v

x

(t ! p) t

if (t ! p) then t else t

fix x.t

v ::= :

(λx.t) at p abstraction

bv at p truth value

bv ::= truth values:

tt true

ff false

Figure 3­3: Con/decon completions

program if t evaluates to 〈tt〉ρ0
. Note, however, that 〈tt〉ρ0

! ρ1 is stuck,

which means t ! ρ1 gets stuck. Conversely, if an evaluation does not get

stuck, all its computation steps of the form 〈tt〉ρ ! ρ′ succeed, which is only

possible if ρ = ρ′. In that case a subterm t ! ρ expresses that the value of t

is constructed from one of the value expressions labeled ρ.

As we shall see, the type system of TL guarantees that no stuck states can

occur during evaluation of (well­typed) TL­terms. So the label information in

TL­terms can be soundly interpreted as value flow information.

3.2.3 Example: Consider the BL­program t0:

let fst= λu.λv.u in

(let x = λp.p tt ff in λy.λq.q (x fst) y)

tt

Value flow analysis should tell us that x may be applied to fst (which is rather

easy to see), fst may be applied to tt (which is not immediately obvious from

the source code), and the λ­abstraction λy.λp.p (x fst) y may be applied to

tt, but λp.p (x fst) y is not applied anywhere.

The following con/decon completion t1 of t0 captures this:

let fst= λlKu.λlbv.u in

(let x = λlxp.((p
lK ttlt )

lb
fflf ) in

λlf y.λlcq.((q
lq (xlx fst))

ld
y))

ttlt

To make the completion more readable, we have written λpx.t for (λx.t) at p,

bvp for bv at p, and (tp t′) for (t ! p) t′. 2

3.2.4 Exercise [«, 3]: Show that t1 is a TL­term by giving a TL­typing derivation

for it. 2
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3.2.5 Exercise [«, 3]: Give a reduction sequence t1
t
-→ . . .

t
-→ tk such that tk is

final. Which (E­UntagBeta) reduction steps occur in it? Which labels occur in

those steps? 2

3.2.6 Exercise [«, 3]: Note that t0 is the erasure of t1: ‖t1‖ = t0. Give a reduction

sequence ‖t1‖
BL
-→ . . .

BL
-→ t′m such that t′m is final. How are tk from Exer­

cise 3.2.5 and t′m related to each other? How long is the reduction sequence

for t0 to tk in comparison to the reduction sequence for t1? (Generalize to

arbitrary TL­terms and their erasures.) 2

3.2.7 Exercise [««]: Let S be a substitution mapping the labels occurring in t1 to

(not necessarily different) labels. Consider the term S(t1), which is t1 with

its labels substituted according to S. Is S(t1) TL­typable? If so, does closure

under all substitutions hold for all closed TL­terms? If not, for which subset

of the closed TL­terms does it hold? 2

Correctness

A TL­term can be thought of as an instrumented version of the underlying

BL­term. Intuitively, this is because an evaluation of a TL­term performs the

same proper computation steps as its erasure (the underlying BL­term), with

interspersed auxiliary label reduction steps (E­TagBeta) and (E­UntagBeta).

Correctness means that evaluation of TL­terms gives the “same” results as

evaluation of their underlying BL­terms. It is factored into two orthogonal

parts:

1. Conditional correctness, which states that TL­terms produce the same re­

sults as their underlying BL­terms unless they get stuck. Conditional cor­

rectness is a property of the evaluation rules for TL and BL alone; it is

independent of their typing rules.

2. Soundness, which states that TL­terms do not get stuck.

It is instructive to see how this method works in a technically very simple

setting such as TL. For this reason we shall introduce it below. The same

results for more expressive languages with effect typing, region scoping and

polymorphism will be proved later on in §3.4 and §3.5.

3.2.8 Definition: Define relations .
t1
-→ . and .

t2
-→ . on TL­terms as follows:

1. t1
t2
-→ t2 if t1 -→ t2 is derived by application of Axiom (E­TagBeta) or

(E­UntagBeta) from Figure 3­2.

2. t1
t1
-→ t2 if t1 -→ t2 is derived from all evaluation rules of Figures 3­1 and

3­2, but without application of Axioms (E­TagBeta) or (E­UntagBeta). 2
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Each
t1
-→ reduction step corresponds to a reduction step in the underlying

BL­term whereas
t2
-→ reductions do not change the underlying BL­term at all.

This is captured in the following lemma.

3.2.9 Lemma [Simulation]: Let t,t1,t2 range over TL­terms.

1. If v is a value expression then so is ‖v‖.

2.
t2
-→ is strongly normalizing.

3. If t1
t1
-→ t2 then ‖t1‖

BL
-→ ‖t2‖.

4. If t1
t2
-→ t2 then ‖t1‖ = ‖t2‖. 2

3.2.10 Exercise [««, 3]: Prove Lemma 3.2.9. 2

Using Lemma 3.2.9 we can prove the following theorem. It states that eval­

uation of a TL­term performs basically the same computation steps as the

underlying BL­term until it gets stuck or arrives at a value expression.

3.2.11 Theorem [Conditional Correctness]: For TL­terms t,t′ we have:

1. If t
t
-→
∗
t′ then ‖t‖

BL
-→
∗
‖t′‖.

2. If t ↑ then ‖t‖ ↑.

3. If ‖t‖ gets stuck then t gets stuck, too. 2

3.2.12 Exercise [«]: Prove Theorem 3.2.11. 2

The next lemma says that the type of a term is preserved under evaluation.

3.2.13 Lemma [Subject Reduction (Preservation)]: Let t,t′ be TL­terms. If Γ `

t : T and t
t
-→ t′ then Γ ` t′ : T. 2

3.2.14 Exercise [««, 3]: Prove Lemma 3.2.13 in standard fashion: by induction on

t
t
-→ t′ and formulating the requisite substitution lemma. 2

3.2.15 Lemma [Progress]: If ` t : T then either t = v for some value (closed value

expression) v or there exists t′ such that t
t
-→ t′. 2

Proof: (Sketch) The lemma follows from the following statement: For all deriv­

able Γ ` t : T, if Γ = ∅ then

1. there exists t′ such that t
t
-→ t′, or
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2. (a) if T is of the form T′ → T′′ then t = λx.t′′ for some x,t′′, and

(b) if T = bool then t ∈ {tt,ff}.

This statement can be proved by rule induction on Γ ` t : T. 2

The Progress Lemma says that a well­typed closed term is not stuck. To­

gether with the Subject Reduction Lemma it says that, since all its reducts are

well­typed, too, it never gets stuck.

3.2.16 Theorem [Soundness]: If ` t : T then evaluation of t does not get stuck. 2

Putting the Conditional Correctness Theorem and the Soundness Theorem

together we obtain as a corollary the correctness of TL relative to BL:

3.2.17 Corollary [Correctness]: Let t be a closed TL­term and v a TL­value.

1. t ↑ iff ‖t‖ ↑.

2. ‖t‖
BL
-→
∗
‖v‖ iff there exists a TL­value v′ with ‖v′‖ = ‖v‖ and t

t
-→
∗
v′. 2

3.2.18 Exercise [««]: Prove Corollary 3.2.17. 2

Inference of Value Flow Information

Given a BL­term t we are interested in finding a con/decon completion to

obtain value flow information about t. Note, however, that a BL­term t may

have many different con/decon completions, and while each provides sound

value flow information, some provide better information than others. For ex­

ample, the trivial completion in which each label operation in a term has the

same label ρh contains no useful value flow information: it says that any value

created anywhere may be used anywhere. Correct, but trivial. Intuitively, we

are interested in a con/decon completion with a maximal number of distinct

labels, as this gives the most fine­grained value flow information.

3.2.19 Exercise: Consider t0 =

let fst = λu.λv.u in

(let x = λp.p tt ff in λy.λq.q (x fst) y)

tt

again and its con/decon completion t1 =

let fst= λlKu.λlbv.u in

(let x = λlxp.((p
lK ttlt )

lb
fflf ) in λlf y.λlcq.((q

lq (xlx fst))
ld
y))

ttlt .
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Does there exist another con/decon completion of t0 with more distinct la­

bels or is t1 maximal in this sense? 2

Indeed, it can be shown that each BL­term has a con/decon completion such

that any other of its con/decon completions can be obtained by applying a

label substitution to it. We call it a principal completion of the given BL­term.

In particular, principal completions have the maximal possible number of

distinct labels. Furthermore, they are unique up to renaming of labels.

We shall not go into any technical details on how to infer principal comple­

tions, but present the basic ideas.

A con/decon completion template for a BL­term t is a con/decon com­

pletion of t in which each label variable occurs exactly once. Clearly, each

con/decon completion that satisfies the TL­typing rules is a substitution in­

stance (mapping labels to labels) of this template. Furthermore, it can be

shown that a substitution gives rise to a well­typed con/decon completion

if and only if it satisfies a set of equational constraints between the tem­

plate labels. That set can be computed in linear time from the con/decon

completion, and a most general solution of the constraints can likewise be

computed in linear time. The most general solution, in turn, gives rise to a

principal completion when applied to the con/decon completion template.

What we have described is the standard method for simple type inference by

equational constraint extraction and solution; see, for example, Wand (1987b)

and Henglein (1989) for simple type inference and Mossin (1997, Section 2)

for its application to value flow analysis.

The pleasant properties of processing sets of equational constraints—in

particular, existence of most general/principal solutions and efficient incre­

mental algorithms for computing them (unification)—have led to type sys­

tems whose design has been driven to a considerable degree by a desire to

deploy efficient unification technology for automatic inference, not only by

semantic or logical analysis for capturing relevant semantic information.

Labels as Regions

We can think of region variables as being bound to memory regions and

(re)interpret tagging and untagging operations as follows. The value 〈v〉p de­

notes a(ny) pointer into region p where v is stored. The tagging operation

t at p is implemented by storing the value of t in region p. Its result is the

pointer to where the value is stored. The untagging operation t ! p is imple­

mented as evaluating t to a pointer, checking that it points into region p and,

if it does, retrieving the pointer’s value. The TL type system guarantees that

all checks succeed and so can be elided at run time.
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New terms

t ::= . . . terms:

newρ.t region­scoped term

p ::= label expressions:

• deleted/inaccessible region)

New evaluation rules t
ST
-→ t′

t -→ t′

newρ.t -→ newρ.t
(E­New)

newρ.v -→ [ρ , •]v (E­NewBeta)

New typing rules Γ ` t : T

Γ ` t : T

ρ 6∈ frv(Γ ,T)

Γ ` newρ.t : T
(T­NewUnsound)

Figure 3­4: Scoped tagged language (unsound), STL (basis: TL)

Now consider the (derivable) judgment Γ ` t : T for a subterm t in a pro­

gram. Assume that ρ occurs in t in tagging and/or untagging operations. If

ρ does not occur in Γ then, intuitively, the environment in which t evaluates

contains no values in ρ; it is empty. Furthermore, if ρ does not occur in T ei­

ther, then no values stored in ρ are needed by the context of t; all the values

stored in ρ can be deleted.

This leads us to the introduction of terms with (lexically) scoped regions:

newρ.t. Here newρ.t binds region variable ρ in t. The semantics of newρ.t

is as follows: allocate a new region, bind it to ρ, evaluate t and, finally, deal­

locate the region bound to ρ. This results in a stack­oriented memory man­

agement discipline: the most recently allocated region is deallocated first.

Figure 3­4 shows newρ.t and corresponding evaluation and typing rules,

which extend TL to STL. In rule (T­NewUnsound) function frv(Γ ,T) denotes

the set of region variables that occur freely in Γ and T.

Rule (E­New) expresses that a region­scoped term newρ.t is evaluated by

reducing t to a value v. During this reduction, it is possible that region ρ

is accessed. After evaluation is complete newρ.v is reduced to [ρ , •]v by

rule (E­NewBeta), where • is substituted for all occurrences of ρ in v. In

particular, all occurrences in v of the form 〈v′〉ρ are replaced by 〈v′〉•. Since

rule (E­UntagBeta) from Figure 3­2 requires a proper region variable, any

access to such a value gets stuck. Note, in particular, that the term 〈v′〉• ! •

is stuck. In this fashion the substitution of • for ρ makes all values stored

in ρ inaccessible in ensuing computation steps, which models deleting the

whole region of values stored in ρ.

The bad news is that STL is unsound: Stuck states can occur. The reason

for this is that a term t with derivable judgment Γ ` t : T may still access

region ρ during evaluation even if ρ occurs neither in Γ nor T.
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3.2.20 Example: Consider the following STL­term tf =:

newρ0.let x = tt at ρ0 in λy.if x ! ρ0 then y else ff at ρ1

It reduces as follows:

newρ0.let x = tt at ρ0 in λy.if x ! ρ0 then y else ff at ρ1 -→

newρ0.let x = 〈tt〉ρ0
in λy.if x ! ρ0 then y else ff at ρ1 -→

newρ0.λy.if 〈tt〉ρ0
! ρ0 then y else ff at ρ1 -→

λy.if 〈tt〉• ! • then y else ff at ρ1

Note that ρ0 occurs freely in λy.if 〈tt〉ρ0
! ρ0 then y else ff at ρ1 before

performing the last reduction step. Its type bool at ρ1 → bool at ρ1, how­

ever, does not mention ρ0. Note that

λy.if 〈tt〉• ! • then y else ff at ρ1

is a value; it is not stuck. It is easy to see, however, how it can give rise to a

stuck state. The program tf (tt at ρ1) is a well­typed STL­program of type

bool at ρ1, yet evaluation gets stuck:

tf (tt at ρ1)
∗
-→

(λy.if 〈tt〉• ! • then y else ff at ρ1) (tt at ρ1) -→

if 〈tt〉• ! • then ff at ρ1 else ff at ρ1

To continue evaluation would require reduction of 〈tt〉• ! • to a Boolean

value; 〈tt〉• ! •, however, is stuck. 2

In §3.3 we introduce explicit effects into types to capture the accesses to

regions needed for evaluation. This is the path taken by Tofte and Talpin

(1997) in their ground­breaking work on region­based memory management.

Notes on Value Flow Analysis

Although Reynolds (1969) was the first to look at the problem of comput­

ing flow for structured data and called it data set computation, we follow

Schwartz (1975) in using the term value flow to emphasize its general ap­

plicability to primitive, structured, and higher­order data. Schwartz (1975)

developed value flow analysis for structured values in the context of SETL

and was the first to suggest exploiting lifetime analysis based on value flow

analysis for region­based memory management. Closure analysis, the term in­

troduced by Sestoft (1989), and control flow analysis, the term used by Shivers

(1988; 1991), focus on the flow of function values (function closures). Note



3.2 Value Flow by Typing with Labels 101

that data and control flow are interdependent for higher­order languages; see

Mossin (1997, Section 1.4) for a discussion of this. Shivers coined the term

0CFA, which in other literature is also used for the monovariant value flow

analyses above (which is different from Shivers’ 0CFA, however; see Mossin

[1997] for a discussion). Another form of monovariant value flow analysis is

set­based analysis (Heintze, 1994).

Palsberg and O’Keefe (1995) showed that safety analysis, a constraint­based

analysis, characterizes typability in Amadio and Cardelli’s type system (1993)

with recursive subtyping, providing a type theoretic characterization of mono­

variant value flow analysis. Constraint­based value flow analysis for object­

oriented languages was pioneered by Palsberg and Schwartzbach (1990, 1994).

See Nielson, Nielson, and Hankin (1999) for a presentation of monovariant

value flow analysis based on flow logic and abstract interpretation.

Classical data flow analysis corresponds to value flow analysis for primitive

data (only); it has been used in compilers already in the early 1960s. See Aho,

Sethi, and Ullman (1986) for its history.

Monovariant value flow analysis is directional: values flow from construc­

tor points (value expressions) to uses, but not the other way around. The

value flow information for BL as expressed in TL­completions corresponds to

a very simple (and inexpressive) value flow analysis: equational flow analysis,

in which value flows are treated symmetrically (Heintze, 1995). Intuitively,

this means all flows are bidirectional: values do not only “flow” from their

creation points to their uses, as in monovariant value flow analysis (0CFA),

but somewhat weirdly, also the other way around. The type­based presenta­

tion of equational value flow analysis in this section owes greatly to Mossin

(1997, Section 2), where it is called simple flow analysis.

Polymorphic value flow analysis was developed by Mossin (1997), extend­

ing earlier work by Dussart, Henglein, and Mossin (1995) and Henglein and

Mossin (1994) on combining subtyping, parametric polymorphism and poly­

morphic recursion for binding­time analysis. Polymorphic value flow anal­

ysis is modular and can be computed asymptotically in the same time as

monomorphic value flow analysis. Transitive closure is the algorithmic bot­

tleneck in both. Efficient algorithms are given by Fähndrich, Rehof, and Das

(2000), Rehof and Fähndrich (2001), and Gustavsson and Svenningsson (2001).

Polymorphic equational value flow analysis underlies Tofte–Talpin style

region­based memory management; see §3.5. Region­based memory manage­

ment based on directional value flow analysis appears possible, but has not

been explored. The recognition that region inference performs a form of value

flow and dependency analysis is folklore; it has been exploited by Helsen and

Thiemann (2004) for polymorphic specialization. Deriving region­based mem­

ory management systematically from type­based value flow analysis appears
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to be new, however. The syntactic modeling of region deallocation by • is due

to Helsen and Thiemann (2000) and Calcagno (2001).

See §3.4 and the following sections for more references on region­based

memory management.

3.3 Effects

We have seen in the previous subsection that the soundness of a typing rule

may depend not only on the results of evaluations, but on certain aspects

of the evaluation itself, in other words on how a value is computed, not just

which value is computed. To capture properties of evaluation we introduce

effects.

Effect Type Judgments

The basic effect type judgment is

Γ ` t :ϕ T

where ϕ is an effect expression (henceforth simply called effect) and ϕT is an

effect type or type and effect. The judgment should be read informally as “Un­

der the assumptions Γ , the evaluation of t may have the observable effect ϕ,

and it eventually yields a value of type T, if any.” For program analysis pur­

poses observable may also be understood as interesting. When an evaluation

has no observable effect, we say it has the empty effect, written ∅, and ∅T is

abbreviated to T.

In a call­by­name language, Γ is a sequence of effect type assumptions of the

form x : ϕT, since x may be bound to unevaluated thunks, whereas in a call­

by­value language we have type assumptions of the form x : T since variables

are bound to values, whose evaluation is guaranteed to always have the empty

effect. Analogously, in a call­by­name language we have general functional

types of the form ϕ1T1 → ϕ2T2; in a call­by­value language, however, we can

restrict ourselves to functional types of the form T1 → ϕT2.1

1. The syntax ϕT has been chosen here for several reasons:

• It expresses that yielding a value of type T is the last “effect” of evaluation; that is it occurs

after ϕ.

• Functional types in a call­by­value language end up being written T1 → ϕT2, which is con­

sistent with the notation used in the literature where the delayed effect ϕ is written above

the function type arrow.

• It is consistent with the syntax MϕT used in monadic interpretations of type and effect

systems in the literature.
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Terms

t ::= terms:

v value expression

x variable

t t application

if t then t else t conditional

t at p tagging

t ! p untagging

newρ.t label­scoped term

fix x.t recursion

v ::= value expressions:

λx.t abstraction

bv truth value

〈v〉p tagged value

bv ::= truth values:

tt true

ff false

p ::= label/region expressions:

ρ label/region variable

• deleted/inaccessible label/region

Effect expressions

ϕ ::= {ρ, . . . , ρ} effect expressions:

Types

T ::= types:

bool Boolean type

T→ ϕT function type

T at p tagged value type

Effect typing rules Γ ` t :ϕ T

x 6∈ Γ ′

Γ ,x : T, Γ ′ ` x :ϕ T
(TE­Var)

Γ ` bv :ϕ bool (TE­Bool)

Γ ` t1 :ϕ bool

Γ ` t2 :ϕ T Γ ` t3 :ϕ T

Γ ` if t1 then t2 else t3 :ϕ T
(TE­If)

Γ ,x : T1 ` t :ϕ2 T2

Γ ` λx.t :ϕ1 T1 → ϕ2T2

(TE­Abs)

Γ ` t0 :ϕ T1 → ϕT2

Γ ` t1 :ϕ T1

Γ ` t0 t1 :ϕ T2

(TE­App)

Γ ` t :ϕ T p ∈ϕ

Γ ` t at p :ϕ T at p
(TE­At)

Γ ` t :ϕ T at p p ∈ϕ

Γ ` t ! p :ϕ T
(TE­From)

Γ ` v :ϕ T

Γ ` 〈v〉p :ϕ T at p
(TE­Cell)

Γ ` t :ϕ T ρ 6∈ frv(Γ ,T)

Γ ` newρ.t :ϕ−{ρ} T
(TE­New)

Γ ,x : T ` t :ϕ T

Γ ` fix x.t :ϕ T
(TE­Fix)

Figure 3­5: Scoped effect typed language ETL(sound)

Effect Typed Language ETL

We shall now present an effect typing system for language ETL. ETL has the

same source terms and evaluation rules as STL. The only difference to STL

is its effect type system. Syntax and effect typing rules for ETL are given in

Figure 3­5.

An effect is a finite set of region variables. Note that it must not contain •.

A judgment Γ ` t :ϕ T is intended to express that, assuming the free variables
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of t are bound to values of types according to Γ , the regions that t accesses

during evaluation are included in ϕ and the result of the evaluation has type

T if it terminates.

The typing rules of Figure 3­5 are basically those corresponding to the

monomorphic subset of the Tofte­Talpin system, which we shall encounter in

§3.5.2 They are inspired by a desire to employ equational constraint solving

for effect expressions as much as possible.

Since we are only interested in whether a particular region may be accessed

during evaluation of a term or not, our effect system does not record the

order in which effects take place. We simply record the set of region variables

that may be accessed during evaluation of t. In this sense our effect type

system is control­flow insensitive. Effect type systems that capture evaluation

order in their effects are discussed briefly later.

Soundness

Effects make the region variables accessed during evaluation sufficiently “vis­

ible” to ensure that the typing rule for newρ.t is sound.

3.3.1 Example: Consider the term

tf = newρ0.let x = tt at ρ0 in λy.if x ! ρ0 then y else ff at ρ1

from Example 3.2.20 again. Whereas it is typable in STL even though it gets

stuck when applied to an argument, it is not typable in ETL. To see this,

consider the let­expression tl

let x = tt at ρ0 in λy.if x ! ρ0 then y else ff at ρ1

inside tf . Its ETL effect type Tl is {ρ0}(bool at ρ1 → {ρ0}bool at ρ1). Note that

ρ0 occurs in the effect, but in neither the function type’s domain nor its range

type. This reflects the fact that an application of tl may access region ρ0.

Since ρ0 ∈ frv(bool at ρ1 → {ρ0}bool at ρ1), rule (TE­New) is not applicable,

and so there is no way of inferring a type for tf , which indeed would be

unsound. 2

3.3.2 Exercise [««, 3]: Give a derivation of ` tl : Tl . Argue that any ETL­derivable

type T for tl must contain an occurrence of ρ0. 2

2. The only substantial difference is rule (TE­App). It is more restrictive than the corresponding

rule (RT­App) in the sense that it requires ϕ2 ⊆ ϕ in rule (RT­App) to be solved equationally.

Note that, in general, the typing rules of TT in §3.5 are for con/decon completions (only). They

can be derived from ETL by merging rules (TE­From) and (TE­Cell) into the other rules.
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Generally, we can prove the following soundness theorem.

3.3.3 Theorem [Soundness of ETL]: If ` t :ϕ T then evaluation of t does not get

stuck. 2

We shall not prove this result here. The techniques will be presented in

§3.5 for a more general type system.

3.3.4 Exercise [««««, 3]: Prove correctness for ETL. Do so by extending the Con­

ditional Correctness Theorem and the Soundness Theorem for TL to ETL. 2

Notes on Effect Type Systems

Type and effect systems are introduced by Lucassen, Gifford and Jouvelot

(Gifford and Lucassen, 1986; Lucassen, 1987; Lucassen and Gifford, 1988;

Jouvelot and Gifford, 1989) for integrating imperative operations, notably up­

datable references and control effects, into functional languages. Type and

effect inference using unification technology, which is the basis for region

inference, is developed by Jouvelot and Gifford (1991) and Talpin and Jou­

velot; Talpin and Jouvelot (1992; 1994). Tofte and Talpin (1997) develop it

into region inference for region­based memory management.

Nielson and Nielson (1994, 1996) pioneered type and effect systems with

behaviors or causal effects, where effect types model order of evaluation. In

such systems the language of effect expressions has operators for sequen­

tial composition and choice. They also provide for recursively defined effect

expressions. The sequential composition operator captures the sequential or­

der of the execution of effects. The choice operator corresponds to choice

of one effect or another. This changes the nature of effects substantially as

they basically turn into process algebras, with their own nontrivial theory.

Modeling order of execution is key to capturing synchronization properties

of concurrent processes, where atomic effects include sending and receiving

messages. See Amtoft, Nielson, and Nielson (1999) and Nielson, Nielson, and

Hankin (1999) for references on soundness, inference and applications.

The applications of type and effect systems include verification of cryp­

tographic protocols by effect type checking (Gordon and Jeffrey, 2001b,a,

2002), behavioral type systems for asynchronous programming (Igarashi and

Kobayashi, 2001; Rajamani and Rehof, 2001; Chaki, Rajamani, and Rehof,

2002; Rajamani and Rehof, 2002), and interference analysis for concurrent

threads (see Flanagan and Qadeer [2003] for references).

In terms of the computational λ­calculus of Moggi (1989), types are asso­

ciated with values and effect types with computations; that is, intuitively, an

effect type ϕT corresponds to an (effect indexed) monad typeMϕT. This con­
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nection is investigated by Semmelroth and Sabry (1999), Wadler (2003), and

Fluet (2004).

3.4 Region­Based Memory Management

Region­based memory management is a particular way to manage the dy­

namically (or heap­) allocated memory of a program. Traditionally, the heap

is managed either explicitly by the programmer using constructs such as C’s

malloc and free, or automatically by a garbage collector leaving the pro­

grammer with only the responsibility of when to allocate memory. Region­

based memory management uses explicit instructions for the allocation and

deallocation of memory, but the safety of the explicit deallocations is guar­

anteed by a type system, and in some cases a compile­time analysis called

“region inference” (§3.6) can insert the allocation and deallocation instruc­

tions automatically.

Basically a region is a sub­heap containing a number of heap­allocated val­

ues, and the heap is a collection of regions. A region starts out empty and

grows when a value is allocated in it. A region can grow independently of the

other regions constituting the heap; that is, one can allocate values in all re­

gions currently available. Regions can only shrink when the complete region

is deallocated; one does not deallocate individual values.

In summary, we use three region primitives: (1) allocation of a new region,

(2) allocation of a value in a region, and (3) deallocation of a complete region

(and thereby all values allocated in the region). In contrast to TL in §3.2 we

simply elide dereferencing.

A Region­Annotated Language

Our region­annotated language RAL is a lambda calculus with a fixed­point

operator and (Boolean) constants, extended with explicit region annotations.

Its syntax and evaluation semantics are defined in Figure 3­6. As usual, λx.t

and fix x.u binds the variable x in t and u, respectively. Similarly, λρ.u and

newρ.t binds the region variable ρ in u and t, respectively.

By analogy with §3.2, we define basic semantic notions for RAL. We write

t
RAL
-→ t′ if t -→ t′ can be derived from the RAL evaluation rules in Figure 3­6.

A RAL­term t is final if there is no term t′ such that t
RAL
-→ t′. Note that each

value expression is final. All other final terms are stuck.

We write t -→∗ t′ if t
RAL
-→
∗
t′ and t′ is final and t ↓ if there exists t′ such

that t ↓ t′. If t has no final state and thus does not terminate, we write t ↑.

The relation →∗! on terms is defined by: t→∗! t′ if t -→∗ t′ and t′ is final.
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Terms

t ::= terms:

u value or almost­value

x variable

if t then t else t conditional

fix x.u recursion

t t application

t [[p]] region application

newρ.t region creation

u ::= almost­values:

v value

(λx.t) at p abstraction

(λρ.u) at p region abstraction

v ::= value expressions:

bv truth value

〈λx.t〉p closure

〈λρ.u〉p region closure

bv ::= truth values:

tt true

ff false

p ::= places:

ρ region variable

• deallocated

Evaluation t
RAL
-→ t′

t1 -→ t′1

if t1
then t2

else t3
-→ if t′1

then t2

else t3

(RE­If)

if tt then t2 else t3 -→ t2 (RE­IfTrue)

if ff then t2 else t3 -→ t3 (RE­IfFalse)

t1 -→ t′1

t1 t2 -→ t′1 t2

(RE­App1)

t2 -→ t′2

v1 t2 -→ v1 t
′
2

(RE­App2)

λx.t at ρ -→ 〈λx.t〉ρ (RE­Clos)

〈λx.t〉ρ v -→ [x, v]t (RE­Beta)

u -→ u′

fix x.u -→ fix x.u′
(RE­Fix)

fix x.v

-→ [x, fix x.v]v
(RE­FixBeta)

t -→ t′

t [[p]] -→ t′ [[p]]
(RE­RApp)

λρ1.u at ρ2 -→ 〈λρ1.u〉ρ2
(RE­RClos)

〈λρ1.u〉ρ2
[[p]] -→ [ρ1 , p]u (RE­RBeta)

t1 -→ t′1

newρ.t1 -→ newρ.t′1
(RE­New)

newρ.v -→ [ρ , •]v (RE­Dealloc)

Figure 3­6: Region­annotated language, RAL

3.4.1 Definition: Let the function “evalR(·)” from terms to {tt,ff,⊥,wrong} be:

a) evalR(t0) = bv iff t0 →
∗!
R bv.

b) evalR(t0) = ⊥ iff there is an infinite sequence t1,t2, . . . ,ti , . . . such that

ti
RAL
-→ ti+1 for 0 ≤ i.

c) evalR(t0) = wrong iff t0 →∗! t where t is not a value. 2
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Recall that the newρ.t construct introduces a new region variable ρ. The

variable ρ can be used to annotate value­producing terms within t. The al­

location of the new region in our system is implicit; it happens automati­

cally when the execution focus moves inside the new binder. Implicit alpha­

conversion makes sure that the new does not capture any foreign region vari­

ables before the allocation. On the other hand, deallocation is explicit in the

evaluation semantics. The (RE­Dealloc) rule records the fact that a value

stored in the deallocated region is no longer available by replacing the region

variable with the special marker •. The “dangling pointers” to deallocated val­

ues can be manipulated freely as long as one does not attempt to read the

values they point to. At that point execution will get stuck, because there is no

reduction rule for an expression of the form “〈λx.t〉• v.” Rule (RE­Beta) that

would ordinarily reduce it applies only when the place is a ρ, which explicitly

does not include • as in the effect typed language ETL.

Observe that the substitution [ρ , •] in (RE­Dealloc) can affect alloca­

tion expressions (· · · ) at ρ as well as already allocated values 〈· · · 〉ρ . In the

former case we end up with a “(· · · ) at •” expression which asks to allo­

cate something in a region that does not exist anymore. This is impossible, of

course, but the occurrence of such a subterm is not an error. The error hap­

pens if the expression is eventually executed, in which case execution will get

stuck because (RE­Clos) and (RE­RClos) demand a ρ rather than a p after the

“at.” Similarly a • can appear as the actual parameter in a region application,

and the application can even be reduced without an error.

A novel aspect of the region­annotated language, compared to the tagged

language described previously, is the presence of region abstractions. The in­

tention is that a region abstraction “λρ.u,” where u is an “almost­value (see

Figure 3­6) ranging over normal values and yet­to­be­allocated abstractions,

is the natural counterpart to a normal abstraction only at the level of re­

gions. One can apply such an abstraction to an actual place parameter p in

which case evaluation proceeds by substituting the place p for the formal

parameter ρ in u, and then evaluates the result of this substitution. Region

abstractions allow one to parameterize a function over the regions necessary

for the evaluation of the function. Typically, this means parameterizing over

the regions containing the input to the function and the regions in which the

output should be stored. We say that such a function is region polymorphic

in the region parameters.

For example, consider the following program computing Fibonacci num­

bers.3

3. In examples we shall allow ourselves to use features such as integers allocated in regions

even though they are not part of the formal development.
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fix fib. λn.

if n<2 then 1

else fib(n­2)+fib(n­1)

One possible region annotation of this program is (ignore everything but the

first line for now):

fix fib. (λρi. (λρo. (λn.

if new ρ. (n < (2 at ρ) then 1 at ρo)

else new ρ1.

new ρ2.fib[[ρ2]][[ρ1]] (new ρ.n ­atρ2 (2 at ρ))

+atρonew ρ3.fib[[ρ3]][[ρ1]] (new ρ.n ­atρ3 (1 at ρ))

) at ρi) at ρi) at ρf

The point is that the fib function expects two region parameters at runtime:

one, ρi , in which the input n is stored, and one, ρo, in which the function

is supposed to store its result. Thus, any caller of fib is required to choose

appropriate actual regions for these as witnessed in the two calls to fib in

the body.

Observe that, since the only way to allocate and deallocate a region is via

the new construct, it is not possible for the function to deallocate a region

associated with a parameter, and similarly, the function cannot itself allo­

cate such a region. The consequence is that the lifetime of regions passed as

parameters to a function encompasses the lifetime of the complete function

invocation. In order to avoid large, long­lived regions, it is therefore impor­

tant to allow the body of a recursive function to use actual parameters to

recursive invocations different from the formal parameters. This is referred

to as region polymorphic recursion in the literature, as it allows us to choose

different instantiations of the polymorphically bound region parameters for

different invocations.

Continuing the Fibonacci example above, it is crucial that the two recursive

calls to fib can each supply their own actual parameters (in this case ρ2, ρ1

and ρ3, ρ1). Thus, for each call we store the arguments in separate regions

whose lifetimes are just the duration of the function call. The results need

slightly longer lifetimes, since we need to add those up to give the result of

the original call, but they can be stored in the same region. (The example is

taken from Tofte and Talpin [1997].)

3.4.2 Exercise [««]: What would happen to the region­behavior of the Fibonacci

program if region polymorphic recursion were disallowed (that is, if the re­

cursive calls were required to use the formal region parameters as actual

region parameters)? 2
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The original calculus proposed by Tofte and Talpin (let us call it the TT cal­

culus) differs from our RAL in a number of ways. The most conspicuous dif­

ference is that the region­creation construct “newρ.t” is written “letregion

ρ in t.” A more subtle one is that TT restricts the places where region ab­

stractions and recursive function definitions can occur. Region abstractions

are only allowed in the definition of recursive functions, and a recursive func­

tion definition must appear in a let binding. These restrictions are implicit

in the syntax of TT—it combines recursion and region abstraction in a single

combined construction

t ::= letrec f[ρ1, . . . , ρk](x) at ρ = t1 in t2

which corresponds to the RAL expression

let f = fix f.(λρ1, . . . , ρk, ρ
′.(λx.t1) at ρ

′) at ρ in t2

Using the letrec as an abbreviation, we can rewrite the Fibonacci example

to the following program:

letrec fib[ρi , ρo] (n) at ρf =

if new ρ. (n < (2 at ρ) then 1 at ρo)

else

new ρ1.

new ρ2. fib[ρ2, ρ1] (new ρ. n ­atρ2 (2 at ρ))

+atρonew ρ3. fib[ρ3, ρ1] (new ρ. n ­atρ3 (1 at ρ))

3.4.3 Exercise [««]: This unfolding of the TT letrec uses abstraction over multi­

ple regions at once, which is not actually part of the RAL calculus. Show how

n­ary region abstractions can be simulated using our unary ones. 2

3.4.4 Exercise [«]: What is the role of the ρ′ parameter in the above RAL expan­

sion of TT’s letrec construction? Can you guess why it is not part of the

original TT syntax? 2

3.4.5 Exercise [«]: What is the role of ρ in the letrec construction? Is it really

operationally necessary? 2

The dynamic semantics presented by Tofte and Talpin (1997) stresses that

regions are allocated and deallocated according to a stack discipline. A run­

time configuration contains a region environment that maps region variables

to concrete regions (denoted by r), and a store that maps (concrete) regions to

the values stored in them. Evaluation of a newρ.t then proceeds as follows:

(1) first choose a fresh (concrete) region r and extend the region environment



3.4 Region­Based Memory Management 111

with a binding ρ , r and the store with a binding r , ∅ where ∅ is the

empty region containing no values; (2) then proceed with the evaluation of

t in this extended runtime configuration; (3) complete the evaluation of the

entire term by removing the bindings for ρ and r from the configuration.

That original formulation is closer to an operational understanding of how

the region operations work than the store­less semantics we use here. On the

other hand, the store­less semantics is easier to reason about, a trick due to

Helsen and Thiemann (2000) and Calcagno (2001). See Calcagno et al. (2002)

for a proof that the two styles of semantics are indeed equivalent.

Reusing Deallocated Memory

Intuitively it should be safe to reuse deallocated memory (indicated by the

special place •) while executing a region­safe program. More formally, assume

that t• is a term containing deallocated values and that t is constructed from

t• by replacing some of these with new values. Then if t• evaluates to some

value or loops indefinitely (that is, it does not go wrong), then so does t.

3.4.6 Proposition: Let Val be the set of values and Dead be the subset of values of

the form “〈. . .〉•.” Let the relation � between terms be the compatible closure

of Dead × Val. That is, t• � t if t arises from t• by replacing some (zero or

more) deallocated values by arbitrary new values.

If t• � t and evalR(t•) = Y ≠ wrong, then evalR(t) = Y , too. 2

Proof: Left as an exercise (««, 3). 2

Annotating Programs with Regions Preserves Meanings

Region annotating a program is the process of adding region annotations to

it to make the memory management explicit (see §3.6 for how to do this au­

tomatically). Thus, the process takes a program written in BL and produces a

program written in RAL. The intention is, of course, that the region­annotated

program is supposed to have the same behavior as the original program. In

other words, we shall prove that adding region annotations preserves the

meaning of the program. We make this precise in the present section. We

do so by starting with a region­annotated program and showing that it be­

haves the same as the program obtained by removing all region annotations

(thereby obtaining a program in BL, Figure 3­1).

By analogy with erasure for TL­terms, going from a term in the region­

annotated language RAL to a term in the underlying base language BL is a

matter of erasing all region annotations.
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‖bv‖ = bv∥∥∥∥if t0
then t1

else t2

∥∥∥∥ = if ‖t0‖
then ‖t1‖

else ‖t2‖

‖x‖ = x

‖(λx.t) at p‖ = λx.‖t‖∥∥∥〈λx.t〉p
∥∥∥ = λx.‖t‖

‖t1 t2‖ = ‖t1‖ ‖t2‖

‖fix x.u‖ = fix x.‖u‖

‖newρ.t‖ = ‖t‖

‖(λρ.u) at p‖ = ‖u‖∥∥∥〈λρ.u〉p
∥∥∥ = ‖u‖

‖t [[p]]‖ = ‖t‖

Figure 3­7: Definition of the erasure function

3.4.7 Definition: The erasure ‖t‖ of a region­annotated term t is the BL­term

defined by removing the region annotations, as shown in Figure 3­7. 2

The ideal meaning­preservation statement would be: For any region­anno­

tated program t, if evalR(t) = Y then eval(‖t‖) = Y and vice versa. Unfor­

tunately that is not true, since t can go wrong due to memory­management

errors (such as trying to read a value after it has been deallocated) that have

no counterpart in ‖t‖. What we can prove, however, is the following theorem:

3.4.8 Theorem [Conditional correctness]: Let t be a region­annotated program

(i.e., formally, any term), and assume evalR(t) ≠ wrong. Then evalR(t) =

eval(‖t‖). 2

In other words, a region­annotated program behaves the same as the orig­

inal unannotated program, unless it goes wrong. Our semantics for region­

annotated programs does not allow us to distinguish between going wrong

because of memory­management errors and going wrong due to plain old

type errors, but it would be straightforward (though tedious) to extend the

semantics with such a notion and then prove that if eval(‖t‖) ≠ eval(t) then

eval(t) is memory­wrong rather than type­wrong. Since we are primarily con­

cerned with well­typed programs, we will not pursue that further.

The proof of the theorem proceeds through a series of lemmas:

3.4.9 Lemma: Assume that t is a value v or an almost­value u. Then ‖t‖ is a value

for BL. 2

Proof: By structural induction on t. The induction hypothesis is used in the

case of region abstractions and closures, which disappear during erasure.

(This is why the body of a region abstraction is restricted to be an almost­

value rather than an arbitrary term.) 2
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3.4.10 Lemma [Simulation]: Assume t
RAL
-→ t′. Then either (a) ‖t‖ -→ ‖t′‖ or (b)

‖t‖ = ‖t′‖. 2

Proof: By induction on the derivation of t
RAL
-→ t′.

For the rules (RE­If), (RE­App1), and (RE­App2), apply the induction hypothe­

sis. If this application yields case (a), use the corresponding context rule from

BL. In the case of (RE­App2), Lemma 3.4.9 ensures that erasure of the function

expression is still a value, such that the corresponding BL rule is available.

For the rule (RE­Fix), first observe that since the body of the fix is an almost­

value, the only rules that can establish the reduction u
RAL
-→ u′ are (RE­Clos)

and (RE­RClos). Then, by inspection of each of these rules we find ‖u‖ = ‖u′‖,

and thus also ‖fix x.u‖ = ‖fix x.u′‖.

For (RE­IfTrue), (RE­IfFalse), (RE­Beta), and (RE­FixBeta), the ‖t‖ -→ ‖t′‖

case applies through the corresponding BL reductions.

For (RE­RApp) and (RE­New), use the induction hypothesis directly.

For (RE­Clos) and (RE­RClos), ‖t‖ = ‖t′‖ holds trivially. The case is simi­

lar for (RE­RBeta) and (RE­Dealloc), because the erasure hides the effect of

region substitutions. 2

3.4.11 Lemma [Simulated progress]: Assume t
RAL
-→ t′ yet not ‖t‖ -→ ‖t′‖. Then

t′ is strictly smaller than t under a size measure where unevaluated abstrac­

tions are considered “larger” (for example, twice as large) than closures. 2

Proof: From the proof of Lemma 3.4.10 it is clear that the derivation of

t
RAL
-→ t′ must consist of a stack of context rules with one of the axioms

(RE­Clos), (RE­RClos), (RE­RBeta), or (RE­Dealloc) at the top. Because the

context rules do not themselves add material to the term, it is sufficient to

check the lemma for those four axioms. For (RE­Clos) and (RE­RClos), the

size measure is explicitly defined to make the lemma true. For (RE­RBeta) or

(RE­Dealloc), the region substitution does not change the size of its argu­

ment, whereas the reductions remove either the λ or the new binder. 2

3.4.12 Lemma: Assume evalR(t) = bv. Then eval(‖t‖) = bv, too. 2

Proof: We have that t →∗! bv. By applying Lemma 3.4.10 to each of the re­

duction steps in turn, we get ‖t‖
BL

-→∗ ‖bv‖ = bv. Since bv has no successor,

eval(‖t‖) = bv. 2

3.4.13 Lemma: Assume evalR(t0) = ⊥. Then eval(‖t0‖) = ⊥, too. 2

Proof: The assumption gives us an infinite series of reductions t0
RAL
-→ t1

RAL
-→

·· ·
RAL
-→ ti . . . . By Lemma 3.4.10, we get for each i ≥ 0 that either ‖ti‖ = ‖ti+1‖



114 3 Effect Types and Region­Based Memory Management

or ‖ti‖
BL
-→ ‖ti+1‖. Lemma 3.4.11 guarantees that there does not exist an N

such that ‖ti‖ 6
BL
-→ ‖ti+1‖ for all i > N. Therefore, by choosing certain i’s,

we get an infinite series of BL reductions ‖t0‖
BL
-→
∥∥ti1

∥∥ BL
-→ ·· ·

BL
-→
∥∥∥tij

∥∥∥ . . . .
Hence eval(‖t0‖) = ⊥. 2

Proof: [of Theorem 3.4.8] Assume that evalR(t) ≠ wrong. Then evalR(t) is ei­

ther bv or ⊥, and one of the last two lemmas gives us eval(‖t‖) = evalR(t). 2

3.5 The Tofte–Talpin Type System

One of the features that differentiates Tofte and Talpin’s region language

from other region­based systems (such as Hanson [1990], Ross [1967], and

Schwartz [1975]) is the presence of a type system. The type system is sound

(page 117) and thus well­typed programs do not go wrong at runtime. In the

present setting, this means that if the term t is well­typed then evalR(t) ≠

wrong. In particular, well­typed programs are memory safe. In contrast to

this, in the other systems mentioned above, the programmer has to establish

memory safety manually, and this is essentially just as hard as establishing

memory safety of C­like malloc/free programs.

In Figure 3­8, we define a region type system for RAL, called RTL for “Region­

Typed Language.” The judgment Γ ` t :ϕ T reads: in type environment Γ the

term t has type T and effect ϕ. The effect captures the regions that have to

be live (that is, allocated) for the term to evaluate without memory problems.

In types, ∀X.T binds the type variable X in T, Πρ.ϕT binds the region variable

ρ in T and ϕ, and ∀ε.T binds the effect variable ε in T. We denote the sets of

free type variables, free region variables, and free effect variables of a type T

by ftv(T), frv(T), and fev(T), respectively. These are extended to typing con­

texts in the obvious manner. We write [X , T], [ρ , p], and [ε , ϕ] for the

capture­avoiding substitutions of type T for the type variable X, place p for

the region variable ρ, and effect ϕ for the effect variable ε, respectively.

The typing rules in Figure 3­8 are natural extensions of the typing rules for

the effect typed language in Figure 3­5 (page 103). The region­annotated lan­

guage, is however, both type polymorphic and effect polymorphic. The type

system includes standard rules for introducing and eliminating type poly­

morphism and the obvious variations for effect polymorphism. Compared to

System F (TAPL, Chapter 23) we do not have explicit syntax for these intro­

ductions and eliminations. As already mentioned, the language also contains

region polymorphism. Region polymorphism is explicit in the syntax because

it has operational significance.

Effect polymorphism is the natural complement to type polymorphism and

higher­order functions. Consider a higher­order polymorphic function such
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Type expressions

p ∈ Place places

ε ∈ EffVar effect variables

ϕ ∈ Pfin(Place∪ EffVar) effects

T ::= type expressions:

X type variable

bool Boolean type

(T→ ϕT,p) function type

(Πρ.ϕT,p) region function

∀X.T type polymorphism

∀ε.T effect polymorphism

Typing rules Γ ` t :ϕ T

Γ(x) = T

Γ ` x :ϕ T
(RT­Var)

Γ ` bv :ϕ bool (RT­Bool)

Γ ` t1 :ϕ bool

Γ ` t2 :ϕ T Γ ` t3 :ϕ T

Γ ` if t1 then t2 else t3 :ϕ T
(RT­If)

Γ ,x : T1 ` t :ϕ2 T2 p ∈ϕ

Γ ` (λx.t) at p :ϕ (T1 → ϕ2T2,p)
(RT­Abs)

Γ ,x : T1 ` t :ϕ2 T2

Γ ` 〈λx.t〉p :ϕ (T1 → ϕ2T2,p)
(RT­Clos)

Γ ` t0 :ϕ (T1 → ϕ2T2,p)

Γ ` t1 :ϕ T1 p ∈ ϕ ϕ2 ⊆ ϕ

Γ ` t0 t1 :ϕ T2

(RT­App)

Γ ,x : T ` u :ϕ T

Γ ` fix x.u :ϕ T
(RT­Fix)

Γ ` u :ϕ
′
T ρ 6∈ frv(Γ) p ∈ϕ

Γ ` (λρ.u) at p :ϕ (Πρ.ϕ
′
T,p)

(RT­RAbs)

Γ ` u :ϕ
′
T ρ 6∈ frv(Γ)

Γ ` 〈λρ.u〉p :ϕ (Πρ.ϕ
′
T,p)

(RT­RClos)

Γ ` t :ϕ (Πρ.ϕ
′
T,p)

p ∈ϕ [ρ , p′]ϕ′ ⊆ ϕ

Γ ` t [[p′]] :ϕ [ρ , p′]T
(RT­RApp)

Γ ` t :ϕ,ρ T ρ 6∈ frv(Γ ,T)

Γ ` newρ.t :ϕ T
(RT­New)

Γ ` t :ϕ T X 6∈ ftv(Γ)

Γ ` t :ϕ ∀X.T
(RT­TGen)

Γ ` t :ϕ ∀X.T

Γ ` t :ϕ [X, T′]T
(RT­TInst)

Γ ` t :ϕ T ε 6∈ fev(Γ ,ϕ)

Γ ` t :ϕ ∀ε.T
(RT­EGen)

Γ ` t :ϕ ∀ε.T

Γ ` t :ϕ [ε ,ϕ′]T
(RT­EInst)

Figure 3­8: The RTL region type system

as list map: it takes a function and a list as arguments and applies the func­

tion to each element in the list. In the region­free base language, map has type

∀α,β.(α → β)×α list → β list. What is the effect of applying the equiva­

lent of map in the region­annotated language to such arguments? It certainly

has to include the effect, ϕ say, of applying the argument function, and thus

the type of the region­annotated map function would have to reflect that in

the latent effect of the complete function:

∀α,β.(α → ϕβ)× (α list, ρ)→ {ρ,ρ′}∪ϕ(β list, ρ′)

(see page 121 for the typing rules concerning lists). However, that would only

allow us to apply map to functions with latent effectϕ. We could of course in­
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spect the complete program and make sure that all effects were large enough

that this is not a problem, but this approach would unnecessarily keep many

regions alive. Instead, we can employ effect polymorphism to propagate the

effect of the functional argument to the effect of the complete evaluation of

map as in ∀α,β.∀ε.(α → εβ)× (α list, ρ)→ {ρ,ρ′}∪ε(β list, ρ′).

The RTL type system is based on the type system of the TT calculus in Tofte

and Talpin (1997).4 Compared to TT, RTL has moved effect enlargement up­

wards in the derivation tree so that the axioms are responsible for introduc­

ing proper effects. This simplifies both the presentation of the rules and the

soundness proof slightly, and it is possible to establish a meta­property of

the type system that allows effects to be enlarged. Moreover, the RTL system,

with its System­F­like polymorphism in types, regions, and effects, is more

permissive than the TT system with its let­polymorphism. The restrictions

present in the original system were there to simplify the region inference

algorithm.

The typing rules of RTL can be applied in sequence to obtain a typing of

the letrec construction in the TT system. Recall, that a TT letrec

letrec f[ρ1, . . . , ρk](x) at ρ = t1 in t2

is expressed in RAL as

let f = fix f.(λρ1, . . . , ρk, ρ
′.(λx.t1) at ρ

′) at ρ in t2

The combined construction can be typed by a stack of RTL rules:

Γ ,f, T12,x, T ` t1 :ϕ1 T1
(RT­Abs)

Γ ,f, T12 ` t14 :ρ
′
T14

(RT­RAbs)
Γ ,f, T12 ` t13 :ϕ T13

(RT­EGen)
...

(RT­EGen)
Γ ,f, T12 ` t13 :ϕ T12

(RT­Fix)
Γ ` t11 :ϕ T12

(RT­TGen)
...

(RT­TGen)
Γ ` t11 :ϕ T11 Γ ,f, T11 ` t2 :ϕ T2

(RT­Let)
Γ ` letrec f[ρ1, . . . , ρk](x) at ρ = t1 in t2 :ϕ T2

4. The type system in that paper is not defined explicitly. The paper presents a typed transla­

tion from a language resembling our Base Language BL to the TT calculus. From this translation

one can extract a type system for TT.
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where

t14 = (λx.t1) at ρ′ T14 = (T→ ϕ1T1, ρ′)

t13 = (λρ1, . . . , ρk, ρ′.t14) at ρ T13 = (Πρ1, . . . , ρk, ρ′.ρ
′
T14, ρ)

T12 = ∀ε1.. . .∀εn.T13

t11 = fix f.t13 T11 = ∀X1.. . .∀Xm.T12.

As usual with let­polymorphism, each time f is mentioned in t2, its type

scheme must immediately be fully instantiated. This principle is extended

to the effect and region abstractions; these must also be fully instantiated

(applied, in the case of region abstraction) each time f is mentioned in t2 or

in t1. Thus, the original TT type system does not allow expressions in general

to have type (Πρ.ϕT,p); in particular, region abstractions cannot be passed

as parameters to, or returned from, functions.

Syntactic Type Soundness

We will now prove that typable programs are memory safe. We do so by es­

tablishing type soundness—that is, that well­typed programs do not go wrong.

The type soundness proof is structured as a standard sequence of substitu­

tion, subject reduction, and progress lemmas. This approach was pioneered

by Helsen and Thiemann (2000) in the context of region­based languages,

and apparently independently discovered by Calcagno (2001) for a big­step

semantics. Tofte and Talpin (1997) also proved type soundness, albeit not di­

rectly but as a consequence of their correctness theorem of region inference

and using a complex co­inductive proof technique.

As usual, we start by showing that one can massage derivations so that the

typing context only mentions the free variables of the term and so that the

derivation does not end with one of the instantiation rules.

3.5.1 Lemma: If Γ ` t :ϕ T, dom(Γ ′) = fv(t), and Γ and Γ ′ agree when both are

defined, then Γ ′ ` t :ϕ T. 2

Proof: Straightforward induction on the typing derivation. 2

3.5.2 Lemma: Let S be a substitution of the form [ρ , p], [ε , ϕ], or [X , T]. If

Γ ` t :ϕ T can be derived in n steps, then likewise can SΓ ` St :Sϕ ST. 2

Proof: Left as an exercise («). 2

3.5.3 Lemma: Assume that Γ ` v :ϕ T has a derivation in n steps. Then it has a

derivation in at most n steps where the last rule used is neither (RT­TInst)

nor (RT­EInst). 2
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Proof: By induction on n. All but the cases for (RT­TInst) and (RT­EInst) ei­

ther are direct or are simple applications of the induction hypothesis. Thus,

assume that the derivation ends with (RT­EInst) (the case for (RT­TInst) is

similar). Apply the induction hypothesis to the derivation of its premise; this

gives a derivation that concludes in a type with the shape ∀ε.T′ yet does

not end with (RT­EInst) or (RT­TInst). It cannot end with (RT­Var), (RT­If),

(RT­App), (RT­Fix), (RT­RApp), or (RT­New) either, because variables, condi­

tionals, applications, fixed­points, region applications, and region creations

are not values. The only other rule that can conclude ∀ε.T′ is (RT­EGen), so

the whole derivation now must end with

Γ ` v :ϕ T′ ε 6∈ fev(Γ ,ϕ)
(RT­EGen)

Γ ` v :ϕ ∀ε.T′

(RT­EInst)
Γ ` v :ϕ T

where T = [ε ,ϕ′]T′ for some ϕ′.

Lemma 3.5.2 now gives a derivation of [ε ,ϕ′]Γ ` v :[ε,ϕ
′]ϕ [ε ,ϕ′]T′ in

n− 2 steps. But since ε 6∈ fev(Γ ,ϕ), this conclusion is the same as Γ ` v :ϕ T,

so we can use that instead of the original derivation. Now apply the induction

hypothesis to this new derivation. 2

3.5.4 Lemma [Canonical Forms]:

1. if v is a value of type bool, then v is of the form bv;

2. if v is a value of type (T1 → ϕT2,p) then v is of the form 〈λx.t〉p;

3. if v is a value of type (Πρ.ϕT,p) then v is of the form 〈λρ.u〉p. 2

Proof: Left as an exercise («, 3). 2

We next prove some lemmas about effects. First, one can always enlarge the

effect attributed to a term and obtain a derivable typing. Second, if a value can

be typed, then it can also be typed with an empty effect; that is, evaluation of

values does not cause any observable effects.

3.5.5 Lemma: If Γ ` t :ϕ T and ϕ ⊆ϕ′, then Γ ` t :ϕ
′
T. 2

Proof: Straightforward induction on the typing derivation. 2

3.5.6 Lemma: Let v be a value. If Γ ` v :ϕ T then Γ ` v :∅ T. 2

Proof: From Lemma 3.5.3 we get a derivation of Γ ` v :ϕ T that ends with

neither (RT­TInst) nor (RT­EInst). Therefore, the derivation must end with

one of the typing rules for values. By inspecting each of the rules (RT­Bool),

(RT­Clos), and (RT­RClos) for values we see that we can construct a deriva­

tion of Γ ` v :∅ T (by choosing the effect to be empty in each case). 2
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Having established these basic lemmas we can now prove the lemmas lead­

ing to the type soundness result.

3.5.7 Lemma [Substitution]: If Γ ,x1 : T1 ` t :ϕ T and Γ ` t1 :∅ T1, then Γ `

[x1 , t1]t :ϕ T. 2

Proof: By induction on the typing derivation for t. The cases are all standard,

except for (RT­Var) where t = x1. By (RT­Var) itself, T = T1 and since [x1 ,

t1]x1 = t1, the second assumption combined with Lemma 3.5.5 gives us the

desired derivation. 2

3.5.8 Proposition [Subject Reduction]: If Γ ` t :ϕ T and t
RAL
-→ t′ then

Γ ` t′ :ϕ T. 2

Proof: By induction over the typing derivation.

The rules (RT­Var), (RT­Bool), (RT­Clos), and (RT­RClos) cannot occur;

these rules require t to have a shape that makes t
RAL
-→ t′ impossible.

The cases for the rules (RT­Abs) and (RT­RAbs) are immediate; the evalua­

tion step must be by rule (RE­Clos) or (RE­RClos), and we can immediately

construct typings for the reduct using (RT­Clos) or (RT­RClos).

For the rule (RT­If), use case analysis on the last step in the derivation of

t
RAL
-→ t′. The only possibilities are (RE­If), (RE­IfTrue), and (RE­IfFalse). In the

two latter cases, t′ is one of the branches of the conditional, and the sought­

for conclusion is already one of the premises of (RT­If). In the case of (RE­If),

use the induction hypothesis on the typing of the condition; by reusing the

existing typing derivations for the branches, we can produce a typing for t′

using (RT­If) again.

For the rule (RT­App), again use case analysis on the derivation of t
RAL
-→

t′. The possible rules are now (RE­App1), (RE­App2), and (RE­Beta). The two

former are analogous to (RE­If) above, so consider (RE­Beta). The term t must

be of the form 〈λx.tb〉ρ v, and the premises to (RT­App) are (1) Γ ` 〈λx.tb〉ρ :ϕ

(T′ → ϕ′T, ρ) and (2) Γ ` v :ϕ T′, where further ρ ∈ ϕ and ϕ′ ⊆ ϕ. Now,

〈λx.tb〉ρ is a value and thus by Lemma 3.5.3 there exists a derivation of (1)

ending with (RT­Clos) which must include a (sub­)derivation of (3) Γ ,x : T′ `

tb :ϕ
′
T. Applying first Lemma 3.5.6 to (2) yields Γ ` v :∅ T′ and then applying

Lemma 3.5.7 to (3) above and this, we get a derivation of Γ ` [x, v]tb :ϕ
′
T

as required because ϕ′ ⊆ϕ and we can enlarge the effect (Lemma 3.5.5).

For the rule (RT­Fix), the reduction must be by (RE­Fix) or (RE­FixBeta).

Again, the case for (RE­Fix) is analogous to (RE­If), so assume (RE­FixBeta).

The term t must be of the form fix x.v and the typing derivation has a sub­

derivation of (1) Γ ,x : T ` v :ϕ T. First, apply Lemma 3.5.6 to get Γ ,x : T ` v :∅

T and use this and (RT­Fix) to construct a derivation of (2) Γ ` fix x.v :∅ T.

Now, Lemma 3.5.7 applied to (1) and (2) yields Γ ` [x, fix x.v]v :ϕ T.
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For the rule (RT­RApp), the reduction must be by (RE­RApp) (similar to

the other context rules above) or (RE­RBeta). The term t must be of the

form 〈λρ1.u〉ρ [[p]], and the typing derivation has a sub­derivation of (1)

Γ ` 〈λρ1.u〉ρ :ϕ (Πρ1.ϕ
′
T′, ρ) where further ρ ∈ ϕ, [ρ1 , p]ϕ′ ⊆ ϕ, and T =

[ρ1 , p]T′. Now, 〈λρ1.u〉ρ is a value and thus by Lemma 3.5.3 there exists a

derivation of (1) ending with (RT­RClos) which must include a sub­derivation

of (2) Γ ` u :ϕ
′
T′ where ρ1 6∈ frv(Γ). Applying Lemma 3.5.2 to (2) and

[ρ1 , p], we get a derivation of [ρ1 , p]Γ ` [ρ1 , p]u :[ρ1,p]ϕ′ [ρ1 , p]T′ as

required because [ρ1 , p]Γ = Γ (since ρ1 6∈ frv(Γ)), [ρ1 , p]ϕ′ ⊆ϕ which we

can enlarge (Lemma 3.5.5), and T = [ρ1 , p]T′.

For the rule (RT­New), t reduces by (RE­New) or (RE­Dealloc). Only the

latter case is interesting. The term t must be of the form newρ.v and the

typing derivation must include a derivation of Γ ` v :ϕ,ρ T where ρ 6∈ frv(Γ ,T).

Then, by Lemma 3.5.6 we have Γ ` v :∅ T. Applying Lemma 3.5.2 we thus get a

derivation of [ρ , •]Γ ` [ρ , •]v :[ρ,•]∅ [ρ , •]T, that is Γ ` [ρ , •]v :∅ T

(since ρ 6∈ frv(Γ ,T)). Now use Lemma 3.5.5 to recover the original effect ϕ.

For the rule (RT­TGen) (the case for rule (RT­EGen) is analogous) we have

a derivation of Γ ` t :ϕ T′ where X 6∈ ftv(Γ) and T = ∀X.T′. Apply the in­

duction hypothesis to this to get Γ ` t′ :ϕ T′. Since still X 6∈ ftv(Γ) we can

use (RT­TGen) to construct a derivation of Γ ` t′ :ϕ T where T = ∀X.T′ as

required.

For the rule (RT­TInst) (the case for rule (RT­EInst) is analogous) we have

a derivation of Γ ` t :ϕ ∀X.T′ where T = [X, T′′]T′ for some T′′. Again apply

the induction hypothesis to this and get Γ ` t′ :ϕ ∀X.T′ and use (RT­TInst)

to construct a derivation of Γ ` t′ :ϕ T where T = [X, T′′]T′ as required. 2

3.5.9 Proposition [Progress]: If ∅ ` t :ϕ T and • 6∈ϕ, then either t is a value or

there is some t′ such that t
RAL
-→ t′. 2

Proof: By induction over the typing derivation of ∅ ` t :ϕ T.

If the last rule in the derivation is (RT­TGen), (RT­EGen), (RT­TInst), or

(RT­EInst), the conclusion follows directly from the induction hypothesis

(since the typing context remains empty and the effect remains the same in

each premise). For example, for (RT­TGen) we have a derivation of∅ ` t :ϕ T′

where T = ∀X.T′. Applying the induction hypothesis to this we get that either

t is a value, or there exists some t′ such that t
RAL
-→ t′ as required.

The case (RT­Var) is impossible (since Γ is empty by assumption).

The cases for (RT­Bool), (RT­Clos), and (RT­RClos) are immediate.

For (RT­Abs) and (RT­RAbs), there are immediate reductions by (RE­Clos)

or (RE­RClos), respectively.

For (RT­Fix): If u in fix x.u is a value v then (RE­FixBeta) applies and we

have a reduction. If u is an abstraction or a region abstraction, then it itself
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reduces (by either (RE­Clos) or (RE­RClos)), and we obtain a reduction by

(RE­Fix). This exhausts the possible syntactic forms of a non­value u.

For (RT­App), t is an application t0 t1, and we we have derivations of ∅ `

t0 :ϕ (T1 → ϕ2T,p) and ∅ ` t1 :ϕ T1 for some p ∈ ϕ and ϕ2 ⊆ ϕ. Apply

the induction hypothesis to each of these. This either gives a reduction for at

least one of them (in which case we can reduce t by (RE­App1) or (RE­App2)),

or shows that t1 and t2 are both values. In this latter case, by Lemma 3.5.4, t0

must have the form
〈
λx0.t

′
0

〉
p. Now we can apply the (RE­Beta) rule to obtain

a reduction, because p ∈ϕ cannot be • and so must be a region variable.

The cases for (RT­RApp) and (RT­If) are similar, but simpler.

For (RT­New), t is newρ.t1, and we have a derivation of ∅ ` t1 :ϕ,ρ T.

Since ρ is (by definition) not •, the induction hypothesis applies to t1. We get

that either t1 is a value, in which case we get a reduction using (RE­Dealloc),

or t1 reduces to another term t′1, in which case we get a reduction using

(RE­New). 2

3.5.10 Theorem: If ∅ ` t :∅ T, then either (1) there is some value v such that

t →∗ v and ∅ ` v :∅ T, or (2) for each t′ such that t →∗ t′ there is some t′′

such that t′ →+ t′′. 2

Proof: Straightforward consequence of Propositions 3.5.8 and 3.5.9. 2

3.5.11 Corollary [Type soundness]: If ∅ ` t :∅ bool, then it is not the case that

evalR(t) = wrong. 2

Extensions

The region­annotated language that we have presented only has Booleans

and functions, but it is straightforward to add most other common types of

data to it. As an example, in Figure 3­9 we give the necessary rules for ex­

tending the system with lists. The proofs of the metaproperties (in particular

type soundness and conditional correctness) carry through to this extended

system without any changes to the existing cases.

Rule (RT­Cons) implies that when adding a new element in front of a list,

it must have the same type as the elements already there. That is hardly

surprising, but note that it implies that the region part of the type must also

be the same. Thus, the different elements of a list are always allocated in the

same region and therefore will be deallocated at the same time. If a single

element of the list turns out to have a long lifetime, the region type system

propagates that long lifetime to all the other elements!

3.5.12 Exercise [Recommended, ««, 3]: Using Figure 3­9 as a guideline, write rules

to extend the system with one or more of: Let bindings (a lambda abstraction
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New syntactic forms

t ::= . . . terms:

(t :: t) at p list constructor

case t0 of
nil⇒t1

(x::x′)⇒t2
case on lists

v ::= . . . values:

〈v :: v〉p cons cell

nil empty list

T ::= . . . types:

(T list,p) type of lists

New erasure rules
‖nil‖ = nil

‖(t1 :: t2) at p‖ = ‖t1‖ :: ‖t2‖∥∥∥〈t1 :: t2〉p

∥∥∥ = ‖t1‖ :: ‖t2‖∥∥∥case t0 of
nil⇒t1

(x::x′)⇒t2

∥∥∥ =

case ‖t0‖ of
nil⇒‖t1‖
(x::x′)⇒‖t2‖

New evaluation rules t
RAL
-→ t′

t1
RAL
-→ t′1

(t1 :: t2) at p
RAL
-→ (t′1 :: t2) at p

(E­Cons1)

t2
RAL
-→ t′2

(v1 :: t2) at p
RAL
-→ (v1 :: t′2) at p

(E­Cons2)

(v1 :: v2) at ρ
RAL
-→ 〈v1 :: v2〉ρ (E­ConsAlloc)

t0
RAL
-→ t′0

case t0 of nil⇒ t1 | (x :: x′)⇒ t2

-→ case t′0 of nil⇒ t1 | (x :: x′)⇒ t2

(E­Case)

case nil of nil⇒ t1 | (x :: x′)⇒ t2
RAL
-→ t1

(E­CaseNil)

case 〈v :: v′〉ρ of nil⇒ t1 | (x :: x′)⇒ t2

-→ [x′ , v′][x, v]t2

(E­CaseCons)

New typing rules Γ ` t :ϕ T

Γ ` nil :ϕ (T list,p) (RT­Nil)

Γ ` t1 :ϕ T

Γ ` t2 :ϕ (T list,p) p ∈ϕ

Γ ` (t1 :: t2) at p :ϕ (T list,p)
(RT­Cons)

Γ ` v1 :ϕ T Γ ` v2 :ϕ (T list,p)

Γ ` 〈v1 :: v2〉p :ϕ (T list,p)
(RT­ConsCell)

Γ ` t0 :ϕ T′ T′ = (T list,p) p ∈ϕ

Γ ` t1 :ϕ T′′ Γ ,x : T,x′ : T′ ` t2 :ϕ T′′

Γ ` case t0 of
nil⇒t1

(x::x′)⇒t2
:ϕ T′′

(RT­Case)

Figure 3­9: Extending the system with a list type

allocates a closure on the heap, so a let binding cannot simply be simulated as

a β­redex); pairs and records; sums and variants; and general recursive types

(equi­ or iso­). Verify that the Conditional Correctness and Type Soundness

theorems still hold for your rules. 2

3.5.13 Exercise [««««]: References can be added easily to the type system with

rules like

Γ ` t :ϕ T p ∈ϕ

Γ ` ref t at p :ϕ (T ref,p)
(RT­Ref)

Γ ` t :ϕ (T ref,p) p ∈ ϕ

Γ ` !t :ϕ T
(RT­Deref)
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Γ ` t :ϕ (T ref,p) Γ ` t′ :ϕ T p ∈ϕ

Γ ` t:=t′ :ϕ unit
(RT­Assign)

Of course, these rules need to be combined with the usual value restriction

on type and effect polymorphism, as discussed on pages 335–336 in TAPL.

Which extensions to the semantics and soundness proofs are necessary for

proving these rules sound? 2

The typing rules presented in the above exercise correspond exactly to the

way updatable references are handled in the ML Kit. Observe that since the

(RT­Assign) rule demands equality between the type of the value stored in

the reference and the type of the new value, the rule forces the two values to

have the same lifetime. For long­lived references, such as those found with

container classes in object­oriented programs, this behavior is inadequate.

No better solution has, however, been proposed yet.

3.6 Region Inference

So far, we have said a lot about the region type system and how region­

annotated programs are supposed to be executed, but next to nothing about

where the region annotations come from.

One easy answer would be, “why, the programmer wrote them”—but alas,

this answer would not be easy for the programmer. Realistic programs usually

need quite a lot of region abstractions and applications in order to distribute

their data over several regions while still being region typable, and it is not

always obvious exactly where they should be put. While it just might be possi­

ble to write a nontrivial well­typed program in the region­annotated language,

it would be quite impossible to maintain it.

Thus, the idea of using a region type system to check the safety of re­

gion annotations goes hand in hand with the idea that the region annotations

themselves are the product of an automatic compile­time analysis. The hu­

man programmer writes a program t in BL, whereupon the compiler will con­

struct a region­annotated program t′ such that ‖t′‖ = t and t′ is well­typed

in RTL. This process is known as region inference, because Tofte and Talpin

(1994) viewed it as akin to a type reconstruction (“inference”) problem.

3.6.1 Exercise [Recommended, «]: One can easily formulate a trivial region infer­

ence: Just choose a single fixed ρ, annotate each lambda abstraction (and

other allocating expressions) in the input program with “at ρ,” and then

wrap the entire program in a single new construction. This evidently always

produces a region­annotated program that erases to the input program, but

will it always be RTL­typable? 2
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Of course, the trivial region inference is worthless from a memory­mana­

gement point of view. It produces a region­annotated program that never

deallocates anything until the entire computation is finished. What we want

is the opposite: region annotations that deallocate data as soon as allowed

by the region type system. Unfortunately it is not known whether “best pos­

sible region annotations” in this sense always exist, but good approximate

solutions are available.

The articles by Tofte and Talpin (1994, 1997) do not themselves present

an algorithm for region inference, but the nondeterministic region inference

system they present has evidently been constructed with an inference algo­

rithm in mind. The inference algorithm was published by Tofte and Birkedal

(1998). We do not have the space to describe it in detail, but instead show

how it works in the context of an example. Consider the term

letrec m(f) = if f(0) then 0 else m(λx.f(x+1)) + 1

in m(λx.x=10)

Let us initially assume an that oracle has told us that the “correct” region­

polymorphic type scheme for m is

∀ε1, ε2.Πρ1, ρ2.
{ρ2}((int→ {ε1}bool, ρ1)→

{ε2,ε1,ρ1}int, ρ2).

The driving force in the region inference algorithm is an attempt to construct

the RTL typing tree for the region­annotated program. The search proceeds

much like the familiar AlgorithmW , unifying types as well as region variables

and effect positions as we go. We don’t know yet what to do with typing­rule

premises of the form ρ ∈ϕ or ϕ ⊆ϕ′, so let us initially just collect them for

further processing.

By the time we have analyzed the subexpression m(λx.f(x+1)), the uni­

fication­based inference has built the typing tree shown in Figure 3­10. (For

bevity, we assume a primitive rule for adding one to an integer—it allows

concluding Γ ` t+1 :ϕ int from Γ ` t :ϕ int).

A set of collected effect constraints are also shown on the figure. Luckily,

the effect polymorphism in the oracle’s type scheme has a form that allows

the possible instantiations of the effect fields in it to be descibed with subset

and inclusion constraints; in this case ϕ4 ⊆ϕ5 and ρ4 ∈ ϕ5.

3.6.2 Exercise [«, 3]: Locate where in the proof tree the other collected constraints

come from. 2

Whenever we choose concrete substitutions for the symbols ϕ, ϕ3, ϕ4,

and ϕ5 that satisfy the constraints, we get a valid proof. What it is proof of

depends on the substitutions we choose for ϕ and ϕ3, because these effect
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...

Γ ` m [[ρ4, ρ5]] :ϕ ((int→ ϕ4bool, ρ4)→
ϕ5int, ρ5)

Γ
′ ` f :ϕ1 (int→ ϕ3bool, ρ3)

Γ
′ ` x :ϕ4 int

Γ
′ ` x+1 :ϕ4 int

Γ
′ ` f(x+1) :ϕ4 bool

Γ ` (λx.f(x+1)) at ρ4 :ϕ (int→ ϕ4bool, ρ4)

Γ ` m [[ρ4, ρ5]]((λx.f(x+1)) at ρ4) :ϕ int

where Γ is m : ∀ε1, ε2.Πρ1, ρ2.{ρ2}((int → {ε1}bool, ρ1)→ {ε2,ε1,ρ1}int, ρ2),f : (int→ ϕ3bool, ρ3) and

Γ
′ is Γ ,x : int. Collected effect constraints: ϕ4 ⊆ϕ5, ρ4 ∈ ϕ5, {ρ5} ⊆ ϕ, ϕ3 ⊆ϕ4, ρ3 ∈ ϕ4, ρ4 ∈ϕ,

ϕ5 ⊆ϕ, ρ5 ∈ϕ.

Figure 3­10: A partially region­inferred proof tree

meta­variables occur in the conclusion. On the other hand, ϕ4 and ϕ5 do not

occur in the conclusion, so we can eliminate them from the constraint set and

simplify it to {ρ4 ∈ϕ,ρ5 ∈ϕ,ρ3 ∈ϕ,ϕ3 ⊆ϕ}. Much of (Tofte and Birkedal,

1998) is concerned with giving precise rules for such manipulations.

Observe now that the constaints imply that ρ4 and ρ5 must appear in the

effect position of the concluding statement, but there is no reason for any

of them to appear in either the type or the environment. Therefore, we are

allowed to insert a new around the expression, and thus deallocate the closure

for m [[ρ4, ρ5]] as well as the one for λx.f(x+1) after the call returns. By doing

so, we make ρ4 and ρ5 invisible from outside the expression, so constraints

that mention them can be dropped from the constraint set. On the other

hand, ρ3 cannot be finished off in this way yet, because it occurs (explicitly)

in the environment Γ .

The final result of the analysis of the expression is thus the judgment

Γ ` newρ4, ρ5.
(
m [[ρ4, ρ5]]((λx.f(x+1)) at ρ4)

)
:ϕ int

plus the (simplified) constraint set {ρ3 ∈ϕ,ϕ3 ⊆ϕ}.

3.6.3 Exercise [««]: Why didn’t the region inference insert a newρ5.· · · around

the subexpression (λx.f(x+1)) at ρ4? 2

The analysis of the rest of the body of m is unsurprising; it ends with

m : · · · ,f : (int→ ϕ3bool, ρ3) ` if f(0) then 0 else (· · · )+1 :ϕ int
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and still with the same constraint set {ρ3 ∈ϕ,ϕ3 ⊆ϕ} (another copy of each

of these constraints was produced by the analysis of f(0)).

This gives the immediate type ((int→ ϕ3bool, ρ3)→ ϕint, ρ′) for m, where

ρ′ was added by the letrec construction itself. Since neither ρ3 nor ρ′ ap­

pears in the (empty) environment for letrec, we can abstract over them and

make them region parameters. Finally we can abstract over effects by intro­

ducing an effect variable for each effect meta­variable in the simplified con­

straint set that is not connected to the environment by subset constraints.

In the effect­polymorphic type, each ϕ position becomes the set of effect

and region variables that must be in the effect, according to the constraints.5

Thus the effect abstraction simply encapsulates the (transitive closure of the)

simplified constraint set.

It turns out our oracle was right! The abstracted type of m is exactly what

it said it would be, with ε1 corresponding to ϕ3, ε2 to ϕ, ρ1 to ρ3, and ρ2 to

ρ′. Now the analysis of the body of the letrec is unsurprising; we get the

following region­annotated program:

letrec m[ρ1](f) =

if f(0) then 0

else newρ4, ρ5.
(
m [[ρ4]] at ρ5((λx.f(x+1)) at ρ4)

)
+ 1

in newρ6, ρ7.
(
m [[ρ6]] at ρ7((λx.x=10) at ρ6)

)

Where did the oracle get its prediction of m’s type from? Tofte and Birkedal

(1998) construct it by Mycroft iteration: First, m’s body is analyzed under the

optimistic assumption that m itself will have the type scheme

∀ε1, ε2.Πρ1, ρ2.
{ρ2}((int→ {ε1}bool, ρ1)→

{ε2}int, ρ2)

that is, with no constraints at all between the various region and effect parts

of polymorphic instances. If the type scheme constructed after the initial

iteration does not match (which in this case it doesn’t), a new iteration is

tried with the new type scheme as assumption, and so forth until a fixpoint

is reached.

The trick, of course, lies in ensuring that a fixpoint is eventually reached; it

might well be that it just produces a list of ever larger type schemes. The

original region inference algorithm (Tofte and Birkedal, 1998) solved this

problem by heuristically omitting certain opportunities for region and effect

5. The way this is done in the published formulation of the algorithm includes considering

one effect variable in each latent effect to be special; it is called the handle and is the one that

corresponds to the entire effect. The distinction between the handle and other effect variables

is present in the original TT calculus even though it has no special role in the soundness and

correctness proofs.
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abstractions such that the iterative computation of a fixpoint for the recursive

function’s type scheme could be guaranteed to terminate. The cost of this ap­

proach is that completeness fails: Example programs can be constructed for

which the region inference algorithm leads to region annotations that are not

the best possible.

Later Birkedal and Tofte (2001) rephrased the algorithm in terms of con­

straint solving. This reworked algorithm seems to be complete in the sense

that for any region­annotated term t that can be TT­typed, the inference algo­

rithm’s output on ‖t‖ will have as least as good space behavior as t. However,

Birkedal and Tofte prove only a weaker “restricted completeness” result; full

completeness in the sense described here was not considered in the article.

Another restricted case with an easy region inference problem is known. It

is when the input program can be typed with first order types, that is, such

that neither the argument nor the return type for any function includes a

function type itself. Then there is no reason to use effect polymorphism, and

one never needs to generalize over region variables that appear only in latent

effects. (For since there is only one arrow in each type, such a variable could

just as well have been discharged by a new within the lambda abstraction.)

These two facts lead to a bounded representation of the latent effect: We

simply need to know for each of the p positions in the argument and return

types whether the actual p is in the latent effect. That solves the termination

problem, and with a bit of ingenuity one does not even need fixpoint iteration

for finding the best type scheme.

This principle has been used to derive a region inference for an adaptation

of the Tofte–Talpin system for a Prolog dialect which is naturally first order;

see Makholm (2000, Chapter 10).

3.6.4 Exercise [«]: Why does effect polymorphism not make sense in a first­order

program? 2

3.7 More Powerful Models for Region­Based Memory Management

Unfortunately, even with region­polymorphic recursion, the Tofte–Talpin

model (as expressed either as RTL or the original TT) is not quite strong

enough to achieve reasonable object lifetimes. At fault is the very idea of

new—that the lifetime of a region must coincide with the time it takes to

execute some subexpression of the original program. To see how this is a

problem, let us look at how the Tofte­Talpin system treats the classic “Game

of Life” example. The task is to simulate a cellular automaton for n gen­

erations, starting from a specified state. This is a typical case of iterative
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programming, and the problems we will discover are common for iterative

programs in general.

The standard way of programming an iteration in a functional language is

to use tail recursion:

let rec nextgen(g) =
〈
read g; create and return new generation

〉

let rec life(n,g) = if n=0 then g

else life(n­1,nextgen(g))

We shall leave the details of nextgen unspecified here and in the follow­

ing discussion. We assume, for simplicity, that a single region holds all the

pieces of a generation description, and, for the sake of the argument, that the

iteration count n needs to be heap­allocated, too.

The ordinary TT region inference algorithm annotates the Game of Life

example as follows:

letrec nextgen[ρ](g) =
〈
read g from ρ; create new gen. at ρ

〉

letrec life[ρn, ρg](n,g) =

if n=0 then g

else new ρ′n
in life[ρ′n, ρg]((n­1) at ρ′n, nextgen[ρg](g))

There are two major problems here. First, the recursive call of life is not a

tail call anymore because it takes some work to deallocate a region at the end

of new. Therefore all the ρ′n regions will pile up on the call stack during the it­

eration and be deallocated only when the final result has been found. Second,

any typable region annotation of the program must let the nextgen function

construct its result in the same region that contains its input. This means

that the program has a serious space leak: all the intermediate­generation

data will be deallocated only when the result of the iteration is deallocated.

Both of these problems are caused by the fact that new aligns the lifetime

of its region with the hierarchical expression evaluation. Several solutions for

this have been proposed, but because their formal properties have not been

as thoroughly explored as the TT calculus, we will only present them briefly.

Region Resetting in the ML Kit

The ML Kit’s region implementation (Birkedal et al., 1996; Tofte et al., 2001b)

is based on the TT system. Its solution to the tail recursion problem is based

on a concept of resetting a region, meaning that its entire contents are de­

allocated whereas the region itself continues existing.

After a TT region inference, a special storage­mode analysis (Birkedal, Tofte,

and Vejlstrup, 1996) that runs after region inference amends the region an­
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notations to control resetting: Each “at ρ” annotation gets replaced by either

“atbot ρ,” meaning first reset the region and then allocate the new object as

the new oldest object in the region, or “attop ρ,” meaning allocate without

resetting the region.

With this system one can rewrite the original Life program as follows to

obtain better region behavior:

let rec copy(g) =
〈
read g; make fresh copy

〉

let rec life’((n,g) as p)

= if n=0 then p

else life’(n­1,copy(nextgen(g)))

let rec life(p) = snd (life’ (p))

where copy (whose body is omitted here for brevity) takes apart a genera­

tion description and constructs a fresh, identical copy. Region inference and

storage­mode analysis will then produce the region annotations

letrec nextgen[ρ,ρ′](g) =
〈
read g from ρ; new gen. at ρ′

〉

letrec copy[ρ′, ρ](g) =
〈
read g from ρ′; fresh copy atbot ρ

〉

letrec life’[ρn, ρg]((n,g) as p)

= if n=0 then p

else life’[ρn, ρg]((n­1) atbot ρn,

new ρ′g
in copy[ρ′g,atbotρg]

(nextgen[ρg, ρ′g](g)))

letrec life[ρn, ρg](p) = snd (life’[ρn, ρg](p))

Letting life′ return the entire p instead of just g forces region inference to

place all of the ns in ρn. A memory leak in ρn is prevented by the atbot

allocation, whose effect is that the region ρn is reset prior to placing n­1 in it.

The memory leak in ρg is prevented with the introduction of the copy func­

tion. Now the new generation can be constructed in a temporary region ρ′g
that gets deallocated before the recursive call; once the old generation is not

needed anymore, the new generation is copied into ρg with the atbot mode,

which frees the old generation. (The atbot annotation in the passing of the

region parameter serves to allow copy to actually reset the region; the need

for this extra annotation has to do with aliasing between region variables.)

The storage­mode analysis works by changing the region annotation for an

allocation to atbot if the value to be allocated is the only live value whose

type includes the region name, as determined by a simple local liveness anal­

ysis. Neither a formal definition of the storage­mode analysis nor a proof that

it is safe has appeared in the literature, but it is described briefly by Birkedal,
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Tofte, and Vejlstrup (1996), together with a number of other analyses that

the ML Kit uses to implement the region model efficiently.

This solution does make it possible for iterative computations to run in

constant space (assuming, in the Life example, that the size of a single g is

bounded), but it is by no means obvious that precisely these were the changes

one needed to make to the original unannotated program to improve the

space behavior. Furthermore, inserting such region optimizations in the pro­

gram impede maintainability because they obscure the intended algorithm.

Aiken–Fähndrich–Levien’s Analysis for Early Deallocation

Aiken, Fähndrich, and Levien (1995) extend the TT system in another direc­

tion, decoupling dynamic region allocation and deallocation from the intro­

duction of region variables with the new construct.

In the AFL system, entry into a new block introduces a region variable, but

does not allocate a region for it. During evaluation of the body of new, a re­

gion variable goes through precisely three states: unallocated, allocated, and

finally deallocated. After a TT region inference (and possibly also storage­

mode analysis as in the ML Kit), a constraint­based analysis—guided by a

higher­order data­flow analysis for region variables—is used to insert explicit

region allocation [[alloc ρ]] and deallocation commands [[free ρ]] into the

program. Ideally the [[alloc ρ]] happens right before the first allocation in

the region, and [[free ρ]] just after the last read from the region, but some­

times they need to be pushed farther away from the ideal placements because

the same region annotations on a function body must match all call sites.

With this system, the Life example can be improved by rewriting the origi­

nal program to

let rec copy(g) =
〈
read g; make fresh copy

〉

let rec life(n,g) = if n=0 then copy(g)

else life(n­1,nextgen(g)),

making the base case return a fresh copy of its input rather than the input

itself. This program is analyzed as6

letrec nextgen[ρ,ρ′](g)

= [[alloc ρ′]]
〈
read g from ρ; new gen. at ρ′

〉
[[free ρ]]

letrec copy[ρ,ρ′](g)

= [[alloc ρ′]]
〈
read g from ρ; fresh copy at ρ′

〉
[[free ρ]]

6. The syntax here is not identical with the one used by Aiken, Fähndrich, and Levien (1995);

for example, they write “free_after ρ t” for what we write as “t [[free ρ]].”
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letrec life[ρn, ρg, ρ′](n,g)

= if n=0

then [[free ρn]] copy[ρg, ρ′](g)

else new ρ′n, ρ
′
g

in life[ρ′n, ρ
′
g, ρ

′]

([[alloc ρ′n]] (n­1) at ρ′n [[free ρn]],

nextgen[ρg, ρ′g](g))

Because deallocation of each region is done explicitly and not by new, the

body of new is a tail call context, and the regions containing the old n and g

can be freed as soon as n­1 and nextgen(g) have been computed. Without

rewriting the original program this would not be the case, because a function

must either always free one of its input regions or never do it.

Imperative Regions: The Henglein–Makholm–Niss Calculus

Recently Henglein, Makholm, and Niss (2001) published a region system that

completely severs the connection between region lifetimes and expression

structures by eliminating the new construct. Instead, the region annotations

form an imperative sublanguage manipulating region handles asynchronously

with respect to the expression structure.

The HMN system does not, as the two previously sketched solutions, build

on top of the Tofte–Talpin model and its region inference algorithm; instead

it has its own region type system (proved sound by Niss, 2002) and inference

algorithm (Makholm, 2003). Starting anew means that the system is concep­

tually simpler while still incorporating the essential features of ML Kit­like

resetting and AFL­style early deallocation as special cases. On the other hand,

the theory has not yet been extended to higher­order functions.

In the HMN system it is possible to handle the Game of Life with no rewrit­

ing at all. A function can pass regions as output (indicated by o: below) as

well as receive them as input (indicated by i:); HMN region inference pro­

duces

letrec nextgen[i:ρ;o:ρ′](g)

= [[new ρ′]]
〈
read g from ρ; new gen. at ρ′

〉
[[release ρ]]

letrec life[i:ρn, ρg;o:ρ′](n,g)

= if n=0 then [[release ρn]] g [[ρ′ := ρg]]

else life[i:ρ′n, ρ
′
g;o:ρ′]

([[new ρ′n]] (n­1) at ρ′n [[release ρn]],

nextgen[i:ρg;o:ρ′g](g))

where each iteration of life decides for itself whether to release the region

it gets as its second parameter or to return it back to the caller.
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The [[ρ′ := ρg]] operation serves the same purpose as the copy operation

in the AFL solution, but is very cheap at runtime—it just renames the region

that was previously called ρg to ρ′, whereupon it is returned to the caller.

The renaming of regions means that the region­annotated types of values

can change during the execution of the program. To manage that, the HMN

region type system is based around a typing judgment with the shape

Ψ ` {∆1; Γ1} t : T {∆2; Γ2}

where the contexts Γ1 and Γ2 describe the types of the local variables before

and after t is evaluated. The sets of region variables Ψ , ∆1, and ∆2 describe

the available region variables.

Other advanced features of the HMN system include reference­counted re­

gions with a linear type discipline for region handles, “constant” region pa­

rameters that correspond to the region abstraction of the Tofte–Talpin model,

and a subtyping discipline for regions that allows extensive manipulation of

dangling pointers.

Other Models

A number of more powerful region models and associated region type sys­

tems have been proposed without an accompanying inference algorithm.

Walker, Crary, and Morrisett (2000) have developed a region model with a

region type­system for a continuation­passing style language, intended to be

used for translating the Tofte–Talpin execution model to certified machine

code. To handle the CPS transformation of region abstractions, a very ad­

vanced type system with bounded quantification over regions and effects was

necessary. The final system is much stronger than the Tofte–Talpin system it­

self, but little is known about how to make automatic region inference utilize

this extra strength.

Walker and Watkins (2001) have developed a region type system in which

region references can be stored in data structures such as lists. They are still

not completely first class, because they must have linear types (see Chap­

ter 1), but the system is strong enough to reason about heterogeneous lists

(i.e., lists whose elements are allocated in different regions).

Another, more restricted, way of allowing heterogeneous structures is found

in the system (Grossman et al., 2002). Cyclone employs a kind of subtyping

on region lifetimes and a simpler notion of effects: A region variable ρ out­

lives another region variable ρ′ if the lifetime of ρ encompasses the lifetime

of ρ′. In that event, a value allocated in the region denoted by ρ can safely be

used instead of the same value allocated in the region denoted by ρ′. Cyclone

supports subtyping of values according to this principle.



3.8 Practical Region­Based Memory Management Systems 133

3.8 Practical Region­Based Memory Management Systems

The ML Kit

The ML Kit7 essentially implements the theory described in §3.4 to §3.6 with

two important extensions: first, it includes region resetting and storage­mode

analysis as described in §3.7, and, second, it includes a multiplicity inference

allowing the compiler to allocate finite regions on the runtime stack (Birkedal,

Tofte, and Vejlstrup, 1996). The multiplicity analysis is a type­based analy­

sis that determines, whether each region is finite or infinite. A finite region

is one into which the analysis can determine that only one value will ever

be written; all other regions are infinite. The importance of finite regions is

that they can be stack­allocated since it is known in advance how large they

are. Furthermore, since regions in the Tofte and Talpin region language fol­

low a stack­discipline aligned with the expression structure of the program,

such regions can even be allocated on the normal runtime stack, giving a par­

ticularly simple, efficient implementation. The latest incarnation of the ML

Kit even includes a garbage collector (Hallenberg, Elsman, and Tofte, 2002),

which is useful in situations where it is not practical to make a program more

region friendly. See Tofte et al. (2001b) for a comprehensive introduction to

programming with regions in the ML Kit, and Tofte et al. (2001a) for a survey

of the interplay between theory and practice in the ML Kit.

Cyclone

Cyclone,8 a dialect of C designed to prevent safety violations, uses regions

both as a memory management discipline and as a way to guarantee safety

(through type soundness). Cyclone includes three kinds of regions: a single

global (or heap) region; stack regions (corresponding to stack frames allo­

cated from statement blocks); and dynamic regions (corresponding to our

lexically scoped regions).

Instead of having effect variables as in the Tofte and Talpin system, Cyclone

uses an operator on types (with no operational significance). The regions_of

operator represents the region variables that occur free in a type; the cru­

cial trick is that the regions_of operator applied to a type variable is sim­

ply left abstract until the type variable is instantiated. Intuitively, instead of

propagating the effect of functional arguments via effect variables, they are

propagated via the regions_of operator. Returning to the map example on

7. http://www.it­c.dk/research/mlkit

8. http://www.cs.cornell.edu/projects/cyclone/
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page 115 we get the following Cyclone type for map:

∀α,β.(α → β)× (α list, ρ)→ {ρ,ρ′}∪regions_of(α→β)(β list, ρ′).

For practical reasons, a major aspect in the design of Cyclone was to make

it easy for C programmers to write Cyclone applications and to port legacy

C code to Cyclone. In particular, requiring programmers to write region­

annotations as seen in the present chapter is out of the question. Cyclone

addresses this by combining inference of region annotations with defaults

that work in many cases.

Cyclone began as a compiler for producing typed assembly language (see

Chapter 4) and as such can be seen as one way to realize proof­carrying code

(see Chapter 5). The region aspects of Cyclone are described by Grossman

et al. (2002); a system overview is given by Jim et al. (2002).

Other Systems

The ML Kit and Cyclone are both mature systems. Several research proto­

types demonstrating various principles for region­based memory manage­

ment have been described in the literature.

One trend has been to adapt Tofte and Talpin’s system (and its spirit) to

other languages. Christiansen and Velschow (1998) describe RegJava, which

is a simple, region­annotated core subset of Java and an accompanying im­

plementation. Makholm and Sagonas (2002) extend a Prolog compiler with

region­based memory management and region inference based on Henglein,

Makholm, and Niss (2001).

Another trend has been to vary the fundamental assumption that regions

should be allocated and deallocated according to a stack­discipline. In this di­

rection the present authors have constructed a prototype implementation of

the system of Henglein et al. (2001) for a small functional language with func­

tion pointers (but not lexical closures containing free variables). Cyclone can

also be seen as the practical realization of some of the ideas in the Calculus

of Capabilities (Walker, Crary, and Morrisett, 2000).

Finally, region­based memory management without the memory safety guar­

antees offered by region types has a long history. The basic idea, of gaining

extra efficiency by bulk allocations and deallocations, is certainly natural. Sys­

tems using region­like abstractions for their memory management date as far

back as 1967 (Ross, 1967; Schwartz, 1975; Hanson, 1990). In contrast to these

special purpose region abstractions, the GNU C Library provides an abstrac­

tion, called obstacks, to application programmers (GNU, 2001).

Also in this line of work is Gay and Aiken’s RC compiler translating re­

gion annotated C programs to ordinary C programs with library support for
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regions (2001). At runtime, each region is equipped with a reference count

keeping track of the number of (external) references to objects in the region.

The operation for deleting a region can then flag instances that attempt to

delete a region with non­zero reference count. A type system provides the

compiler the opportunity to remove some of the reference count operations,

but it does not guarantee memory safety as the type systems discussed in

this chapter do.
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Types for Low­Level Languages

the next two chapters explore a number of techniques that can be used to

extend high­level typing ideas to programs written in low­level languages.

This problem is interesting for a number of reasons. It seems natural to as­

sume that low­level code obtained by compiling well­typed high­level pro­

grams should have the same semantics and similar typing properties. Yet, it

is not immediately clear how to write a type­checker for low­level programs.

Type checking is a convenient way to ensure that a program has certain

semantic properties, such as memory safety. Type checking has gained ac­

ceptance as a major component of the security infrastructure in distributed

systems that share code between hosts that do not trust each other. No­

table examples are the Java Virtual Machine (JVM) (Lindholm and Yellin, 1997)

and the Microsoft Common Language Infrastructure (CLI) (Gordon and Syme,

2001; Gough, 2002), both of which feature type checkers for intermediate

languages used for the distribution of code in distributed systems. Such dis­

tribution schemes rely on low­level languages in order to delegate to the un­

trusted code producer most or all of the compilation effort, and to reduce or

eliminate the need for a trusted compiler on the receiving side. This strategy

also has the potential to give the code producer some flexibility in the choice

of the high­level language in which the development of the code takes place.

The distribution of untrusted mobile code is the main scenario that we will

use to guide our design choices. We refer to a system that receives and exe­

cutes untrusted code as a host and to the untrusted code itself as an agent.

Hosts want to have strong guarantees about the safety of the agent’s exe­

cution. Probably the most basic guarantee is memory safety, which ensures

that the agent does not attempt to dereference memory addresses to which it

has not been given access. But often hosts need to have stronger guarantees,

such as type safety with respect to a certain type system, or bounded execu­
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tion and resource usage, or proper use of the provided APIs. We shall start

to address the memory safety and type safety aspects first and then show

how the techniques that we develop can be applied to more complex safety

polices.

It is worth pointing out that, in the absence of type checking, alternative

mechanisms for ensuring the memory safety of untrusted code are based on

coarse­grained memory protection, enforced either by hardware or by soft­

ware. Hardware memory protection is used when the untrusted code is run

in a separate address space. A software equivalent is software fault isola­

tion (SFI) (Wahbe et al., 1993), in which the untrusted code is instrumented

with run­time checks that prevent memory accesses outside a pre­configured

memory range. In both of these cases, the communication between the un­

trusted code and the host system is expensive because it must involve copy­

ing of data into the untrusted­code address space.

Most of the challenges in typing low­level languages arise because we can­

not abstract details of how high­level features are implemented. In JVM and

CLI, these problems are attenuated by keeping in the intermediate language

the most troublesome high­level features, such as exceptions and dynamic

dispatch.

In these two chapters, we examine instead an extreme situation, in which

the untrusted code is written in assembly language. Correspondingly, the

type system must be more expressive than would be necessary for similar

programs written in a high­level language. In essence, a type checker for a

low­level language verifies not only the well­typedness of the corresponding

high­level constructs but also that the construct has been compiled correctly.

Most of the mechanisms that we’ll need can be expressed using types. Indeed,

Chapter 4 describes a type system that is appropriate for assembly language.

Since such a large part of low­level type checking is closer to program verifica­

tion than type checking, we use in Chapter 5 a method based on logic. Besides

being an instructive alternative presentation of type systems and type check­

ing, that approach will allow us to move seamlessly beyond type checking

and into checking more complex properties of the untrusted code.
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How can we ensure that when we download some code that the code will not

do something “bad” when we execute it? One idea is to leverage the principle

of proof­carrying code introduced by Necula and Lee. The principle of PCC is

that we can eliminate the need to trust a piece of code by requiring a formal,

machine­checkable proof that the code has some desired properties. The key

insight is that checking a proof is usually quite easy, and can be done with a

relatively small (and hence trustworthy) proof­checking engine.

If we are to effectively use PCC to build trustworthy systems, then we must

solve two problems:

1. What properties should we require of the code?

2. How do code producers construct a formal proof that their code has the

desired properties?

The first question is extremely context and application dependent. It requires

that we somehow rule out all “bad” things without unduly restricting “good”

things, and make both “bad” and “good” formal. The second question is im­

possible to solve automatically for arbitrary code assuming non­trivial safety

properties. So, how are we to take advantage of PCC?

One approach is based on type­preserving compilation. The idea here is to

focus on some form of type safety as the desired property. The advantage

of focusing on type safety is that programmers are willing to do the hard

part—construct a proof that some code is type­safe. The way they do this is

by writing the code in a high­level language (e.g., Java or ML). If the source

they write doesn’t type­check, then they rewrite the code until it does. In this

respect, they are engaging in a form of interactive theorem proving.

Once the initial proof is done, a type­preserving compiler takes over, map­

ping the type­safe source code through a series of successively lower­level
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intermediate languages to target code. As it transforms the code, it also (con­

ceptually) transforms the proof. It is usually much easier to do this sort of

transformation than to prove type safety directly on the generated code.

Of course, such a methodology demands that as part of the compilation

process, we design a series of typed intermediate languages, culminating with

typed machine code. Intermediate languages such as the Java Virtual Machine

Language (JVML) and Microsoft’s Common Language Infrastructure (CLI) are

targets of type­preserving compilers for a number of high­level languages,

including Java, C#, and ML.

However, both the JVM and CLI are relatively high­level “CISC­like” abstract

machines. That is, they have pre­conceived notions of methods and objects

which may be incompatible with an efficient encoding for a given language.

For instance, the JVM does not support tail­calls, making the implementation

of functional languages impractical. The CLI does support tail­calls, but there

are other features that it lacks. For instance, arrays are treated as covariant

in the type system, and thus require a run­time check upon update.

Of course, there will never be a universal, portable typed intermediate lan­

guage (TIL) that supports all possible languages and implementation strate­

gies. Nonetheless, we seek a principled approach to the design of TILs that

minimizes the need to add new features and typing rules. In particular, we

seek a more “RISC­like” design for type systems that makes it possible to en­

code high­level language features and to support a variety of optimizations.

4.1 TAL­0: Control­Flow­Safety

We begin our design for a “RISC”­style typed assembly language by focus­

ing on one safety property, known as control­flow safety. Informally, we wish

to ensure that a program does not jump to arbitrary machine addresses

throughout its execution, but only to a well­defined subset of possible entry

points. Control­flow safety is a crucial building block for building dynamic

checks into a system. For instance, before performing a system call, such

as a file read, we might need to check that the arguments to the call have

the right properties (e.g., the file has been opened for reading and the des­

tination buffer is sufficiently large.) Without control­flow safety, a malicious

client could jump past these checks and directly into the underlying routine.

A focus on control­flow safety will also let us start with an extremely simple

abstract machine and demonstrate the key ideas of adapting a type system

to machine code. In subsequent sections, we will expand this machine and its

type system to accommodate more features.

The syntax for our control­flow­safe assembly language, which we will call

TAL­0, is given in Figure 4­1. We assume a fixed set of k general­purpose
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r ::= registers:

r1 | r2 | · · · | rk

v ::= operands:

n integer literal

` label or pointer

r registers

ι ::= instructions:

rd:=v

rd:=rs+v

if r jump v

I ::= instruction sequences:

jump v

ι; I

Figure 4­1: Instructions and operands for TAL­0

registers and a few representative instructions based on a subset of MIPS

assembly language. To keep the language readable, we use a somewhat more

familiar notation for instructions than the usual cryptic “mov,” “add,” etc.

Intuitively, each instruction uses the value in a source register (rs ) and an

operand to compute a value which is placed in the destination register (rd).

In this setting, an operand is either another register, a word­sized immediate

integer,1 or a label. We use “value” to refer to an operand that is not a register.

For our purposes, it is also useful to define instruction sequences (I) as lists

of instructions terminated by an explicit, unconditional control transfer (i.e., a

jump). Of course, when the assembly code is mapped down to machine code,

jumps to adjacent blocks can be eliminated since the code will fall through.

We could make the order of instruction sequences and hence fall­throughs

explicit, but we prefer a simpler, more uniform assembly language to present

the key ideas.

Here is an example TAL­0 code fragment that computes the product of

registers r1 and r2, placing the final result in r3 before jumping to a return

address assumed to be in r4.

prod: r3 := 0; // res := 0

jump loop

loop: if r1 jump done; // if a = 0 goto done

r3 := r2 + r3; // res := res + b

r1 := r1 + ­1; // a := a ­ 1

jump loop

done: jump r4 // return

1. As we are dealing with an assembly language, we ignore the issue of fitting a full word­sized

integer into a single instruction.
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R ::= register files:

{r1 = v1, . . . ,rk = vk}

h ::= heap values:

I code

H ::= heaps:

{`1 = h1, . . . , `m = hm}

M ::= machine states:

(H,R, I)

Figure 4­2: TAL­0 abstract machine syntax

We model evaluation of TAL­0 assembly programs using a rewriting rela­

tion between abstract machine states. Rather than model the execution of

a concrete machine, we use a higher­level representation for machine states

which maintains certain distinctions. For instance, in a real machine, labels

are resolved during program loading to some machine address which is also

represented as an integer. In our abstract machine, we maintain the distinc­

tion between labels and arbitrary integers because this will allow us to easily

state and then prove our desired safety property—that any control flow in­

struction can only branch to a valid, labelled entry point. Indeed, our abstract

machine will get stuck if we try to transfer control to an integer as opposed

to a label. So, the problem of enforcing the safety property now reduces to

ensuring that our abstract machine cannot get stuck.

However, to support this level of abstraction, we must worry about the

situation where a label is added to an integer, or where a test is done on a

label. One possibility is to assume a coercion function intof which maps la­

bels to integers, and use intof(`) whenever ` appears as an operand to an

arithmetic instruction. Though a perfectly reasonable approach, there are a

number of reasons one might avoid it: First, it violates the abstraction that

we are attempting to provide which may lead to subtle information flows.

In some security contexts, this could be undesirable. Second, such a coer­

cion would make it harder to prove the equivalence of two program states,

where labels are α­converted. In turn, this would restrict an implementation’s

freedom to re­arrange code or recycle its memory.2 Finally, it simplifies the

type system if we simply treat labels as abstract. In particular, if we included

such a coercion, we would need some form of subtyping to validate the coer­

cion. However, we emphasize that it is possible to expose labels as machine

integers if desired.

The syntax for TAL­0 abstract machines is given in Figure 4­2. An abstract

machine state M contains three components: (1) A heap H which is a finite,

2. The problem can be avoided by assuming a coercion relation between labels and integers

that respects the alpha­equivalence class of labels.
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partial map from labels to heap values (h), (2) a register file R which is a total

map from registers to values, and (3) a current instruction sequence I. The

instruction sequence is meant to model the sequence of instructions pointed

to by the program counter in a concrete machine. One way to think of the

machine’s operation is that it pre­fetches sequences of instructions up to the

nearest jump whenever a control­transfer is made.

We consider heaps and register files to be equivalent up to re­ordering. We

also consider the labels in the domain of H to bind the free occurrences of

those labels in the rest of the abstract machine. Finally, we consider abstract

machine states to be equivalent up to alpha­conversion of bound labels.

The rewriting rules for TAL­0 are as follows:

H(R̂(v)) = I

(H,R,jump v) -→ (H,R, I)
(JUMP)

(H,R, rd:=v ; I) -→ (H,R[rd = R̂(v)], I) (MOV)

R(rs) = n1 R̂(v) = n2

(H,R, rd:=rs+v ; I) -→ (H,R[rd = n1 + n2], I)
(ADD)

R(r) = 0 H(R̂(v)) = I′

(H,R,if r jump v ; I) -→ (H,R, I′)
(IF­EQ)

R(r) = n n ≠ 0

(H,R,if r jump v ; I) -→ (H,R, I)
(IF­NEQ)

The rules make use of R̂ which simply lifts R from operating on registers to

operands:

R̂(r) = R(r)

R̂(n) = n

R̂(`) = `

Notice that for jump and a successful if­jump we simply load a new instruc­

tion sequence from the heap and begin executing it. Of course, this assumes

that the destination operand evaluates to some label ` (as opposed to an in­

teger), and that the heap provides a binding for `. Otherwise, the machine

cannot make the transition and becomes stuck. For instance, if we attempted

to evaluate jump 42, then no transition could occur. In other words, if we can

devise a type system that rules out such stuck machine states, then we can

be assured that all control transfers must go to properly labelled instruction

sequences.

Of course, there are other ways this particular abstract machine can get

stuck. For instance, if we attempt to add an integer to a label, or test a label
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using if, then the machine will get stuck. This reflects our choice to leave

labels abstract.

4.1.1 Exercise [«, 3]: Taking H to be a heap that maps the labels prod, loop,

and done to their respective instruction sequences above, and taking R0 =

{r1=2,r2=2,r3=0,r4=exit} where exit is some unspecified label, show

that (H,R0,jump prod) steps to a state (H,R,jump r4) with R(r3) = 4. 2

4.1.2 Exercise [Recommended, «««, 3]: Build an interpreter for the TAL­0 ab­

stract machine in your favorite programming language. 2

4.1.3 Exercise [«««, 3]: Formulate a semantics for a concrete machine based on

the TAL­0 instruction set. The concrete machine should manipulate only in­

tegers and have states of the form (M,R, pc) where M is a memory mapping

32­bit integers to 32­bit integers, R is a register file, and pc holds a 32­bit in­

teger for the next instruction to execute. You should assume an isomorphism

encode and decode that maps instructions to and from distinct integers.

Then, prove that the TAL­0 abstract machine is faithful to the concrete

machine by establishing a simulation relation between abstract and concrete

machine states and by showing that this relation is preserved under evalua­

tion. 2

4.2 The TAL­0 Type System

The goal of the type system for TAL­0 is to ensure that any well­formed ab­

stract machine M cannot get stuck—that is, there always exists an M′ such

that M -→ M′. Obviously, our type system is going to have to distinguish la­

bels from integers to ensure that the operands of a control transfer are labels.

But we must also ensure that, no matter how many steps are taken by the ab­

stract machine, it never gets into a stuck state (i.e., typing is preserved.) Thus,

when we transfer control to a label, we need to know what kinds of values it

expects to have in the registers.

To this end, we define our type syntax in Figure 4­3. There are four basic

type constructors. Obviously, int will be used to classify integer values and

code types will classify labels. Furthermore, code(Γ) will classify those labels

which, when jumped to, expect to have values described by Γ in the associated

register. Here, Γ is a register file type—a total function from registers to types.

In this respect, we can think of a label as a continuation which takes a record

of values described by Γ as an argument.

We also support universal polymorphism in TAL­0 through the addition of

type variables (α) and quantified types (∀α.τ). As usual, we consider types
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τ ::= operand types:

int word­sized integers

code(Γ) code labels

α type variables

∀α.τ universal polymorphic types

Γ ::= register file types:

{r1 : τ1, . . . ,rk : τk}

Ψ ::= heap types:

{`1 : τ1, . . . , `n : τn}

Figure 4­3: TAL­0 type syntax

up to alpha­equivalence of bound type variables. Finally, we consider register

file types and heap types to be equivalent up to re­ordering.

With these static constructs in hand, we can now formalize the type system

using the inference rules in Figure 4­4. The first judgment, Ψ ` v : τ , is used

to determine the type of a value. Recall that a value is a register­free operand,

so there is no need for a register context in the judgment. Integer literals are

given type int, whereas labels are given the type assigned to them by the

heap type context Ψ . Note that this rule only applies when the label is in the

domain of Ψ .

The second judgment, Ψ ; Γ ` v : τ lifts value typing to operands. A register

is given the type assigned by the register file type Γ . In addition, a polymor­

phic operand can be instantiated with any type, in a fashion similar to ML.3

The next judgment, Ψ ` ι : Γ1 → Γ2 is used to check instructions. The nota­

tion is meant to suggest that the instruction expects a register file described

by Γ1 on input, and produces a register file described by Γ2 on output. Note

that for the if instruction, we must ensure that the destination operand v

is a code pointer that expects a register file described by the same Γ as any

subsequent instruction. This ensures that, no matter which way the branch

goes, the resulting machine state will be well­formed.

The judgment Ψ ` I : code(Γ) assigns an instruction sequence I the type

code(Γ) when the sequence expects to be given a register file described by Γ .

In particular, a jump instruction’s type is dictated by the type of its operand.

The code type for a sequence of instructions is determined from composi­

tion. Most importantly, we can generalize the type of an instruction sequence

by abstracting any type variables. Note that there is no need to prevent ab­

straction of type variables which occur free in the context Ψ , as is the case

with generalization in ML. This is because Ψ will only contain closed types

(see below). Thus, generalization is always possible.

3. We could also include instantiation for values, but to keep things simple, we have omitted

that rule.
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Values Ψ ` v : τ

Ψ ` n : int (s­int)

Ψ ` ` : Ψ(`) (s­lab)

Operands Ψ ; Γ ` v : τ

Ψ ; Γ ` r : Γ(r) (s­reg)

Ψ ` v : τ

Ψ ; Γ ` v : τ
(s­val)

Ψ ; Γ ` v : ∀α.τ

Ψ ; Γ ` v : τ[τ′/α]
(s­inst)

Instructions Ψ ` ι : Γ1 → Γ2

Ψ ; Γ ` v : τ

Ψ ` rd:=v : Γ → Γ[rd : τ]
(s­mov)

Ψ ; Γ ` rs : int Ψ ; Γ ` v : int

Ψ ` rd:=rs+v : Γ → Γ[rd : int]
(s­add)

Ψ ; Γ ` rs : int Ψ ; Γ ` v : code(Γ)

Ψ ` if rs jump v : Γ → Γ
(s­if)

Instruction Sequences Ψ ` I : τ

Ψ ; Γ ` v : code(Γ)

Ψ ` jump v : code(Γ)
(s­jump)

Ψ ` ι : Γ → Γ2 Ψ ` I : code(Γ2)

Ψ ` ι; I : code(Γ)
(s­seq)

Ψ ` I : τ

Ψ ` I : ∀α.τ
(s­gen)

Register Files Ψ ` R : Γ

∀r .Ψ ` R(r) : Γ(r)

Ψ ` R : Γ
(s­regfile)

Heaps ` H : Ψ

∀` ∈ dom(Ψ).Ψ ` H(`) : Ψ(`)

FTV(Ψ(`)) = ∅

` H : Ψ
(s­heap)

Machine States `M

` H : Ψ Ψ ` R : Γ Ψ ` I : code(Γ)

` (H,R, I)

(s­mach)

Figure 4­4: TAL­0 typing rules

The judgment Ψ ` R : Γ asserts that the register file R is accurately de­

scribed by Γ , under the assumptions of Ψ . Similarly, the judgment ` H : Ψ

asserts that the heap H is accurately described by Ψ . This is essentially the

same rule as a “letrec” for declarations in a conventional functional language:

We get to assume that the labels have their advertised type, and then check

for any inconsistencies within their definitions. This allows labels to refer to

one another directly. Note also that we require the types in Ψ to be closed so

that generalization remains valid.

Finally, the judgment ` (H,R, I) puts the pieces together: We must have

some type assignment Ψ that describes the heap H, a register file typing Γ

that describes R consistent with Ψ , and I must be a continuation with a pre­

condition of Γ on the register file, under the assumptions of Ψ .
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Some Examples and Subtleties

As a simple example of the type system in action, let us revisit the prod

example:

prod: r3 := 0; // res := 0

jump loop

loop: if r1 jump done; // if a = 0 goto done

r3 := r2 + r3; // res := res + b

r1 := r1 + (­1); // a := a ­ 1

jump loop

done: jump r4 // return

Let Γ be the register file type:

{r1,r2,r3:int,r4:∀α.code{r1,r2,r3:int,r4:α}}

Registers r1, r2, and r3 are assigned the type int, and r4 is assigned a poly­

morphic code type for reasons revealed below. Let Ψ be the label type assign­

ment that maps prod, loop, and and done to code(Γ). Let I be the instruction

sequence associated with loop and let us verify that it is indeed well­formed

with the type that we have assigned it.

We must show that Ψ ` I : code(Γ). It suffices to show that each instruction

preserves Γ , since the final jump is to loop, which expects Γ . For the first

instruction, we must show Ψ ` if r1 jump done : Γ → Γ using the S­IF rule:

S­REG
Ψ ; Γ ` r1 : Γ(r1) = int

S­LAB
Ψ ` done : Ψ(done) = code(Γ)

S­VAL
Ψ ; Γ ` done : code(Γ)

Ψ ` if r1 jump done : Γ → Γ

Next, we must show that adding r2 to r3 preserves Γ :

S­REG
Ψ ; Γ ` r2 : Γ(r2) = int

S­REG
Ψ ; Γ ` r3 : Γ(r3) = int

Ψ ` r3 := r2 + r3 : Γ → Γ

Then, we must show that subtracting 1 from r1 preserves Γ :

S­REG
Ψ ; Γ ` r1 : Γ(r2) = int

S­INT
Ψ ` −1 : int

S­VAL
Ψ ; Γ ` −1 : int

Ψ ` r1 := r1 + (­1) : Γ → Γ
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Finally, we must show that the jump which terminates the sequence has type

code(Γ), using the S­JUMP rule:

S­LAB
Ψ ; Γ ` loop : Ψ(loop) = code(Γ)

S­VAL
Ψ ; Γ ` loop : code(Γ)

Ψ ` jump loop : code(Γ)

Stringing the sub­proofs together using the S­SEQ rule, we can thus confirm

that Ψ ` I : code(Γ).

Carrying on, we can show that each label’s code has the type associated

with it. However, there is a major subtlety with the last jump r4 instruction

and the type that we have assigned r4 throughout the code. To understand

this, consider the following:

foo: r1 := bar;

jump r1

bar: ...

What type can we assign to bar? Without the polymorphism, it must be a

code type code(Γ) such that Γ(r1) = code(Γ), since the label bar will be in

register r1 when we jump to it. But with only simple types (i.e., no subtyping,

polymorphism, or recursive types), there is no solution to this equation.

With our support for polymorphism, the problem can be averted. In par­

ticular, we can assign bar a polymorphic type τ of the form ∀α.code{r1 :

α, . . .}. At the jump instruction, we have a register file context of the form

Γ = {r1 : τ, . . .} and we must show that Γ ` r1 : code(Γ). Using S­INST, we

can instantiate the type of r1, which is τ , with τ to derive Γ ` r1 : code{r1 :

τ, . . .}.

This explains why we have used a polymorphic type for r4 in the prod

example above. Of course, this problem can be solved in other ways. Clearly,

adding recursive types provides a solution to the problem. An alternative is to

add some type Top which is greater than or equal to all other types, and use

this to forget the type of a register as we jump through it. Yet another solution

is to treat register file types as partial maps, and provide a form of subtyping

that lets you forget the type of a register, thereby making it unusable as an

operand until it is assigned a value. This last approach was the one used by

the original TAL. We prefer the approach based on polymorphism, because

there are many other compelling uses of this feature.

4.2.1 Exercise [«, 3]: Draw the derivation of well­formedness for the instruction

sequences associated with prod and done. 2
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For instance, polymorphism can also be used to achieve a type for “join­

points” in a control­flow graph. Consider the situation where we have two

jumps from distinct contexts to the same label:

{r1:int,...}

jump baz

...

{r1:code{...},...}

jump baz

What type should baz require of register r1? Again, without support for some

form of polymorphism or subtyping, we would be forced to make the types

the same, in which case this code would be rejected. The problem could be

worked around by, for instance, always loading an integer into r1 before

jumping to this label. But that would slow down the program with unnec­

essary instructions. Fortunately, polymorphism saves us again. In particular,

we can assign baz a type of the form ∀α.code{r1:α,...}. Then, at the first

jump, we would instantiate α to int, whereas at the second jump, we would

instantiate α with the appropriate code type. Of course, the addition of Top

would also provide a convenient mechanism for typing join points.

One other feature that polymorphism provides which cannot be captured

through simple subtyping, is the idea of callee­saves registers. A callee­save

register is a register whose value should remain the same across a procedure

call. If the procedure wishes to use that register, then it is responsible for

saving and restoring its value before returning to the caller. Of course, we

don’t yet have a way to save and restore registers to memory, but a procedure

could shuffle values around into different registers.

Suppose we wish to call a procedure, such as prod, and guarantee that the

register r5 is preserved across the call. We can accomplish this by requiring

the procedure’s entry label to have a type of the form:

∀α.{r5:α,r4:∀β.code{r5:α,r4:β, . . .}, . . .}

where r4 is the register which is meant to hold the return address for the

procedure, and “. . .” does not contain a free occurrence of α. Note that the

return address’s type specifies that r5 must have the same type (α) upon re­

turn as was originally passed in. Furthermore, the procedure is required to

treat r5 uniformly since its type is abstract. Since there is no way to manu­

facture values of abstract type, and since we’ve only passed in one α value,

it must be that if the procedure ever returns, then r5 has the same value in

it as it did upon entry (see Exercise 4.2.5.) Note that the procedure is free to

move r5’s value into some other register, and to use r5 to hold other values.

But before it can return, it must restore the original value.
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So, it is clear that polymorphism can play a unifying role in the design

of type systems for low­level languages. It provides a way for us to conve­

niently “forget” types, which is necessary for jumps through registers and

join points. But it also provides an ability to capture critical compiler invari­

ants, such as callee­saves registers.

4.2.2 Exercise [Recommended, «, 3]: Suppose we change the done instruction se­

quence from jump r4 to jump r1. Show that there is no way to prove the

resulting code is well­typed. 2

4.2.3 Exercise [Recommended, «««, 3]: Reformulate the type system by elimi­

nating type variables and universal polymorphism in favor of a Top type and

subtyping. Then show how the product example can be typed under your

rules. 2

4.2.4 Exercise [«««, 3]: Reformulate the type system by using recursive types in

lieu of polymorphism. Then show how the product example can be typed

under your rules. 2

4.2.5 Exercise [««««, 3]: Prove that the approach to callee­saves registers actu­

ally preserves values. Hint: one relatively easy way to prove this is suggested

by Crary (1999). Another possible solution is to adapt Reynolds’ relational se­

mantics for the polymorphic lambda calculus (1983) to the TAL setting. The

result should follow as a “free theorem” (Wadler, 1989). 2

Proof of Type Soundness for TAL­0

We now wish to show that the type system given in the previous section

actually enforces our desired safety property. In particular, we wish to show

that, given a well­typed machine state M , then M cannot get stuck (i.e., jump

to an integer or undefined label.) It suffices to show that a well­typed machine

state is not immediately stuck (progress), and that when it steps to a new

machine state M′, that state is also well­typed (preservation). For then, by

induction on the length of an evaluation sequence, we can argue that there is

no stuck M′ such that M -→∗ M′.

Our first step is to establish a set of substitution lemmas which show that

derivations remain possible after substituting types for type variables:

4.2.6 Lemma [Type Substitution]: If:

1. Ψ ; Γ ` v : τ1, then Ψ ; Γ[τ/α] ` v : τ1[τ/α].

2. Ψ ` ι : Γ1 → Γ2 then Ψ ` ι : Γ1[τ/α]→ Γ2[τ/α].
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3. Ψ ` I : τ1, then Ψ ` I : τ1[τ/α].

4. Ψ ` R : Γ , then Ψ ` R : Γ[τ/α]. 2

The register substitution lemma ensures that typing is preserved when we

look up a value in the register file. It corresponds to the value substitution

lemma in a soundness proof for a conventional lambda calculus.

4.2.7 Lemma [Register Substitution]: If ` H : Ψ , Ψ ` R : Γ and Ψ ; Γ ` v : τ then

Ψ ; Γ ` R̂(v) : τ 2

As usual, we shall need a Canonical Values lemma that tells us what kind

of value we have from its type:

4.2.8 Lemma [Canonical Values]: If ` H : Ψ and Ψ ` v : τ then:

1. If τ = int then v = n for some n.

2. If τ = code(Γ) then v = ` for some ` ∈ dom(H) and Ψ ` H(`) : code(Γ). 2

This extends to operands as follows:

4.2.9 Lemma [Canonical Operands]: If ` H : Ψ , Ψ ` R : Γ , and Ψ ; Γ ` v : τ then:

1. If τ = int then R̂(v) = n for some n.

2. If τ = code(Γ) then R̂(v) = ` for some ` ∈ dom(H) and Ψ ` H(`) :

code(Γ). 2

4.2.10 Theorem [Soundness of TAL­0]: If ` M , then there exists an M′ such that

M -→ M′ and `M′. 2

Proof: SupposeM = (H,R, I) and `M . By inversion of the S­MACH rule, there

exists a Ψ and Γ such that (a) ` H : Ψ , (b) Ψ ` R : Γ , and (c) Ψ ` I : code(Γ).

The proof proceeds by induction on I.

case I = jump v : From (c) and inversion of S­JUMP, we have Ψ ; Γ ` v :

code(Γ). From the Canonical Operands lemma, we know that there exists an

I′ such that H(R̂(v)) = I′ and Ψ ` I′ : code(Γ). Taking M′ = (H,R, I′), we

can show M -→ M′ via the JUMP rule. We must now show ` (H,R, I′), but this

follows immediately.

case I = rd:=v ; I′: From inversion of the S­SEQ rule, we have Ψ ` rd:=v : Γ →

Γ2 and Ψ ` I′ : code(Γ2) for some Γ2. Then, by inversion of the S­MOV rule, we

have Ψ ; Γ ` v : τ and Γ2 = Γ[rd : τ] for some τ . By the Register Substitution

lemma, we have Ψ ; Γ ` R̂(v) : τ . Taking M′ = (H,R[rd = R̂(v)], I′), we see

that M -→ M′ via the MOV rule. From the S­REGFILE rule, we conclude that

Ψ ` R[rd = R̂(v)] : Γ[rd : τ].
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case I = rd:=rs+v ; I′: From inversion of S­SEQ, we have Ψ ` rd:=rs+v :

Γ → Γ2 and Ψ ` I′ : code(Γ2) for some Γ2. Then, by inversion of the S­ADD

rule, we have Ψ ; Γ ` rs : int, Ψ ; Γ ` v : int and Γ2 = Γ[rd : int]. From

the and Canonical Operand lemma, we know that there exists integers n1

and n2 such that R(rs) = n1 and R̂(v) = n2. Taking n = n1 + n2 and M′ =

(H,R[rd = n], I′), we see that M -→ M′ via the ADD rule. By the S­INT and

S­VAL rules, Ψ ; Γ[rd : int] ` n : int . Thus, by the S­REGFILE rule, we conclude

that Ψ ` R[rd = n] : Γ[rd : int].

case I = if rs jump v ; I′: From inversion of the S­SEQ rule, we have Ψ `

if rs jump v : Γ → Γ2 and Ψ ` I′ : code(Γ2) for some Γ2. Then, by inversion

of the S­IF rule, we have Ψ ; Γ ` rs : int, Ψ ; Γ ` v : code(Γ) and Γ2 = Γ . By

the Canonical Operands lemma, there exists an ` and I2 such that R̂(v) = `,

H(`) = I2, and Ψ ` I2 : code(Γ). Also by Canonical Operands, R(rs) = n

for some integer n. If n = 0 then M -→ (M,R, I2) via IF­EQ. If n ≠ 0 then

M -→ (M,R, I′) via IF­NEQ. In either case, the well­formedness of the resulting

machine state follows from the S­MACH rule. 2

Proof Representation and Checking

It is not clear whether type inference for TAL­0 machine states is decidable.

That is, given a machine state (H,R, I), does there exist a Ψ and Γ such that

` H : Ψ , Ψ ` R : Γ , and Ψ `: code(Γ)? On the one hand, this seems pos­

sible since the type system is so simple. On the other hand, the system, as

presented, supports polymorphic recursion for which inference is known to

be undecidable in the context of the lambda calculus. Furthermore, as we

progress to more advanced typing features, the decidability of type recon­

struction will surely vanish. Thus, in any practical realization, we must re­

quire some help for constructing a proof that the code is indeed type­correct.

In the case of TAL­0, it is sufficient to provide types for the labels (i.e.,

Ψ ). Indeed, it is even possible to omit types for some labels and keep recon­

struction decidable. We really only need enough type information to cut each

loop in the control­flow graph, or for those labels that are moved into reg­

isters. Minimizing the type information is an important goal in any practical

system, since the size of the types can often be larger than the code itself!

However, it is desirable to keep the type checker as simple as possible so that

we can trust it is properly enforcing the type system.

One way to keep the type checker simple is to modify the syntax so that

type reconstruction is entirely syntax directed. By this, we mean simply that

for any given term, at most one rule should apply. Furthermore, the checker

should not have to “guess” any of the sub­goal components. For TAL­0, this

could be accomplished by (a) requiring types on all labels and (b) adding a

form of explicit type instantiation to operands (e.g., v[τ]).



4.3 TAL­1: Simple Memory­Safety 155

An alternative approach is to force the code provider to ship an explicit

representation of the complete proof of well­formedness, along with the code,

and make sure that the proof and the code have the same instructions, labels,

etc. Of course, these proof will tend to be much larger than the code itself, but

we can use various techniques to reduce the size of the proof representation

(see for instance Necula and Lee, 1998b).

Such a separation of proofs and code is advantageous because we can ship

the binary machine code (as opposed to the assembly code), disassemble it,

and then compare it against the assembly­level proof. If everything checks

out, then we can load the binary and execute it directly. Such an approach

is called proof­carrying code (Necula, 1997, 1998) and was first used by Nec­

ula’s Touchstone compiler (Necula and Lee, 1998a), and the Special­J com­

piler (Colby et al., 2000), both of which are described more fully in the next

chapter.

Indeed, we could even go so far as to pass along the proof of soundness for

the entire type system, and a proof that the abstract machine is faithful to the

concrete machine’s semantics! This would ensure that the code consumer has

to trust nothing but (a) the formalization of the concrete machine semantics,

and (b) the proof checker. This is the approach proposed by Appel and Felty

and is called foundational proof­carrying code (2000).

In the rest of this chapter, we will remain vague about how proofs are to be

represented. The key thing to note is that we are not limited in the choice of

type constructors by issues of inference. Rather, we will require that the code

producer provide us with enough evidence that we can easily reconstruct and

check the proof of well­formedness. Therefore, our only limitation will be the

incompletenesses of the resulting proof system.

4.2.11 Exercise [««««, 3]: Build a type­checker for TAL­0 in your favorite program­

ming language. Assume that you are given as input a set of labels, their asso­

ciated types, and instruction sequences. Furthermore, assume that operands

are augmented with explicit syntax for polymorphic instantiation. 2

4.3 TAL­1: Simple Memory­Safety

TAL­0 includes registers and heap­allocated code, but provides no support

for allocated data. In this section, we will add primitive support for allocated

objects that can be shared by reference (i.e., pointer) and extend our safety

property to include a notion of object­level memory safety: No memory access

should read or write a data object at a given location unless the program has

been granted access to that location.
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From a typing perspective, the critical issue will be how to accommodate

locations that hold values of different types at different times during the

execution of the program. We need such a facility to at least support the

construction of compound values, such as tuples, records, datatype construc­

tors, or objects. A high­level language, such as ML, provides mechanisms to

allocate and initialize data structures as a single expression. For instance,

{x = 3, y = 4} is an expression that builds a record with two components. At

the assembly level, such high­level compound expressions must be broken

into machine­level steps. We must first allocate space for the object, and then

initialize the components by storing them in that space. To prevent someone

from treating an uninitialized component as if it holds a valid value, we must

use a different type. But obviously, once we initialize that component, its type

should change to reflect that it is now valid for use.

Already, we have support for storing values of different types in registers.

For instance, nothing prevents us from moving a code value into a register

currently holdingan int. However, when we add allocated data objects, we

can no longer track the changes easily due to aliasing. Let ptr(τ) denote a

pointer to a data object of type τ and consider this sequence of instructions:

{r1:ptr(code(...))}

1. r3 := 0;

2. Mem[r1] := r3;

3. r4 := Mem[r1];

4. jump r4

We assume upon entry that r1 is a pointer to a data location that contains

a code label. The first two instructions overwrite the contents of memory at

the location in r1 with the integer 0. The third instruction loads the value

from the location in r1 and jumps to it. Clearly, this code should be rejected

by the type­checker as it violates our control­flow safety property. To ensure

this, we might require that the type system update the type of r1 whenever

we store through it. For instance, after the second instruction, the type of r1

would change from ptr(code(...)) to ptr(int). Then at instruction four,

the code would be rejected because of an attempt to jump to an integer.

Now consider this sequence:

{r1:ptr(code(...)),r2:ptr(code(...))}

1. r3 := 0;

2. Mem[r1] := r3;

3. r4 := Mem[r2];

4. jump r4

The code is exactly the same except that instead of loading the value pointed

to by r1, we load the value pointed to by r2. Should this code type­check?
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The answer depends on whether or not r1 and r2 hold the same value—that

is, whether or not they are aliases for the same location. There is no problem

when they are not aliases, but when they are, the code behaves the same as

in the previous example (i.e., attempts to jump to the integer 0.) It becomes

clear that to prevent this problem, whenever we update a memory location

with a value of a different type, we must update the types of all aliases to

that location. To do so, the type system must track whether or not two values

are the same and, more generally, whether or not two code labels behave the

same.

Of course, there is no complete logic for tracking the equalities of values

and computations, but it is possible to construct a powerful type system

that allows us to conservatively track equality of some values. For instance

see the work on alias types (Smith, Walker, and Morrisett, 2000; Walker and

Morrisett, 2001; DeLine and Fähndrich, 2001). But all of these systems are,

in my opinion, technically daunting. Furthermore, certifying compilers for

high­level languages rarely need such complex machinery.

Nonetheless, we need some support for (a) allocating and initializing data

structures that are to be shared, and (b) stack­allocating procedure frames.

Therefore, we will focus on typing principles that try to strike a balance be­

tween expressiveness and complexity. After all, our goal is to provide a simple

but expressive structure for implementing type­safe, high­level languages on

conventional architectures.

In particular, we will use the type system to separate locations into one

of two classes: The first class, called shared pointers, will support arbitrary

aliasing. However, the types of the contents of shared pointers must remain

invariant. That is, we can never write a value of a different type into the

contents of a shared location. This is the same basic principle that ML­style

refs and other high­level languages follow.

The second class of locations, called unique pointers, will support updates

that change the type of the contents. However, unique pointers cannot be

aliased. In particular, we will prevent unique pointers from being copied.

Thus, they will behave much the same way as registers.

The combination of unique and shared pointers will provide us with a sim­

ple, but relatively flexible framework for dealing with memory. In particular,

we will be able to use unique pointers to handle the thorny problem of al­

locating and initializing shared data structures. We will also be able to use

unique pointers to model data structures whose lifetime is controlled by the

compiler, such as stack frames.
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r ::= registers:

r1 | r2 | · · · | rk gp registers

sp stack pointer

ι ::= instructions:

· · · as in TAL­0

rd:= Mem[rs + n] load from memory

Mem[rd + n] := rs store to memory

rd:= malloc n allocate n heap words

commit rd become shared

salloc n allocate n stack words

sfree n free n stack words

v ::= operands:

r registers

n integer literals

` code or shared data pointers

uptr(h) unique data pointers

h ::= heap values:

I instruction sequences

〈v1, . . . , vn〉 tuples

Figure 4­5: TAL­1 syntax additions

The TAL­1 Extended Abstract Machine

Figure 4­5 gives a set of syntactic extensions to TAL­0 which are used in the

definition of TAL­1. We have added six new instructions: Two of the instruc­

tions can be used to load a value from memory into a register, or to store

a register’s value to memory respectively. The effective address for both in­

structions is calculated as a word­level offset from a base register. The other

instructions are non­standard. The malloc instruction is used to allocate an

object with n words. A (unique) reference to the object is placed in the des­

tination register. Typically, malloc will be implemented by the concrete ma­

chine using a small sequence of inlined instructions or a procedure call. We

abstract from these details here so that our abstract machine can support a

wide variety of allocation techniques. The commit instruction is used to co­

erce a unique pointer to a shared pointer. It has no real run­time effect but it

makes it easier to state and prove the invariants of the type system.

The salloc and sfree constructs manipulate a special unique pointer

which is held in a distinguished register called sp (stack pointer). The instruc­

tion salloc attempts to grow the stack by n words, whereas sfree shrinks

the stack by n words. The type system will prevent the stack from under­

flowing, so in principle, sfree could be implemented by a simple arithmetic

operation (e.g., sp := sp + n.) Unfortunately, stack overflow will not be cap­

tured by this type system. Therefore, we assume that the salloc instruction

checks for overflow and aborts the computation somehow.

As before, we will model machine states using a triple of a heap, register

file, and instruction sequence. And, as before, register files will map registers

to word­sized values, while heaps will map labels to heap­values. We extend
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heap values to include tuples of word­sized values. Thus, a label can refer to

either code or data. We could also use the heap to store unique data values,

but this would make it more difficult to prove that the pointers to these values

are indeed unique. Instead, we will extend operands with terms of the form

uptr(h) and use such a term to represent a unique pointer to a heap value h.

The rewriting rules for the instructions of TAL­1 that overlap with TAL­0

remain largely the same. However, we must prevent unique pointers from be­

ing copied. More precisely, we must prevent the situation where we have two

references to the same unique data. Note that, for the addition and if instruc­

tions, the use of a unique pointer as an operand will cause the machine to get

stuck since the operands must be integers to make progress. However, the

typing for assignment (r:=v) must be changed to prevent copies of unique

pointers:

R̂(v) ≠ uptr(h)

(H,R, rd:=v ; I) -→ (H,R[rd = v], I)
(MOV­1)

This rule can only fire when the source operand is not a unique pointer.

We must now give the rewriting rules for the new instructions:

(H,R, rd:= malloc n; I) -→ (H,R[rd = uptr〈m1, . . . ,mn〉], I) (MALLOC)

rd ≠ sp ` 6∈ dom(H)

(H,R[rd = uptr(h)],commit rd ; I) -→ (H[` = h],R[rd = `], I)
(COMMIT)

R(rs) = ` H(`) = 〈v0, . . . , vn, . . . , vn+m〉

(H,R, rd:= Mem[rs + n]; I) -→ (H,R[rd = vn], I)
(LD­S)

R(rs) = uptr〈v0, . . . , vn, . . . , vn+m〉

(H,R, rd:= Mem[rs + n]; I) -→ (H,R[rd = vn], I)
(LD­U)

R(rd) = ` H(`) = 〈v0, . . . , vn, . . . , vn+m〉 R(rs) = v v ≠ uptr(h)

(H,R,Mem[rd + n] := rs ; I) -→ (H[` = 〈v0, . . . , v, . . . , vn+m〉], R, I)
(ST­S)

R(rd) = uptr〈v0, . . . , vn, . . . , vn+m〉, R(rs) = v v ≠ uptr(h)

(H,R,Mem[rd + n] := rs ; I) -→ (H,R[rd = uptr〈v0, . . . , v, . . . , vn+m〉], I)
(ST­U)

R(sp) = uptr〈v0, . . . , vp〉 p + n ≤ MAXSTACK

(H,R,salloc n) -→ (H,R[sp = uptr〈m1, . . . ,mn, v0, . . . , vp〉])
(SALLOC)

R(sp) = uptr〈m1, . . . ,mn, v0, . . . , vp〉

(H,R,sfree n) -→ (H,R[sp = uptr〈v0, . . . , vp〉])
(SFREE)

The malloc instruction places a unique pointer to a tuple of n words in the

destination register. We assume that the memory management subsystem
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has initialized the tuple with some arbitrary integer valuesm1, . . . ,mn. Recall

that the rewriting rules prevent these unique pointers from being copied.

However, the commit instruction allows us to move a unique pointer into the

heap where it can be shared. As we will see, however, shared pointers must

have invariant types, whereas unique pointers’ types can change.

The memory­load instruction has two variants, depending upon whether

the source register holds a value that is shared or unique. If it is shared, then

we must look up the binding in the heap to get the heap value. If it is unique,

then the heap value is immediately available. Then, in both cases, the heap

value should be a tuple. We extract the nth word and place it in the destination

register.

The memory­store instruction is the dual and is used to update the nth

component of a tuple. Note that the machine gets stuck on an attempt to

store a unique pointer, thereby preventing copies from leaking into a data

object.

As a simple example of the use of these constructs, consider the following

code:

copy: {r1:ptr(int,int), r2,r3:int}

r2 := malloc 2;

r3 := Mem[r1];

Mem[r2] := r3;

r3 := Mem[r1+1];

Mem[r2+1] := r3;

commit r2;

{r1:ptr(int,int), r2:ptr(int,int), r3:int }

The code is meant to do a deep copy of the data structure pointed to by

r1 and place the copy in register r2. Suppose that r1 holds a label `1 and

H(`1) = 〈3,5〉. After executing the malloc instruction, r2 will hold a unique

pointer to a pair of (arbitrary) integers of the form uptr〈m1,m2〉. After the

load and store, the first integer component of r1 will have been copied into

the first component of r2. Thus, the contents of `2 will have changed to

uptr〈3,m2〉. After the second load and store, the second component will have

been copied, so r2 will hold the value uptr〈3,5〉. Finally, after the commit

instruction, r2 will hold a fresh, shared label `2 and the heap will have been

extended so that it maps `2 to the heap value 〈3,5〉.

Here is an example program which uses salloc and sfree:

foo: {sp : uptr(int), r1 : code{...}}

salloc 2; // {sp : uptr(int,int,int)}

Mem[sp] := r1; // {sp : uptr(code{...},int,int)}

sfree 1 // {sp : uptr(int,int)}
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τ ::= operand types:

· · · as in TAL­0

ptr(σ) shared data pointers

uptr(σ) unique data pointers

∀ρ.τ quantification over allocated types

σ ::= allocated types:

ε empty

τ value type

σ1, σ2 adjacent

ρ allocated type variable

Figure 4­6: TAL­1 types

On input, the stack has one integer element and r1 has a code pointer. The

first instruction grows the stack by two words. The second instruction stores

the value in r1 into the top of the stack. The third instruction frees one of

the words. Note that salloc becomes stuck if we attempt to allocate more

than MAXSTACK (total) words and that sfree becomes stuck if we attempt to

shrink the stack by more words than are on the stack. Finally, note that our

stacks grow “up” (indexing is positive) whereas the common convention is to

have stacks that grow down. The only reason for this choice is that it unifies

unique pointers to tuples with stacks. If we wanted to support downward

stacks, then we could introduce a new kind of data structure (e.g., stptr.)

4.3.1 Exercise [Recommended, «, 3]: Show how stack­push and stack­pop instruc­

tions can be explained using the primitives provided by TAL­1. Explain how a

sequence of pushes or a sequence of pops can be optimized. 2

4.3.2 Exercise [«««, 3]: Modify the abstract machine so that unique pointers are

allocated in the heap, just like shared pointers, but are represented as a

tagged value of the form uptr(`). Then show that the machine maintains

the invariant that there is at most one copy of a unique pointer. 2

4.4 TAL­1 Changes to the Type System

What changes and additions are needed to the type system to ensure that the

new abstract machine won’t get stuck? In particular, how do we ensure that

when we do a load, the source register contains a data pointer (as opposed

to an integer or code label), and the data pointer points to a heap value that

has at least as many components as the offset requires? Similarly, how do

we ensure that for a store, the destination register is a data pointer to a large

enough heap value? And how do we ensure that the stack does not underflow?

How do we ensure that we don’t try to copy a unique pointer? In short, how

do we ensure progress?
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Heap Values Ψ ` v : τ

Ψ ; Γ ` vi : τi

Ψ ` 〈v1, . . . , vn〉 : τ1, . . . , τn
(s­tuple)

Operands Ψ ` v : τ

Ψ ; Γ ` h : σ

Ψ ; Γ ` uptr(h) : uptr(σ)
(s­uptr)

Figure 4­7: TAL­1 typing rules (heap values and operands)

Figure 4­6 gives a new set of types for classifying TAL­1 values. The τ

types are used to classify values and operands, whereas the σ types are

used to classify heap­allocated data. We have added three new operand types

corresponding to shared pointers (ptr(σ)), unique pointers (uptr(σ)), and

polymorphism over allocated types (∀ρ.τ .)

The allocated types (σ ) consist of sequences of operand types. The syntax

supports nesting structure (i.e., trees) but we implicitly treat adjacency as

associative with ε as a unit. So, for instance:

ptr(int, (ρ, (int, ε))) = ptr((int, ρ),int)

Allocated types also support variables (ρ) which are useful for abstracting

a chunk of memory. That is, α can be used to abstract a single word­sized

type, whereas ρ can be used to abstract a type of arbitrary size. As we will

see, polymorphism over allocated types is the key to efficient support for

procedures.

Figures 4­7 and 4­8 give the new typing rules. As in TAL­0, we take Γ to be

a total map from registers to operand types. We are also assuming that Ψ is

a finite partial function from labels to allocated operand types (i.e., code or

ptr types.)

The well­formedness rules for tuples and unique pointers are straightfor­

ward. The s­mov­1 rule defines the new type for the move instruction. It has

as a pre­condition that the value being moved should not be a unique pointer.

The typing rule for malloc requires a non­negative integer argument, and

updates the destination register’s type with a unique pointer of an n­tuple

of integers. The commit instruction expects a unique pointer in the given

register, and simply changes its type to a shared pointer.

The load and store instructions require two rules each, depending upon

whether they are operating on unique pointers. Notice that for the store rules,

we are not allowed to place a unique pointer into the data structure. Notice

also that that when storing into a unique pointer, there is no requirement

that the new value have the same type as the old value. In contrast, for shared

pointers, the old and new values must have the same type.
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Instructions Ψ ` ι : Γ1 → Γ2

Ψ ; Γ ` v : τ τ ≠ uptr(σ)

Ψ ` rd:=v : Γ → Γ[rd : τ]
(s­mov­1)

n ≥ 0

Ψ ` rd:= malloc n : Γ → Γ[rd : uptr〈int, . . . ,int︸ ︷︷ ︸
n

〉]
(s­malloc)

Ψ ; Γ ` rd : uptr(σ) rd ≠ sp

Ψ ` commit rd : Γ → Γ[rd : ptr(σ)]
(s­commit)

Ψ ; Γ ` rs : ptr(τ1, . . . , τn, σ)

Ψ ` rd := Mem[rs + n] : Γ → Γ[rd : τn]
(s­lds)

Ψ ; Γ ` rs : uptr(τ1, . . . , τn, σ)

Ψ ` rd := Mem[rs + n] : Γ → Γ[rd : τn]
(s­ldu)

Ψ ; Γ ` rs : τn τn ≠ uptr(σ ′) Ψ ; Γ ` rd : ptr(τ1, . . . , τn, σ)

Ψ ` Mem[rd + n] := rs : Γ → Γ
(s­sts)

Ψ ; Γ ` rs : τ τ ≠ uptr(σ ′) Ψ ; Γ ` rd : uptr(τ1, . . . , τn, σ)

Ψ ` Mem[rd + n] := rs : Γ → Γ[rd : uptr(τ1, . . . , τ, σ)]
(s­stu)

Ψ ; Γ ` sp : uptr(σ) n ≥ 0

Ψ ` salloc n : Γ → Γ[sp : uptr(int, . . . ,int︸ ︷︷ ︸
n

, σ)]
(s­salloc)

Ψ ; Γ ` sp : uptr(τ1, . . . , τn, σ)

Ψ ` sfree n : Γ → Γ[sp : uptr(σ)]
(s­sfree)

Figure 4­8: TAL­1 typing rules (instructions)

The rules for salloc and sfree are straightforward. For sfree n we check

that there are at least n values on the stack to avoid underflow. Note that the

rule does not allow allocated type variables (ρ) to be eliminated, reflecting

the fact that, in general, we do not know how many words are occupied by ρ.

For instance, ρ could be instantiated with ε in which case there are no values.

A similar restriction holds for loads and stores—we must at least know the

sizes up through the word component we are projecting or storing.
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To prevent the machine from becoming stuck, salloc would ideally check

that adding n words to the stack would not exceed MAXSTACK. But alas, we

cannot always determine the current length of the stack. In particular, if its

type contains an allocated variable ρ, then we are in trouble. One way around

this problem is to change the abstract machine so that it does not get stuck

upon overflow by defining a transition (e.g., by jumping to a pre­defined la­

bel). This would correspond to a machine trap due to an illegal access.

It is possible to extend our soundness proof for TAL­0 to cover the new

constructs in TAL­1 and show that a well­formed machine state cannot get

stuck, except when the stack overflows. In the proof of soundness, one critical

property we must show is that any typing derivation remains valid under an

extension of the heap. In particular, if ` H : Ψ and Ψ ` h : τ , then ` H[` =

h] : Ψ[` : τ]. Another critical property is that we would have to show that

a given label ` that occurs in the heap has exactly one type throughout the

execution of the program. In other words, once we have committed a pointer

so that it can be shared, its type must remain invariant.

4.4.1 Exercise [««««, 3]: Extend the proof of soundness to cover the new fea­

tures in TAL­1. 2

4.5 Compiling to TAL­1

At this point, TAL­1 provides enough mechanism that we can use it as a tar­

get language for the compiler of a polymorphic, procedural language with

integers, tuples, records, and function pointers (but not yet lexically nested

closures.) As a simple example, let us start with the following C code:

int prod(int x, int y) {

int a = 0;

while (x != 0) {

a = a + y;

x = x ­ 1;

}

return a;

}

int fact(int z) {

if (z != 0) return prod(fact(z­1),z);

else return 1;

}

and show how it may be compiled to TAL­1, complete with typing annotations

on the code labels. We assume a calling convention where arguments are
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passed on the stack, and the return address is passed in r4. We also assume

that results are returned in register r1, and arguments are popped off the

stack by the callee. Finally, we assume that registers r2 and r3 are freely

available as scratch registers.

Let us first translate the prod function under these conventions:

prod: ∀a,b,c,s.

code{r1:a,r2:b,r3:c,sp:uptr(int,int,s),

r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}

r2 := Mem[sp]; // r2:int, r2 := x

r3 := Mem[sp+1]; // r3:int, r3 := y

r1 := 0 // r1:int, a := 0

jump loop

loop: ∀s.code{r1,r2,r3:int,sp:uptr(int,int,s),

r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}

if r2 jump done; // if x ↔ 0 goto done

r1 := r1 + r3; // a := a + y

r2 := r2 + (­1); // x := x ­ 1

jump loop

done: ∀s.code{r1,r2,r3:int,sp:uptr(int,int,s),

r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}

sfree 2; // sp:uptr(s)

jump r4

The code itself is rather straightforward. What is most interesting is the types

we have placed on the labels. Note that, upon input to prod, r1, r2, and r3 can

have any types, since we have abstracted their types. Note also that the stack

pointer has type uptr(int,int,s) and thus has two integers at the front,

but can have any sequence of values following, since we have abstracted the

tail with an allocated type variable s. The return address in r4 is polymorphic

for r2 and r3 to allow values of any type in those registers upon return. As

discussed earlier, the type of r4 is abstracted by the return address to al­

low jumping through that register. Furthermore, the return address demands

that the stack have type uptr(s), reflecting that the callee should pop the

arguments before jumping to the return address. Thus, the contents of the

rest of the stack is guaranteed to be preserved since s is abstract.

In general, a source­level procedure that takes arguments of types τ1, . . . , τn
and returns a value of type τ would translate to a label with the same type as

prod’s, except that the stack pointer would have type uptr(τ1, . . . , τn, s), and

r4’s return code type would expect r1 to have type τ .

The types for the loop and done labels are similar to prod’s, except that

registers r1,r2, and r3 must hold integers. The reader is encouraged to check

that the resulting code is well­formed according to the typing rules for TAL­1.
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Now let us translate the recursive factorial procedure using the same call­

ing conventions:

fact: ∀a,b,c,s.

code{r1:a,r2:b,r3:c,sp:uptr(int,s),

r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}

r1 := Mem[sp]; // r1:int, r1 := z

if r1 jump retn // if z = 0 goto retn

r2 := r1 + (­1); // r2:int, r2 := z­1

salloc 2 // sp:uptr(int,int,int,s)

Mem[sp+1] := r4; // sp:uptr(int,(∀d,e,f.code{...}),int,s)

Mem[sp] := r2; // sp:uptr(int,(∀d,e,f.code{...}),int,s)

r4 := cont;

jump fact // r1 := fact(z­1)

cont: ∀c,s’,d,e,f.

code{r1:int,r2:d,r3:e,r4:f,

sp:uptr(∀d,e,f.code{...},int,s’)}

r4 := Mem[sp]; // restore original return address

Mem[sp] := r1; // sp:uptr(int,int,s’)

jump prod // tail call prod(fact(z­1),z)

retn: ∀b,c,s.

code{r1:int,r2:b,r3:c,sp:uptr(int,s),

r4:∀d,e,f.code{r1:int,r2:d,r3:e,r4:f,sp:uptr(s)}}

r1 := 1;

sfree 1; // sp:uptr(s)

jump r4 // return 1

The first couple of instructions load the argument from the stack, test if it

is zero, and if so, jump to the retn block where the argument is popped off

the stack and the value 1 is returned. If the argument z is non­zero, then we

must calculate z­1, pass it in a recursive call to fact, and then pass the result

along with z to the prod function.

To do the recursive call, we must allocate stack space for the return address

(r4) and the argument z­1, and save those values on the stack. Then we must

load a new return address into r4, namely cont and finally jump to fact.

When the recursive call returns, control will transfer to the cont label. Notice

that cont expects the stack to hold the original return address and the value

of z. We restore the original return address by loading it from the stack. We

then overwrite the same stack slot with the result of fact(z­1). Finally, we

do a tail­call to prod.

It is important to recognize that the calling conventions we chose are not

specific to the abstract machine. For instance, we could have chosen a conven­
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tion where the return address is pushed on the stack, or where arguments are

passed in registers, introduced callee­saves registers, etc. In contrast, virtual

machines languages such as the JVML and CLI bake the notion of procedure

and procedure call into the language. To add support for different calling

conventions (e.g., tail­calls, or a tailored convention for leaf procedures) re­

quires additions and changes to the abstract machine and its type system.

In contrast, by focusing on a more primitive set of type constructors (e.g.,

∀, code, and uptr types), we are able to accommodate many conventions

without change to the type system.

4.5.1 Exercise [Recommended, ««, 3]: Rewrite the fact procedure with a calling

convention where the arguments and return address are placed on the stack.

Include typing annotations on the labels and convince yourself that the code

type­checks. 2

4.6 Scaling to Other Language Features

TAL­1 only supports simple tuple or record­like data structures. Thus, it

is insufficient for compiling real­world high­level languages which provide

data abstraction mechanisms such as closures, algebraic datatypes, objects,

and/or arrays.

Simple Objects and Closures

Support for closures and simple forms of objects is readily accommodated

by adding existential abstraction for both operand and allocated types:

τ ::= . . . | ∃α.τ | ∃ρ.τ

The rules for introducing and eliminating existentials on operands are ex­

tremely simple:

Ψ ; Γ ` v : τ[τ′/α]

Ψ ; Γ ` v : ∃α.τ
(s­pack)

Ψ ; Γ ` v : ∃α.τ α 6∈ FTV(Γ)

Ψ ; Γ ` v : τ
(s­unpack)

(There are two similar rules for existentials that abstract allocated types.) The

first rule allows us to abstract a common type for some components of a data

structure. For instance, if r has type

ptr(code{r1:int,r2:int,...},int)



168 4 Typed Assembly Language

then we can use the s­pack rule to treat the value as if it has type

∃α.ptr(code{r1:α,r2:int,...},α).

Now, such a value can only be used by eliminating the existential using the

s­unpack rule. However, we are required to continue treating α as abstract

and distinct from any other type that may be in our context.

As suggested by Pierce and Turner (1993), we can use existentials to encode

very simple forms of objects. For example, consider an object interface that

looks like this, written in a Java­style:

interface Point {

int getX();

int getY();

}

and consider two classes that implement this interface:

class C1 implements Point {

int x = 0, y = 0;

int getX() { return x; }

int getY() { return y; }

}

class C2 implements Point {

int x = 0, y = 0 , n = 0;

int getX() { n++; return x; };

int getY() { n++; return y; }

}

We can think of objects as pairs of a method table and an instance variable

frame. The methods take the instance variable frame as an implicit “self”

argument. For instance, the C1 class would have an instance frame that holds

two integers, whereas the C2 class would have an instance frame that holds

three integers. Thus, at an intermediate language level, C1’s get operations

would have type:

ptr(int,int)→ int

while C2’s operations would have type:

ptr(int,int,int)→ int

When we build a C1 object or a C2 object, we need to hide the type of the in­

stance frame so that only the methods can gain access to and manipulate the
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values of the instance variables. We also need to hide the type of the instance

frames so that we can give the objects a common type. We can achieve this

by using an existential to abstract the type of the instance frame and pairing

the methods with the instance frame. At an intermediate level, the type of a

Point object would thus be something like:

∃α.ptr(ptr(α → int,α → int),α)

Note that for any value with this type, we cannot directly access the instance

variables because their type is abstract (i.e., α). However, once such an ob­

ject is unpacked, we can project out a method and the instance frame, and

pass the frame to the method because the methods expect an α value as an

argument.

Closures are simple forms of objects where the instance frame holds the

environment, and there is a single method for applying the closure to its

arguments. Thus, with the simple addition of existential types, we have the

ability to encode the primary features of modern languages, notably closures

and objects. Indeed, the original TAL paper (Morrisett, Walker, Crary, and

Glew, 1999) showed how a polymorphic, core functional language could be

mapped to a version of typed assembly with support for existentials. This

translation was based on previous work of Minamide, Morrisett, and Harper

(1996).

Of course, in a more realistic implementation, we might represent objects

without the level of indirection on instance variables, and instead of passing

only the instance variables to methods, we could pass the whole object to a

method. With the addition of recursive types (µα.τ) and the usual isomor­

phism (µα.τ = τ[µα.τ/α]), this becomes possible:

∃ρ.µα.ptr(ptr(α → int,α → int),ρ)

Notice that in the above encoding, we have abstracted an allocated type (ρ)

which is used to describe the rest of the object after the method pointer. Fur­

thermore, the methods in the method table expect to take values of type α

which is isomorphic to the type of the (unpacked) object. That is, the meth­

ods take in the whole object (including the method table) instead of just the

instance variables.

This last encoding of objects is closely based on ideas of Bruce (1995;

2002). There are many other potential encodings (see Bruce, Cardelli, and

Pierce, 1997, for a nice overview.) In short, it is possible to draw upon the

wealth of literature on object and closure encodings to find a small set of

re­usable type constructors, such as F­bounded existentials, to provide your

typed assembly language with enough power to support compilation of mod­

ern object­oriented or functional languages, without baking in a particular
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object model. Again, this contrasts with the JVM and CLI which fix on a single

object model and provide poor support for encoding languages outside that

model.

One problem with these object encodings is that they do not readily sup­

port a form of “down­casting” where we perform a run­time test to determine

whether an object implements a given interface. Such operations are common

in languages such as Java, where the lack of parametric polymorphism and

the erroneous addition of covariant arrays requires dynamic type tests. In

general, dynamic type tests can be accomplished by using some form of rep­

resentation types (Crary, Weirich, and Morrisett, 1998), but these encodings

are relatively heavyweight and do not support the actual representations used

by implementations. Glew (1999) suggested and implemented extensions to

TALx86 that better supports practical implementations.

Arrays, Arithmetic, and Dependent Types

In TAL­1, we are restricted to using constant offsets to access the data com­

ponents of an object. Similarly, we can only allocate objects whose size is

known at compile time. Thus, we cannot directly encode arrays.

The simplest way to add arrays is to revert to high­level, CISC­like in­

structions. We could imagine adding a primitive rd:= newarray(ri, rs) which

would allocate an array with ri elements, and initialize all of the components

with the value in rs , returning a pointer to the array in register rd . To read

components out of an array, we might have an operation rd:= ldarr(rs , ri)

which would load the r thi component of array rs , placing the result in rd . Du­

ally, the operation starr(rs , rd , ri) would store the value in rs into the r thi
component of array rd .

To ensure type safety for the ldarr and starr operations, we would need

to check that the element offset ri did not exceed the number of elements in

the array and jump to an exception handler if this constraint is not met. In

turn, this would demand that we (implicitly) maintain the size of the array

somewhere. For instance, we could represent an array with n elements as a

tuple of n+ 1 components with the size in the first slot.

4.6.1 Exercise [Recommended, ««, 3]: Extend the TAL­1 abstract machine with

rewriting rules for arrays as described above and provide typing rules for the

new instructions. 2

The advantage of the approach sketched above is that it leaves the type

system simple. However, it has a number of drawbacks: First, there is no way

to eliminate the check that an offset is in bounds, even if we know and can

prove that this is the case. Second, this approach requires that we maintain
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the size of the array at runtime, even though the size might be statically ap­

parent. Third, the real machine­level operations that make up the primitive

subscript and update operations would not be subject to low­level optimiza­

tions (e.g., instruction scheduling, strength reduction, and induction variable

elimination.)

An alternative approach based on dependent types was suggested by Xi

and Harper (2001) and implemented (to some degree) in TALx86. The key

idea behind the approach, called DTAL, is to first add a form of compile­time

expressions to the type system:

e ::= n | e1 + e2 | e1 − e2 | e1 ∗ e2 | i | · · ·

A compile­time expression is made up of constants (n), arithmetic operations,

and compile­time integer variables (i). We then allow type constructors to de­

pend upon (i.e., be indexed by) a compile time expression. For instance, the

type arr(τ,30 + 12) would classify those arrays that have 42 components,

each of which is a value of type τ . Similarly, the type int(36) would clas­

sify those integer values that are equal to 36—in other words, int(36) is a

singleton type.

To support integers whose value is unknown, or arrays whose number of el­

ements are unknown, we can use a suitably quantified compile­time variable.

For instance, the type ∃i.int(i) would classify any integer value, and the

type ∃i.arr(τ,i*2) would classify arrays of τ values with an even number

of components. More importantly, the type

∀i1,i2.code{r1:int(i1),r2:arr(T,i1),r3:int(i2)}

would classify code that expects r2 to hold an array with i1 elements, r1 to

hold an integer equal to i1, and r3 to hold some other integer equal to i2.

Thus, we can use this limited form of dependent types to track an important

relation between two values—that one register holds the number of elements

in the array pointed to by another register.

To support the elimination of array bounds checks, we need to go beyond

equality relations and track refinements of values as we perform tests. For

instance, in a context with the code type above, if we wanted to use r3 to

index into array r2, it should be sufficient to check that the value in r3 is

greater than or equal to 0, and less than r1:4

sub: ∀i1,i2.code{r1:int(i1),r2:arr(T,i1),r3:int(i2), ...}

if r3<0 jump L;

rt := r3 ­ 1;

if rt>=0 jump L;

rd := ldarr(r2,r3) // rd := Mem[r2+r3]

4. In practice, this can be determined using a single unsigned comparison.
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In other words, the ldarr operation above should type­check since we are in

a context where r2 is an array of size i1, r3 is an integer equal to i2, and

the predicate (i2 ≥ 0) ∧ (i2 < i1) is true. To support this validation, DTAL

checked instructions under a typing context of the form (Γ ;P) where P was

a predicate that was assumed to be true. Tests, such as the blt r3, ERROR

instruction, would typically add conjuncts to the context’s predicate.

For example, type­checking for the fragment above would proceed as fol­

lows:

1. sub: ∀i1,i2.(...; true)

2. if r3<0 jump L; // ({...}; true ^ (i2 >= 0))

3. rt := r3 ­ 1; // ({...,rt:int(i2­i1)};(i2 >= 0))

4. if rt>=0 jump L; // ({...,rt:int(i2­i1)};(i2 >= 0)^(i2­i1 < 0))

5. rd := ldarr(r2,r3)

After checking line 2, the context’s predicate (true) has been refined by

adding the conjunct i2 >= 0 since r3 has type int(i2) and the test can only

fall through when r3 is greater than or equal to zero. At line 3, rt is given

the type int(i2­i1) since r1 has type int(i1) and r3 has type int(i2) and

the operation places r3 ­ r1 into rt. Then, at line 4, the test adds the con­

junct i1­i1 < 0 to the fall­through continuation’s context. Finally, at line 5,

we are able to satisfy the pre­condition of the ldarr construct since we are

in a context where the index lies between 0 and the size of the array.

In DTAL, the predicates used for refinements were restricted to linear in­

equalities so as to keep type­checking decidable. But in general, we could add

support for arbitrary predicates, and simply require that the code producer

provide an explicit proof that the current (inferred) predicate implied the

necessary pre­conditions. In other words, we can fall back to a very general

proof­carrying code framework, as described in the following chapter.

However, as the designer of the type system, we would still be responsible

for providing the code producer a set of sound (and relatively complete) infer­

ence rules for proving these relations. Though this is possible, it is nowhere

as easy as the simple proofs that we have presented here.

4.7 Some Real World Issues

Clearly, TAL­1 and the extensions described earlier provide the mechanisms

needed to implement only very simple languages. Furthermore, most of the

operations of the machine have a one­to­one correspondence with the opera­

tions of a typical RISC­style machine. Some operations, such as commit could

be pushed into the proof representation since they have no run­time effect.
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And abstracting other operations, such as malloc, insulates us from details

of the memory management runtime.

Of course, there are a number of simple extensions that could be made

to make the type system a little more useful. For instance, we could anno­

tate primitive memory type components with flags to control whether that

component supports read­only, write­only, or read­write access.

4.7.1 Exercise [«, 3]: Assuming you added type qualifiers for read­only and write­

only access to tuple components. How would you change the abstract ma­

chine so that you captured their intended meaning? 2

We could also add support for subtyping in a number of ways. For instance,

we could take: ptr(σ ,σ ′) ≤ ptr(σ). That is, we can safely forget the tail of a

sequence of values, for both ptr and uptr types. We can also consider a read­

write component to be a subtype of a read­only or a write­only component.

For shared, read­only components, we can support covariant deep subtyping,

and for write­only components, we can have contra­variant subtyping. Inter­

estingly, it is sound to have covariant subtyping on read­write components

of unique pointers. All of these extensions were supported in some form for

TALx86.

An issue not addressed here is support for primitive values of sizes less

than a machine word (e.g., a char or short). But this too is relatively easy

to accommodate. The key thing is that we need some function from operand

types to their sizes so that we can determine whether or not a ld or st is

used at the right offset. A slightly more troublesome problem is the issue of

alignment. On many architectures (e.g., the MIPS, SPARC, and Alpha), primi­

tive datatypes must be naturally aligned. For instance, a 64­bit value (e.g., a

double) should be placed on a double­word boundary. Of course, the com­

piler can arrange to insert padding to ensure this property, if we assume

that malloc places objects on maximally aligned boundaries. Still, we might

need to add a well­formedness judgment to memory types to ensure that they

respect alignment constraints.

The approach to typing the stack is powerful enough to accommodate

standard procedure calls, but cannot handle nested procedures, even if they

are “downward­only” as in Pascal. To support this, we would, in general,

need some form of static pointers back into the stack (or display.) The STAL

type system supports a limited form of such pointers which also provides

the mechanisms needed to implement exceptions (Morrisett et al., 2002).

These extensions were used in the TALx86 implementation. An alternative

approach, based on intersection types, is suggested by Crary’s TALT (Crary,

2003) which has the advantage that it better supports stack­allocated ob­

jects. A more general approach is to integrate support for regions into the
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type system in the style of Cyclone (Grossman, Morrisett, Jim, Hicks, Wang,

and Cheney, 2002) or one of the other region­based systems described in

Chapter 3.

The original TAL used a different mechanism, based on initialization flags

and subtyping, to support shared­object initialization. More recently, the work

of Petersen et al. (2003) provides an approach to initialization based on a

“fuse” calculus. The approach based on initialization flags has the advantage

that uninitialized objects are first class, which is useful in some contexts,

such as “tail­allocation” (Minamide, 1998). Neither our approach based on

unique pointers nor the fuse calculus supports this. Furthermore, neither

approach supports the initialization of circular data structures, which is im­

portant when building recursive closures. These concerns motivated the de­

sign of alias types (Smith, Walker, and Morrisett, 2000) which handles all of

these concerns and more, and which were implemented in TALx86. Recently,

Ahmed and Walker (2003) have suggested yet another approach based on an

embedding of the logic of bunched implications within a type system.

It is possible to add a free instruction to TAL­1 which takes a unique

pointer and returns it to the runtime for re­use. In some sense, free is the

ultimate type­changing operation, for it is simply a way to recycle memory so

that it can later be used to hold values of a different type. Unfortunately, it is

not so easy to provide a free operation for shared pointers.

4.7.2 Exercise [Recommended, «, 3]: Given an example program that could "go

wrong" if we allowed free to operate on shared pointers. 2

As noted earlier, the type system is closed under extensions to the heap,

but not necessarily a shrinking heap. It can be shown that if a location is not

reachable from the registers (or from reachable code) then a heap value can be

safely thrown away. But discovering that this property is true requires more

than a single machine instruction. Indeed, it requires a run­time examination

of the pointer­graph to determine the unreachable objects.

Therefore, with the introduction of shared data pointers, we are essentially

buying into the need for a garbage collector to effectively recycle memory.

Of course, to support accurate garbage collection requires that we provide

enough information that the collector can determine pointers from other data

values at run­time. Furthermore, the collector requires knowledge of the size

of heap objects. Finally, many collectors require a number of subtle proper­

ties to hold (e.g., no pointers to the interior of heap objects) before they can

be invoked. Capturing all of these constraints in a useful type system is still

somewhat of a challenge.

TALx86 and the proposed TALT use a conservative collector to recycle

memory. Conservative collectors do not require precise information about
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which objects are pointers. However, they tend to have leaks, since they some­

times think an integer is a pointer to an unreachable object. Like other collec­

tors, a number of invariants must hold in order for the collection to be sound.

The TALT system formalizes these constraints as part of its type system.

Another possibility is to integrate the Capability types which provide a

general support for regions at the TAL level (Walker, Crary, and Morrisett,

2000). With this type system, it is possible to code up a copying collector

within the language as suggested by Wang and Appel (2001). However, doing

an efficient copying collector requires a bit more technical machinery. Some

of these issues are resolved by Monnier, Saha, and Shao (2001).

Finally, note that, at this point, a paper and pencil proof of the soundness

of a system that incorporates these extensions becomes quite large (and te­

dious) and we are therefore likely to make mistakes. To avoid such pitfalls,

we would be wise to encode the abstract machine and type system in some

formal system where the proof can be verified. For example, Crary encodes

his TALT abstract machine and typing rules using the LF framework (2003)

whereas Hamid et al. have done this using Coq (2002). Another approach

championed by Appel and Felty (2000) is called Foundational Proof Carry­

ing Code, whereby the types are semantically constructed using higher­order

logic in such a way that they are by definition sound with respect to the

(concrete) machine’s semantics.

4.8 Conclusions

Type systems for low­level code, including compiler intermediate languages

and target languages, are an exciting area of research. In part, this is because

the “human constraint” is lifted since the typing annotations are produced

and consumed by machines instead of humans. That is, we do not have to

worry about the type system being too complicated for the average program­

mer, or that it requires too many typing annotations. These concerns often

dominate the design of type systems for high­level languages. Of course, it

is still important to keep the design as simple and orthogonal as possible

so that we can construct proofs of soundness and have confidence in the

implementation. Ideally, proofs should be carried out in a machine­checked

environment.

Low­level languages also present new challenges to type system designers.

For instance, the issues of initialization and memory recycling are of little

concern in high­level languages, since these details are meant to be handled

by the compiler and run­time system. Yet, the nitty­gritty details of the run­

time system are crucial for the proper functioning of the system.
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George Necula

In the previous chapter we saw that one can adapt many of the ideas from

type systems for high­level languages to assembly language. In this chapter,

we describe yet another technique that can be used to type check assembly

language programs. This time, however, we are going to depart from tradi­

tional type­checking approaches and see how one can adapt ideas from pro­

gram verification to this problem. In the process of doing so, we are going

to obtain a framework that can be adapted more easily to the verification of

code properties that go beyond type safety.

5.1 Overview of Proof Carrying Code

Proof­Carrying Code (PCC) (Necula, 1997; Necula and Lee, 1996) is a general

framework that allows the host to check quickly and easily that the agent has

certain safety properties. The key technical detail that makes PCC powerful is

a requirement that the agent producer cooperates with the host by attaching

to the agent code an “explanation” of why the code complies with the safety

policy. Then all that the host has to do to ensure the safe execution of the

agent is to define a framework in which the “explanation” must be conducted,

along with a simple yet sufficiently strong mechanism for checking that (a) the

explanation is acceptable (i.e., is within the established framework), that (b)

the explanation pertains to the safety policy that the host wishes to enforce,

and (c) that the explanation matches the actual code of the agent.

There are a number of possible forms of explanations each with its own

advantages and disadvantages. Safety explanations must be precise and com­

prehensive, just like formal proofs. In fact, in this chapter, the explanations

are going to be formal proofs encoded in such a way that they can be checked

easily and reliably by a simple proof checker.
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There are several ways to implement the PCC concept, and all share the

common requirement that the untrusted code contains information whose

purpose is to simplify the verification task. At one extreme, we have the JVML

and CLI verifiers, which rely on typing declarations present in the untrusted

code to check the safety of the code. The KVM (Sun) implementation of the

JVML verifier does further require that the code contains loop invariants in

order to simplify and speed up the verification. Typed Assembly Language

(described in Chapter 4) pushes these ideas to the level of assembly language.

The most general instance of PCC, called Foundational Proof­Carrying Code

(FPCC) (Appel, 2001; Appel and Felty, 2000), reduces to a minimum the size

of the verifier and puts almost the entire burden of verification on the agent

producer, who now has to produce and send with the agent detailed proofs

of safety. In this chapter, we describe an instantiation of PCC that is similar

to TAL in that it operates on agents written in assembly language, and is

similar to FPCC in that it requires detailed proofs of safety to accompany the

agent code. However, the architecture that we describe here uses a verifier

that is more complex than that of FPCC, and thus somewhat less trustworthy.

However, the advantage of this architecture is that is places a smaller burden

on the agent producer than FPPC, and has been shown to scale to verifying

even very large programs (Colby et al., 2000). We are going to refer to this

architecture as the Touchstone PCC architecture.

A high­level view of the architecture of the Touchstone PCC system is

shown in Figure 5­1. The agent contains, in addition to its executable con­

tent, checking­support data that allows the PCC infrastructure resident on

the receiving host to check the safety of the agent. The PCC infrastructure is

composed of two main modules. The verification­condition generator (VCGen)

scans the executable content of the agent and checks directly simple syntactic

conditions (e.g., that direct jumps are within the code boundary). Each time

VCGen encounters an instruction whose execution could violate the safety

policy, it asks the Checker module to verify that the dangerous instruction

executes safely in the actual current context.

In order to construct a formal proof of a program, we need to reason about

them using mathematical concepts. VCGen “compiles” programs to logical

formulae in such a way that the aspects of the execution of the program that

are relevant to the security policy are brought out.

VCGen can be quite simple because it relies on the Checker to verify com­

plex safety requirements. There are some cases, however, when VCGen might

have to understand complex invariants of the agent code in order to follow its

control and data flow. For example, VCGen must understand the loop struc­

ture of the agent in order to avoid scanning the loop body an unbounded

number of times. Also, VCGen must be able to understand even obscure con­
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Figure 5­1: The Touchstone PCC architecture

trol flow, as in the presence of indirect jumps or function pointers. In such

situations, VCGen relies on code annotations that are part of the checking

support and are packaged with the agent. This puts most of the burden of

handling the complex control­flow issues on the agent producer and keeps

the VCGen simple.

The Checker module verifies for VCGen that all dangerous instructions are

used in a safe context. The Checker module described in this chapter requires

that VCGen formulates the safety preconditions of the dangerous instruc­

tions as formulas in a logic. We call these formulas the verification conditions.

The Checker expects to find in the checking­support data packaged with the

agent a formal proof that the safety precondition is met. For the verification

to succeed, the Checker must verify the validity of the verification­condition

proofs for all dangerous instructions identified by VCGen.

The Touchstone PCC infrastructure described here can be customized to

check various safety policies. The “Safety Policy” element in Figure 5­1 is a

collection of configuration data that specifies the precise logic that VCGen

uses to encode the verification conditions, along with the trusted proof rules

that can be used in the safety proofs supplied by the agent producer. For

example, the host might require that the untrusted code interacts correctly

with the runtime system of a Java Virtual Machine. This can be enforced in
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type maybepair = Int of int | Pair of int * int

let rec sum(acc : int, x : maybepair list) =

match x with

| nil → acc

| (Int i) :: tail → sum(acc + i, tail)

| (Pair (l, r)) :: tail → sum (acc + l + r, tail)

Figure 5­2: OCaml source for the example agent

our system by a safety policy requiring that the code is well­typed with re­

spect to the typing rules of Java. It is important to separate the safety policy

configuration data from the rest of the infrastructure both for conceptual and

for engineering reasons. This architecture allows the infrastructure to work

with multiple safety policies, without changing most of the implementation.

An Example Agent

In the rest of this chapter, we explore the design and implementation details

of the PCC infrastructure. The infrastructure can be configured to check many

safety policies. In the example that we use here, we check a simple type­safety

policy for an agent written in a generic assembly language. The agent is a

function that adds all the elements in a list containing either integers or pairs

of integers. If this agent were written in OCaml, its source code might be as

shown Figure 5­2.

In order to write the agent in assembly language, we must decide what

is the representation strategy for lists and for the maybepair type. For the

purpose of this example, we represent a list as either the value 0 (for the

empty list), or a pointer to a two­word memory area. The first word of the

memory area contains a list element, and the second element contains the

tail of the list. In order to represent an element of type maybepair in an

economical way we ensure that any element of kind Pair(x, y) is an even­

valued pointer to a two­word memory area containing x and y . We represent

an element of kind Int x as the integer 2x + 1 (to ensure that it is odd and

thus distinguishable from a pair). For example, the representation of the list

[Int 2; Pair (3, 4)] has the concrete representation shown in Figure 5­3.

Notice the tagged representation of the Int 2 element of the list.

In our examples, we will use the simple subset of a generic assembly lan­

guage shown below. The expressions e contain arithmetic and logic opera­

tions involving constants and registers. This is the same assembly language
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Figure 5­3: Concrete representation of the list [Int 2; Pair (3, 4)]

that was used in Chapter 4, except that we relax slightly the syntax of mem­

ory addresses, and we replace the general form of indirect jump with a return

instruction.

rx := e assign the result of e to register rx

rx := Mem[e] load rx from address e

Mem[e′] := e store the result of e to address e′

jump L jump to a label L

if e jump L branch to label L if e is true

return return from the current function

Given our representation strategy and the choice of assembly language in­

structions, the code for the agent is shown in Figure 5­4. On entry to this code

fragment, registers rx and racc contain the value of the formal arguments x

and acc respectively. The code fragment also uses temporary registers rt and

rs . To simplify the handling of the return instruction, we use the convention

that the return value is always contained in the register rR.

The safety policy in this case requires that all memory reads be from point­

ers that are either non­null lists, in which case we can read either the first or

the second field of a list cell, or from pointers to elements of the Pair kind.

In the case of a memory write, the safety policy constrains the values that can

be written to various addresses as follows: in the first word of a list cell we

can write either an odd value or an even value that is a pointer to an element

of Pair kind, and in the second word of a list cell we can write either zero

or a pointer to some list cell. There are no constraints on what we can write

to the elements of a Pair. The restrictions on memory writes ensure that

the contents of the accessible memory locations is consistent with the type

assigned to their addresses.

The safety policy specifies not only requirements on the agent behavior but

can also specify assumptions that the agent can make about the context of

the execution. In the case of our agent, the safety policy might specify that

the contents of the register rx on entry is either zero or a pointer to a list
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1 sum: ;rx : maybepair list

2 Loop:

3 if rx ≠ 0 jump LCons ; Is rx empty?

4 rR := racc

5 return

6 LCons: rt := Mem[rx] ; Load the first data

7 if even(rt) jump LPair

8 rt := rt div 2

9 racc := racc + rt

10 jump LTail

11 LPair: rs := Mem[rt] ; Get the first pair element

12 racc := Mem[racc + rs]

13 rt := Mem[rt + 4] ; and the second element

14 racc := racc + rt

15 LTail: rx := Mem[rx + 4]

16 jump Loop

Figure 5­4: Assembly code for the function in Figure 5­2

cell. Also, the safety policy can allow the agent to assume that the value read

from the first word of a list cell is either odd or otherwise a pointer to a Pair

cell. Similarly, the agent can assume that the value it reads from the second

word of a cell is either null or else a pointer to a list cell. We formalize this

safety policy in the next section.

5.2 Formalizing the Safety Policy

At the core of a safety policy is a list of instructions whose execution may

violate safety. The safety policy specifies, for each one, what is the verification

condition that guarantees its safe execution. In the variant of PCC described

here, the instructions that are handled specially are the memory operations

along with the function calls and returns. This choice is hard coded in the

verification­condition generator. However, the specific verification condition

for each of these instructions is customizable. In such an implementation, we

can control very precisely what memory locations can be read, what memory

locations can be written and what can be written into them, what functions

we call and in what context, and in what context we return from a function.

This turns out to be sufficient for a very large class of safety policies. We shall

explore in Section 5.7 a safety policy for which this is not sufficient and for

which we must change the verification condition generator.
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The customizable elements of the safety policy are the following:

• A language of symbolic expressions and formulas that can be used to ex­

press verification conditions.

• A set of function preconditions and postconditions for all functions that

form the interface between the host and the agent.

• A set of proof rules for verification conditions.

In the rest of this section we describe in turn these elements.

The Syntax of the Logic

For this presentation we use a first­order language of symbolic expressions

and formulas, as shown below:

Formulas F ::= true | F1 ∧ F2 | F1 ∨ F2 | F1 ⇒ F2 | ∀x.F | ∃x.F

| addr Ea | E1 = E2 | E1 ≠ E2 | f E1 . . . En
Expressions E ::= x | sel Em Ea | upd Em Ea Ev | f E1 . . . En

We consider here only the subset of logical connectives that we need for

examples. In practice, a full complement of connectives can be used. The

formula (addr Ea) is produced by VCGen as a verification condition for a

memory read or a memory write to address Ea. This formula holds whenever

Ea denotes a valid address. Formulas can also be constructed using a set of

formula constructors that are specific to each safety policy.

The language of expressions contains variables and a number of construc­

tors that includes integer numerals and arithmetic operators, and can also be

extended by safety policies. A notable expression construct is (sel Em Ea)

that is used to denote the contents of memory address denoted by Ea in

memory state Em. The construct (upd Em Ea Ev) denotes a new memory state

that is obtained by storing the value Ev at address Ea in memory state Em.

For example, the contents of the address c in a memory that is obtained from

memory state m after writing the value 1 at address a followed by writing of

value 2, can be written:

sel (upd (updm a 1) b 2) c

A safety policy extends the syntax of the logic by defining new expression

and formula constructors. In particular, for our example agent we add con­

structors for encoding types and a predicate constructor for encoding the

typing judgment:

Word types W ::= int | ptr {S} | listW | {x | F(x)}

Structure types S ::= W | W ;S

Formulas F ::= . . . | E : W | listinv Em
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We distinguish among types the word types, whose values fit in a machine

register or memory word. Pointers can point to an area of memory containing

a sequence of words. The word type {x | F(x)} contains all those values for

which the formula F is true (this type is sometimes called a comprehension

or set type). The typing formula constructor “:” is written in infix notation.

We also add the listinv formula constructor that will be used to state that

the contents of the memory satisfies the representation invariant for lists of

pairs. The precise definition of the typing and the listinv formulas will be

given on page 200, with respect to a predetermined mapping of values and

memory addresses to types. Informally, we say that listinv M holds when

each memory address that is assigned a pointer type contains values that are

assigned appropriate types.

Using these constructors we can write the low­level version of the ML typing

judgment x : maybepair list as

x : list {y | (even y) ⇒ y : ptr {int; int}}

In the rest of this section we use the abbreviation mp_list for the type

maybepair list. Notice that we have built­in the recursive type of lists in

our logic, in order to avoid the need for recursion at the level of the logic, but

we choose to express the union and tuple types explicitly.

5.2.1 Exercise [Recommended, «]: The singleton type is a type populated by a

single value. Write a formula in the above logic corresponding to the assertion

that x has type singleton for the value v . Show also how you can write using

our language of types the singleton type for the value v . 2

5.2.2 Exercise [Recommended, «]: Consider an alternative representation for the

maybepair type. A value of this type is a pointer to a tagged memory area

containing a tag word followed either by another word encoding an Int if the

tag value if 0, or by two words encoding a Pair if the tag value is 1. Write the

formula corresponding to the assertion that x has this representation. 2

The Preconditions and Postconditions

A PCC safety policy contains preconditions and postconditions for the func­

tions that form the interface between the agent and the host. These are either

functions defined by the agent and invoked by the host or library functions

exported by the host for use by the agent. These preconditions and postcon­

ditions are expressed as logic formulas that use a number of formula and

expression constructors specific to the safety policy.

Function preconditions and postconditions at the level of the assembly

language are expressed in terms of argument and return registers, and thus
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specify also the calling convention. For verification purposes, we model the

memory as a pseudo­register rM .

The function precondition and postcondition for our agent are:

Presum = rx : mp_list ∧ listinv rM

Postsum = listinv rM

The safety policy requires that the memory state be well­typed after the agent

returns and allows the agent to assume that the memory state is well­typed

when the host invokes it. Notice that we do not specify constraints on the

integer arguments and results. This reflects our decision that any value what­

soever can be used as an integer.

Technically, the preconditions and postconditions are not well­formed for­

mulas in our logic because they use register names as expressions. However,

we can obtain valid formulas from them once we have a substitution of reg­

ister names with expressions. We shall see later how this works out in detail.

5.2.3 Exercise [Recommended, «]: Write the precondition and postcondition of a

function of OCaml type (int * int) * int list → int list. The first

argument is represented as a pointer to a sequence of two integers; the sec­

ond is a list. Consider that the return value is placed in register rR. 2

5.2.4 Exercise [Recommended, «]: Consider a function that takes in register r1 a

pointer to a sequence of integer lists. The length of the sequence is passed

in register r2. The function does not return anything. Write the precondition

and postcondition for this function. 2

The Proof Rules

The last part of the safety policy is a set of proof rules that can be used to rea­

son about formulas in our logic in general and about verification conditions

in particular. In Figure 5­5 we show, in natural deduction form, a selection of

the derivation rules for the first­order logical connectives. We show the con­

junction introduction (andi) and the two conjunction eliminations (andel,

ander), and the similar rules for implication. We also have two rules (mem0

and mem1) that allow us to reason about the sel and upd constructors for

memory expressions. These two rules should not be necessary for most type­

based safety policies because in those cases all we care to know about the

contents of a memory location is its type, not its value.

Note that in this set of base proof rules we do not yet specify when we can

prove that addr holds. This is the prerogative of the safety­policy specific

rules that we describe next.



186 5 Proof­Carrying Code

F1 F2

F1 ∧ F2

(andi)

F1 ∧ F2

F1

(andel)

F1 ∧ F2

F2

(ander)

F1

...

F2

F1 ⇒ F2

(impi)

F1 ⇒ F2 F1

F2

(impe)

A = A′

sel (upd M A V) A′ = V
(mem0)

A ≠ A′

sel (upd M A V) A′ = selM A′
(mem1)

Figure 5­5: Built­in proof rules

Each safety policy can extend the built­in proof rules with new rules. In fact,

this is necessary if the safety policy uses formula constructors beyond the

built­in ones. The rules specific to our safety policy are shown in Figure 5­6.

We have rules for reasoning about the type constructors: lists (nil, cons),

set types (set) and pointers to sequences (this and next). These are similar

to corresponding rules from type systems with recursive types and tuples.

Next come two rules for reasoning about the typing properties of reading

and writing from pointers. The rule sel says that the location referenced by a

pointer to a word type in a well­typed memory state has the given word type.

The rule upd is used to prove that a well­typed write preserves well­typedness

of memory. These rules are similar to corresponding rules for reference types.

Notice that these proof rules are exposing more concrete implementation

details than the corresponding source­level rules. For example, the cons rule

specifies that a list cell is represented as a pointer to a pair of words, of which

the first one stores the data and the second the tail of the list.

Finally, the ptraddr rule relates the safety­policy specific formula con­

structors with the built­in addr memory safety formula constructor. This rule

says that addresses that can be proved to have pointer type in our type sys­

tem are valid addresses. And since this is the only rule whose conclusion

uses the addr constructor, the safety policy is essentially restricting memory

accesses to such addresses.

5.2.5 Exercise [Recommended, ««]: Add a new array type constructor to our

safety policy and write the proof rules for its usage. An array is represented
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0 : list W (nil)

E : listW E ≠ 0

E : ptr {W ;list W}
(cons)

E : {y | F(y)}

F(E)
(set)

E : ptr {W ;S}

E : ptr {W}
(this)

E : ptr {W ;S}

E + 4 : ptr {S}
(next)

A : ptr {W} listinvM

(sel M A) : W
(sel)

listinvM A : ptr {W} V : W

listinv (upd M A V)
(upd)

A : ptr {W}

addr A
(ptraddr)

Figure 5­6: Proof rules specific to the example safety policy

as a pointer to a memory area that contains the number of elements in the

array in the first word and then the array elements in order. Consider first

the case where each element is a word type (as in OCaml), and then the case

when each element can be a structure (as in C). 2

We have shown here just a few of the rules for a simple safety policy.

A safety policy for a full language can easily have hundreds of proof rules.

For example, the Touchstone implementation of PCC for the Java type sys­

tem (Colby et al., 2000) has about 150 proof rules.

5.3 Verification­Condition Generation

So far, we have shown how to set up the safety policy; now we need to de­

scribe a method for enforcing it. An analogous situation in the realm of high­

level type systems is when we have setup a type system, with a language of

types and a set of typing rules, and we need to design a type checker for

it. A type checker must scan the code and must know what typing rule to

apply at each point in the code. In fact, some type checkers work by explic­

itly collecting typing constraints that are solved in a separate module. Our

PCC infrastructure accomplishes a similar task, and separates the scanning

of the code from the decision of what safety policy proof rules to apply. The

scanning is done by the verification­condition generator, which also identifies

what must be checked for each instruction. How the check is performed is

decided by the Checker module, with considerable help from the proof that

accompanies the code. In a regular type checker, there is no pressing need

to separate code scanning from the construction of the typing derivation,
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since the scanning process is often simple and the structure of the typing

derivation closely follows that of the code. This is not true for low­level type

checking. In fact, programs written in assembly language may have very little

structure.

To illustrate some of the difficulties of type checking low­level code, con­

sider the following fragment of code written in ML, where x is a variable

of type T list and the variable t occurs in the expression e also with type

T list:

match x with

_ :: t → e

A type checker for ML parses this code, constructs an abstract syntax tree

(AST) and then it verifies its well­typedness in a relatively simple manner by

traversing the AST. This is possible because the match expression packages

in one construction all the elements that are needed for type checking: the

expression to be matched, the patterns with the variables they define, and the

bodies of the cases.

Consider now one particular compilation of this code fragment:

rt := rx

rt := rt + 4

if rx = 0 jump LNil

rt := Mem[rt]

...

We assume that the variable x is allocated to register rx and that the ex­

pression e is compiled with the assumption that, on entry, the variable t is

allocated to the register rt . We observe that the code for compiling the match

construct is spread over several non­contiguous instructions mixed with the

instructions that implement the cases themselves. This is due to the intrinsi­

cally sequential nature of assembly language. It would be hard to implement

a type checker for assembly language that identifies the code for the match

by recognizing patterns, as a source­level type checker does. Also, such a type

checker would be sensitive to code generation and optimization choices.

Another difficulty is that some high­level operations are split into several

small operations. For example the extraction of the tail of the list is separated

into the computation of an address in register rt and a memory load. We

cannot check one of the two instructions in isolation of the other because they

both can be used in other contexts as well. Furthermore, it is not sufficient

to type check the addition rt + 4 as we would do in a high­level language

(i.e., verify that both operands have compatible arithmetic types). Instead we

need to remember that we added the constant 4 to the contents of register

rx, so that when we reach the load instruction, we can determine that we
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are loading the second word from a list cell. Additionally, our type­checking

algorithm has to be flow sensitive and path sensitive because the outcomes

of conditional expressions sometimes determine the type of values. In our

example, if the conditional falls through then we know that rx points to a

list cell and therefore that rt points to the second element in a list cell. If,

however, the conditional jumps to LNil, then we cannot even assign a type

to rt after the addition.

Yet another complication with assembly language is that, unlike in high­

level languages, we cannot count on a variable having a single type through­

out its scope. In assembly language the registers play the role of variables and

since there is a finite number of them, compilers reuse them aggressively to

hold different data at different program points. In our example, the register

rt is used before the load to hold both a pointer to a memory location con­

taining a list and after the load instruction to hold a list. We must thus keep

different types for registers for different program points. Chapter 4 discusses

these problems extensively.

There are a number of approaches for overcoming these difficulties. All of

them do maintain different types for registers at different program points but

differ on how they handle the dependency on conditionals and the splitting

of high­level operations into several instructions. At one extreme is the Java

Bytecode Verifier (Lindholm and Yellin, 1997), which typechecks programs

written in the Java Virtual Machine Language (JVML). The JVML is relatively

high­level and maintains complicated operations bundled in high­level con­

structs. For instance, in JVML you cannot separate the address computation

from the memory access itself. In the context of our example, this means that

the addition and the load instruction would be expressed as one bytecode in­

struction. The JVML is designed such that the outcome of conditionals does

not matter for type checking. For example, array­bounds checks and pointer

null­checks are bundled with the memory access in high­level bytecode in­

structions. This approach simplifies the type­checking problem but has the

disadvantage that the agent producer cannot really do much optimization.

Also this approach puts more burden on the code receiver for compiling and

optimizing the code.

Another approach is Typed Assembly Language (TAL), described in Chap­

ter 4, where a more sophisticated type system is used to keep track of the in­

termediate result of unbundled instructions. But even in TAL some low­level

instructions are treated as bundles for the purpose of verification. Examples

are memory allocation and array accesses.

Here we are going to describe a type checking method that can overcome

the difficulties described above. The method is based on symbolic evaluation,

and it was originally used in the context of program verification. The method
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is powerful enough to verify full correctness of a program, not just its well­

typedness, which will come in handy when we consider safety policies beyond

type safety.

Symbolic Evaluation

In order to introduce symbolic evaluation, consider the code fragment from

above but without the conditional.

rt := rx

rt := rt + 4

rt := Mem[rt]

This fragment exhibits the problems due to reuse of registers with different

types and the splitting of high­level operations into low­level instructions.

We have already observed that it is more important to remember the effect of

the addition instruction than it is to type check it immediately as we see it. In

fact, we are going to postpone all checking as much as possible and are going

to focus on “remembering” the effect of instructions instead. Observe that if

we allow arbitrary complex operands in our instructions, we can rewrite the

above code sequence as follows:

rt := Mem[rx + 4]

In this variant, the address computation is bundled with the memory access,

and we can actually perform the usual pattern matching to recognize what

typing rule to apply. Symbolic evaluation is a technique that has the effect of

collecting the results of intermediate computations to create the final result

as a complex expression whose meaning is equivalent to the entire computa­

tion. A symbolic evaluator is an interpreter that maintains for each register a

symbolic expression. We will use the symbol σ to range over symbolic states,

which are mappings from register names to symbolic expressions. The sym­

bolic state is initialized with a distinct fresh variable for each register, to

model the lack of information about the initial values of the registers. For

our example the initial symbolic state is:

σ0 = {rt = t,rx = x,rM =m}

where t and x are distinct fresh variables. Technically, this symbolic state

says that at the given program point the following invariant holds:

∃t.∃x.∃m.rt = t ∧ rx = x ∧ rM =m

The symbolic evaluator proceeds forward to interpret the instructions and

modifies the symbolic state as specified by the instruction. We show below

the sequence of symbolic states during symbolic evaluation.
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σ = {rt = t,rx = x,rM =m}

rt := rx

σ = {rt = x,rx = x,rM =m}

rt := rt + 4

σ = {rt = x+ 4,rx = x,rM =m}

rt := Mem[rt]

σ = {rt = (selm (x+ 4)),rx = x,rM =m}

When the instruction “rt := rx” is processed, the symbolic evaluator looks

up the value of rx in the current symbolic state and then sets rt to that

value. Notice how at the time the load instruction is processed, the symbolic

evaluator can figure out that the address being accessed is x+ 4.

In order to handle memory reads and writes we use a pseudo­register rM

and the sel and upd constructors introduced in Section 5.2. For memory

loads and writes, the symbolic evaluator also emits the required verification

conditions using the addr constructor. For example, the verification condition

for the load instruction would be (addr (x+ 4)).

Another element of interest is the handling of conditionals. In order to

allow for path sensitive checking the symbolic evaluator maintains, in ad­

dition to the symbolic state, a list of assumptions about the state. These

assumptions are simply formulas involving the same existentially quantified

variables that the symbolic state uses. As the symbolic evaluator follows the

branches of a conditional, it extends the list of assumptions with formulas

that capture the outcome of the conditional expression.

If we now add back the conditional instruction in our example, the symbolic

state and the set of assumptions (initially A) at each point are shown below:

σ = {rt = t,rx = x,rM =m}, A

rt := rx

σ = {rt = x,rx = x,rM =m}, A

rt := rt + 4

σ = {rt = x+ 4,rx = x,rM =m}, A

if rx = 0 jump LNil

σ = {rt = x+ 4,rx = x,rM =m}, A ∧ x ≠ 0

rt := Mem[rt]

σ = {rt = selm (x+ 4),rx = x,rM =m}, A ∧ x ≠ 0

...

LNil: σ = {rt = x+ 4,rx = x,rM =m}, A ∧ x = 0

The symbolic state immediately before the load instruction essentially states

that the following invariant holds at that point:

∃t.∃x.∃m.rt = x ∧ rx = x+ 4 ∧ rM =m ∧ A ∧ x ≠ 0
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This means that the Checker module would have to check the following

verification condition for the load instruction:

∀t.∀x.∀m.(rt = x ∧ rx = x+ 4 ∧ rM =m ∧ A ∧ x ≠ 0)⇒ addr (x+ 4)

Symbolic evaluation has many applications in program analysis. In the fol­

lowing two exercises you can explore how one can use symbolic evaluation to

verify easily the correctness of some code transformations.

5.3.1 Exercise [Recommended, «]: Consider the following two code fragments.

The one on the right has been obtained from the one on the left by per­

forming a few simple local optimizations. First, we did register allocations,

by renaming register ra, rb, rc , and rd to r1, r2, r3 and r4 respectively. Then

we removed the dead instruction from line 1. We performed copy propa­

gation followed by common subexpression elimination in line 5. Finally, we

performed instruction scheduling by moving the instruction from line 3 to be

the last in the block.

1 ra := 2

2 ra := rb + 1

3 rc := ra + 2

4 rd := 1

5 rd := rb + rd

r1 := r2 + 1

r4 := r1

r3 := r1 + 2

Show that the result of symbolic evaluation for the registers live at the end of

the two basic blocks is identical if you start with symbolic states {rb = b} and

{r2 = b} respectively. This suggests that symbolic evaluation is insensitive to

some common optimizations. 2

5.3.2 Exercise [Recommended, «]: Now consider the first code fragment shown

in Exercise 5.3.1 and add the instruction “ra := 3” immediately before line 5.

In this case it is not correct to perform common­subexpression elimination.

Show now that the result of symbolic evaluation is different for the modified

code fragment and the transformed code from Exercise 5.3.1. This suggests

that symbolic evaluation can be use to verify the result of compiler optimiza­

tions. This technique is in fact so powerful that it can be used to verify most

optimizations that the GNU C compiler performs (Necula, 2000). 2

Before we can give a complete formal definition of the VCGen, we must

consider what happens in the cases when the symbolic evaluator should not

follow directly the control­flow of the program. Two such cases are for loops

(when following the control­flow would make VCGen loop forever) and for

functions (when it is desirable to scan the body of a function only once). In

order to handle those cases, VCGen needs some assistance from the agent

producer, in the form of code annotations.
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The Role of Program Annotations

The VCGen module attempts to execute the untrusted program symbolically

in order to signal all potentially unsafe operations. To make this execution

possible in finite time and without the need for conservative approximations

on the part of VCGen, we require that the program be annotated with invari­

ant predicates. At least one such invariant must be specified for each cycle

in the program’s control­flow graph. An easy but conservative way to enforce

such a constraint is to require an invariant annotation for every backward

branch target.

The agent code shown in Figure 5­4 has one loop whose body starts at the

label Loop. There must be one invariant annotation somewhere in that loop.

Let us say that the agent producer places the following invariant at label Loop:

Loop: INV = rx : mp_list ∧ listinv rM

The invariant annotation says that whenever the execution reaches the la­

bel Loop the contents of register rx is a list. It also says that the contents

of the memory satisfies the representation invariants of lists. Just like the

preconditions and postconditions, the invariants can refer to register names.

A valid question at this point is who discovers this annotation and how.

There are several possibilities. First, annotations can be inserted by hand by

the programmer. This is the only alternative when the agent code is pro­

grammed directly in assembly language or when the programmer wants to

hand­optimize the output of a compiler. It is true that this method does not

scale well, but it is nevertheless a feature of PCC that the code receiver does

not care whether the code is produced by a trusted compiler, and will gladly

accept code that was written or optimized by hand.

Another possibility is that the annotations can be produced automatically

by a certifying compiler. For our simple type safety policy the only annota­

tions that are necessary consist of type declarations for the live registers at

that point. See Necula (1998) for more details.

Finally, note that the invariant annotations are required but cannot be

trusted to be correct as they originate from the same possibly untrusted

source as the code itself. Nevertheless, VCGen can still use them safely, as

described in the next section.

The Verification­Condition Generator

Now we have all the elements necessary to describe the verification­condition

generator for the case of one function whose precondition and postcondition

are specified by the safety policy. We will assume that each invariant annota­
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tion occupies one instruction slot, even though in practice they are stored in

a separate region of the agent. Let Inv be the partial mapping from program

counters to invariant predicates. If i ∈ Dom(Inv), then there is an invariant

Invi at program counter i. Next, for a more uniform treatment of functions

and loops, we will consider that the first instruction in each agent function

is an invariant annotation with the precondition predicate. In our example,

this means that Inv1 = rx : mp_list ∧ listinv rM . This, along with the loop

invariant (with the same predicate) at index 2 are all the loop invariants in

the example. Thus, Dom(Inv) = {1,2}, and the first few lines of our agent

example are modified as follows:

1 sum: INV rx : mp_list ∧ listinv rM

2 Loop: INV rx : mp_list ∧ listinv rM

3 if rx ≠ 0 jump LCons ; list is empty

Given a symbolic state σ and an expression e that contains references to

register names, we write (σ e) to denote the result of substituting the regis­

ter names in e with the expressions given by σ . We extend this notation to

formulas F that refer to register names (e.g., function preconditions or post­

conditions, or loop invariants). We also write σ[r ← e] to denote a symbolic

state that is the same as σ but with register r mapped to e.

We write Πi for the instruction (or annotation) at the program counter i.

The core of the verification­condition generator is a symbolic evaluation

function SE that given a value i for the program counter and a symbolic state

σ , produces a formula that captures all of the verification conditions from

the given program counter until the next return instruction or invariant. The

definition of the SE function is shown below:

SE(i, σ) =




SE(i + 1, σ[r ← σ e]) if Πi = r := e

(σ e)⇒ SE(L,σ) ∧ if Πi = if e jump L

(not (σ e)) ⇒ SE(i + 1, σ)

addr (σ a) ∧ if Πi = r := Mem[a]

SE(i + 1, σ[r ← (σ (sel rM a))])

addr (σ a) ∧ if Πi = Mem[a] := e

SE(i + 1, σ[rM ← (σ (upd rM a e))]

σ Post if Πi = return

σ I if Πi = INV I

Symbolic evaluation is defined by case analysis of the instruction contained

at a given program counter. Symbolic evaluation is undefined for values of

the program counter that do not contain a valid instruction. In the case of a

set instruction, the symbolic evaluator substitutes the current symbolic state

into the right­hand side of the instruction and then uses the result as the new
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value of the destination register. Then the symbolic evaluator continues with

the following instruction. For a conditional, the symbolic evaluator adds the

proper assumption about the outcome of the conditional expression. Memory

operations are handled like assignments but with the generation of additional

verification conditions.

When either the return instruction or an invariant is encountered, the sym­

bolic evaluator stops with a predicate obtained by substituting the current

symbolic state into the postcondition or the invariant formula. The symbolic

evaluator also ensures (using a simple check not shown here) that each loop

in the code has at least one invariant annotation. This ensures the termination

of the SE function.

What remains to be shown is how the verification­condition generator uses

the SE function. For each invariant in the code, VCGen starts a symbolic eval­

uation with a symbolic state initialized with distinct variables. Assuming that

the set of registers is {r1, . . . ,rn}, we define the global verification condition

VC as follows:

VC =
∧
i∈Dom(Inv)∀x1 . . . xn. σ0 Invi ⇒ SE(i + 1, σ0)

where σ0 = {r1 = x1, . . . ,rn = xn}

Essentially the VCGen evaluates symbolically every path in the program

that connects two invariants or an invariant and a return instruction. In Fig­

ure 5­7 we show the operation of the VCGen algorithm on the agent code from

Figure 5­4 (after we have added the invariant annotations for the precondi­

tion and the loop, as explained at the beginning of this section). We show on

the left the program points and a brief description of each action. Some ac­

tions result in extending the stack of assumptions that the Checker is allowed

to make. These assumptions are shown underlined and with an indentation

level that encodes the position in the stack of each assumption. Thus an

assumption at a given indentation level implicitly discards all previously oc­

curring assumptions at the same or larger indentation level. Finally, we show

right­justified and boxed the checking goals submitted to the Checker.

There are two invariants (in lines 1 and 2) and for each one we generate

fresh new variables for registers, we assume that the invariant holds, and

then we start the symbolic evaluator. For the first invariant, the symbolic

evaluator when starting in line 2 encounters an invariant and terminates.

Every boxed formula shown flushed right in Figure 5­7 is a verification

condition that VCGen produces and the Checker module has to verify for

some arbitrary values of the initial variables.

Notice that the invariant formulas are used both as assumptions and as

verification conditions. There is a strong similarity between the role of in­

variants and that of predicates in a proof by induction. In the latter case the
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1: Generate fresh values rM =m0, rR = r0, rx = x0, racc = acc0,

rt = t0 and rs = s0

1: Assume Invariant x0 : mp_list

listinvm0

2: Invariant x0 : mp_list

listinvm0

2: Generate fresh values rM =m1, rR = r1, rx = x1, racc = acc1,

rt = t1 and rs = s1

2: Assume Invariant x1 : mp_list

listinvm1

3: Branch 3 taken x1 ≠ 0

6: Check load addr x1

7: Branch 7 taken even (selm1 x1)

11: Check load addr (selm1 x1)

13: Check load addr ((sel m1 x1)+ 4)

15: Check load addr (x1 + 4)

16: Goto Loop

2: Invariant (selm1 (x1 + 4)) : mp_list

listinvm1

7: Branch 7 not taken odd (selm1 x1)

10: Goto LTail

15: Check load addr (x1 + 4)

16: Goto Loop

2: Invariant (selm1 (x1 + 4)) : mp_list

listinvm1

3: Branch 3 not taken x1 = 0

5: Return listinvm1

Figure 5­7: The sequence of actions taken by VCGen
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listinvm1

x1 : mp_list x1 ≠ 0
CONS

x1 : ptr {maybepair;mp_list}
THIS

x1 : ptr {maybepair}
SEL

(selm1 x1) : maybepair
SET

even (selm1 x1)⇒ (selm1 x1) : ptr {int;int} even (selm1 x1)
IMPE

(selm1 x1) : ptr {int;int}
THIS

(selm1 x1) : ptr {int}
PTRADDR

addr (selm1 x1)

Figure 5­8: Proof of a verification condition

predicate is assumed to hold and with this assumption we must prove that it

holds for a larger value in a well founded order. This effectively ensures that

the invariant formulas are preserved through an arbitrary execution from one

invariant point to another.

Let us consider now how one proves the verification conditions. The first

interesting one is the addr from line 6. Let

maybepair
def
= {y | even(y) ⇒ y : ptr {int; int}}

To construct its proof, we first derive x1 : ptr {maybepair;mp_list} using

the rule cons with the assumptions x1 : mp_list and x1 ≠ 0. Then we can

derive addr x1 using the rule ptraddr.

A more interesting case is that of proving addr (sel m1 x1) from the

assumptions x1 : mp_list, listinv m1, x1 ≠ 0, and even (sel m1 x1). This

proof is shown in Figure 5­8.

5.3.3 Exercise [««, 3]: Construct the the proof of the verification condition corre­

sponding to the loop invariant from line 2. You must prove that selm1 (x1+

4) : mp_list from the assumptions x1 : mp_list, listinv m1, x1 ≠ 0, and

even (selm1 x1). 2

5.3.4 Exercise [«««]: Notice that we have to prove that selm1 x1 : ptr {int} sev­

eral times as a step in proving those verification conditions from Figure 5­7

that refer to (selm1 x1). Show how you can add an invariant to the program

to achieve the effect of proving this fact only once. 2



198 5 Proof­Carrying Code

We have been arguing that symbolic evaluation is just an alternative method

for type checking, with additional benefits for checking more complex safety

policies. Since there is a simple type checker at the source level for our type

system, it seems reasonable to wonder whether we could hope to build au­

tomatically the proofs of these verification conditions. This is indeed possi­

ble for such type­based safety policies. Consider for instance how the proof

shown in Figure 5­8 could be constructed through a goal­directed manner.

The goal is an addr formula, and we observe that only the ptraddr among

our rules (shown in Figure 5­6) has a conclusion that matches the goal. The

subgoal now is (sel m1 x1) : ptr {int}. In order to prove that the result

of reading from a memory location has a certain type, we must prove that

the memory is well­typed and the address has some pointer type. When we

try to prove that x1 has a pointer type, we find among the assumptions that

x1 : mp_list. The remaining steps can be easily constructed by a theorem

prover that knows the details of the type system. This general strategy was

used successfully to construct a simple theorem prover that can build auto­

matically and efficiently proofs of verification conditions for the entire Java

type safety policy (Colby et al., 2000).

5.3.5 Exercise [«««]: Extend the verification­condition generator approach shown

here to handle a function call instruction call L, where L is a label that is

considered the start of a function. For each such function there is a precon­

dition and a postcondition. Make the simplifying assumption that the call

instruction saves the return address and a set of callee­save registers on a

special stack that cannot be manipulated directly by the program. A ret in­

struction always returns to the last return address saved on the stack and

also restores the callee­save registers. 2

5.3.6 Exercise [««]: It is sometimes useful to use more kinds of annotations in

addition to the loop invariants. For example, the agent producer might know

that a certain point in the code is not reachable, as is the case for the label L1

in the code fragment shown below:

call exit

L1: UNREACHABLE

...

In such a case it is useful to add an annotation UNREACHABLE to signal to

the symbolic evaluator that it can stop the evaluation at that point. Show how

you can change the symbolic evaluator to handle these annotation without

allowing the agent producer to “lie” about reachability of code. 2

5.3.7 Exercise [««]: Extend the symbolic evaluator to handle the indirect jump

instruction jump at e, where e must evaluate to a valid program counter.
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Indirect jumps are often used to implement efficiently switch statements, in

which case the destination address is one of a statically­known set of labels.

Assume that immediately after the indirect jump instruction there is an anno­

tation of the form JUMPDEST(L1, L2) to declare that the destination address

is one of L1 or L2. 2

5.3.8 Exercise [««««, 3]: Extend the symbolic evaluator to handle stack frames.

The basic idea is that there is a dedicated stack pointer register rSP that al­

ways points at the last used stack word. This register can only be incremented

or decremented by a constant amount. You can ignore stack overflow issues.

The stack frame for a function has a fixed size that is declared with an an­

notation. The only accesses to it are through the stack pointer register along

with a constant offset. The key insight is that since there is no aliasing to

the stack frame slots they can be treated as pseudo registers. Make sure you

handle properly the overlapping of stack frames at function calls. 2

This completes our simplified account of the operation of VCGen. Note

that the VCGen defined here constructs a global verification condition that

it then passes to the Checker module. This approach, while natural and easy

to describe, turns out to be too wasteful. For large examples on the order of

millions of instructions it is quite common for this monolithic formula to re­

quire hundreds of megabytes for storage, slowing down the checking process

considerably. A high­level type checker that would construct an explicit typ­

ing derivation would be just as wasteful. A more efficient VCGen architecture

passes to the Checker module each verification condition as it is produced.

After the checker validates it, the verification condition is discarded and the

symbolic evaluation resumes. This optimization might not seem interesting

from a scientific point of view, but it is illustrative of a number of engineering

details that must be addressed to make PCC scalable.

5.4 Soundness Proof

In this section we prove that the type checking technique presented so far

is sound, in the sense that “well­typed programs cannot go wrong.” More

precisely, we prove that if the global verification condition for a program is

provable using the proof rules given by the safety policy, then the program

is guaranteed to execute without violating memory safety. The method we

use is similar to those used for type systems for high­level languages. We

define formally the operational semantics of the assembly language, along

with the notion of “going wrong.” It is a bit more difficult to formalize the

notion of well­typed programs. In high­level type systems there is a direct
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connection between the typing derivations and the abstract­syntax tree of

the program. In our case, the connection is indirect: we first use a verification­

condition generator and then we exhibit a derivation of the global verification

condition using the safety policy proof rules. In order to reflect this staging in

the operation of our type checker, we split the soundness proof into a proof

of soundness of the set of safety policy rules and a proof of soundness of the

VCGen algorithm.

Soundness of the Safety Policy

The ultimate goal of our safety policy is to provide memory safety. In order to

prove that our typing rules enforce memory safety, we must first define the

semantics of the expression and formula constructors that we have defined.

The semantic domain for the expressions is the set of integers,1 except for

the memory expressions that we model using partial maps from integers to

integers.

Next we observe that the typing formulas involving pointer types and the

listinv formulas have a well­defined meaning only in a given context that

assigns types to addresses. The necessary context is a mapping M from a

valid address to the word type of the value stored at that address. Since we

do not consider allocation or deallocation, our type system ensures that the

mappingM remains constant throughout the execution of the program.

We write |=M F when the formula F holds in the memory typing M. A few

of the most interesting cases from the definition of |=M are shown below:

|=M F1 ∧ F2 iff |=M F1 and |=M F2

|=M F1 ⇒ F2 iff whenever |=M F1 then |=M F2

|=M ∀x.F(x) iff ∀e ∈ Z. |=M F(e)

|=M a : int iff a ∈ Z

|=M a : list W iff a = 0 ∨ (M(a) = W ∧M(a+ 4) = list W)

|=M a : ptr {S} iff ∀i.0 ≤ i < |S| ⇒ M(a+ 4∗ i) = Si
|=M a : {y | F(y)} iff |=M F(a)

|=M listinvm iff ∀a ∈ Dom(M).a ∈ Dom(m) and |=M m a :M(a)

|=M addr a iff a ∈ Dom(M)

In the above definition we used the notation |S| for the length of a sequence

of word types S, and Si for the ith element of the sequence.

1. A more accurate model would use integers modulo 232 in order to reflect the finite range of

integers that are representable as machine words.
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With these definitions we can now start to prove the soundness of the

derivation rules. Given a rule with variables x1, . . . , xn, premises H1, . . . ,Hm
and conclusion C, we must prove

|=M ∀x1.∀x2. . . .∀xn.(H1 ∧ ·· · ∧ Hm)⇒ C

For example, the soundness of rule sel requires proving the following fact:

|=M ∀a.∀W.∀m.(a : ptr {W}) ∧ (listinvm)⇒ (selm a) : W

From the first assumption we derive that M(a) = W . From the second

assumption we derive that |=M m a : W and since |=M (sel m a) = m a we

obtain the desired conclusion.

5.4.1 Exercise [Recommended, «]: Prove that cons and next are sound. 2

5.4.2 Exercise [««, 3]: Prove the soundness of the remaining rules shown in Fig­

ure 5­6. 2

An Operational Semantics for Assembly Language

Next we formalize an operational semantics for the assembly language. We

model the execution state as a mapping ρ from register names to values.

Just like in the previous chapter, the domain of values is Z, except for the

rM register, which takes as values partial mappings from Z to Z. Since we do

not consider allocation and deallocation, the domain of the memory mapping

does not change. Let Addr be that domain. The operational semantics is

defined only for programs whose memory accesses are only to addresses in

the Addr domain.

We write (ρ e) for the result of evaluating in the register state ρ the ex­

pression e, which can refer to register names. We write ρ[rr ← v] for the new

register state obtained after setting register rr to value v in state ρ.

The operational semantics is defined in Figure 5­9 in the form of a small­

step transition relation (i, ρ) � (i, ρ′) from a given program counter and

register state to another such pair. Notice that the transition relation is de­

fined for memory operations only if the referenced addresses are valid.

We follow the usual convention and leave the transition relation undefined

for those states where the execution is considered unsafe. For instance, the

transition relation is not defined if the program counter is outside the code

area or if it points to an unrecognized instruction. More importantly, the

transition relation is not defined if a memory access is attempted at an invalid

address.
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(i, ρ)�




(i + 1, ρ[rd ← ρ e]), if Πi = set rd to e

(i + 1, ρ[rd ← ρ (sel rM e)]), if Πi = load rd from e

and ρ e ∈Addr

(i + 1, ρ[rM ← ρ (upd rM e2 e1)]), if Πi = write e1 to e2

and ρ e2 ∈Addr

(L, ρ), if Πi = if e goto L

and ρ e

(i + 1, ρ), if Πi = if e goto L

and ρ (not e)

(i + 1, ρ), if Πi = INV I

Figure 5­9: The abstract machine for the soundness proof

Soundness of Verification­Condition Generation

The soundness theorem for VCGen states that if the verification condition

holds, and all addresses that are in Dom(M) are valid addresses (i.e., they

belong toAddr ), then the execution starting at the beginning of the agent in a

state that satisfies the precondition will make progress either forever or until

it reaches a return instruction in a state that satisfies the postcondition. What

this theorem rules out is the possibility that the execution gets stuck either

because it tries to execute an instruction at an invalid program counter, or it

tries to dereference an invalid address. The formal statement of the theorem

is the following:

5.4.3 Theorem [Soundness of VCGen]: Let ρ1 be a state such that |=M ρ1 Pre. If

Dom(M) ⊆ Addr and if |=M VC then the execution starting at (1, ρ1) can

make progress either forever, or until it reaches a return instruction in state

ρ, in which case |=M ρ Post. 2

We prove by induction on the number of execution steps that either we

have reached the return instruction, or else we can make further progress.

As in all proofs by induction, the most delicate issue is the choice of the

induction hypothesis. Informally, our induction hypothesis is that for each

execution state there is a “corresponding” state of the symbolic evaluator.

In order to express the notion of correspondence, we must consider the dif­

ferences between the concrete execution states ρ (mapping register names to
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values) and the symbolic evaluation states σ (mapping register names to sym­

bolic expressions that use expression constructors and variables). To bridge

these two notions of states we need a mapping φ from variables that appear

in σ , to values. For a symbolic expression e that contains variables, we write

(φ e) for the result of replacing the variables in e as specified by φ and eval­

uating the result. Consequently, we write φ ◦ σ for a mapping from register

names to values that maps each register name ri to the value φ (σ ri). Thus

φ ◦σ is a concrete execution state.

The main relationship that we impose between ρ and σ is that there exists

a mapping φ such that ρ = φ◦σ . The full induction hypothesis relates these

states with the program counter i, and is defined as follows:

IH(i, ρ,σ ,φ)
def
= ρ = φ ◦σ and |=M φ (SE(i, σ))

The core of the soundness proof is the following lemma:

5.4.4 Theorem [Progress]: Let Π be a program such that |=M VC and Dom(M) ⊆

Addr . For any execution state (i, ρ) and σ and φ such that IH(i, ρ,σ ,φ)

then either:

• Πi = return, and |=M ρ Post, or

• there exist new states ρ′, σ ′ and a mapping φ′ such that (i, ρ) → (i′, ρ′)

and IH(i′, ρ′, σ ′,φ′). 2

Proof: The proof is by case analysis on the current instruction. Since we have

that |=M φ SE(i, σ) we know that SE(i, σ) is defined, hence the program

counter is valid and Πi is a valid instruction. We show here only the most

interesting cases.

Case: Πi = return. In this case SE(i, σ) = σ Post and from |=M φ SE(i, σ)

along with ρ = φ ◦ σ we can infer that |=M ρ Post.

Case: Πi = load rd from e. In this case SE(i, σ) = addr (σ e) ∧ SE(i +

1, σ[rd ← σ (sel rM e)]). Let σ ′ = σ[rd ← σ (sel rM e)], ρ′ = ρ[rd ←

ρ (sel rM e)], i′ = i + 1 and φ′ = φ. In order to prove progress, we must

prove ρ e ∈ Addr . The induction hypothesis IH(i, ρ,σ ,φ) ensures that |=M
(addr (φ(σ e))), which in turn means that (ρ e) ∈ Dom(M). Since we require

that the memory typing be defined only on valid addresses we obtain the

progress condition.

Next we have to prove that the induction hypothesis is preserved. The only

interesting part of this proof is that φ′ ◦ σ ′ = ρ′, which in turn requires

proving that φ(σ (sel rM e)) = ρ (sel rM e). This follows from φ ◦ σ = ρ.

Case: Πi = INV I. In this case SE(i, σ) = σ I. We know that |=M φ(σ I) and

therefore |=M ρ I. The execution can always make progress for an invariant
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instruction and we must choose i′ = i + 1 and ρ′ = ρ. We know that |=M VC

and hence

|=M ∀x1. . . . .∀xn.σ0 I ⇒ SE(i + 1, σ0)

where σ0 = {r1 = x1, . . . ,rn = xn}. We choose σ ′ = σ0 and φ′ as follows:

φ′ = {x1 = ρ r1, . . . , xn = ρ rn}

This ensures that ρ = φ′ ◦ σ ′ and also that |=M φ′ SE(i + 1, σ ′), which

completes this case of the proof. 2

5.4.5 Exercise [Recommended, «, 3]: Finish the proof of Theorem 5.4.4 by prov­

ing the remaining cases (assignment, conditional branch and memory write). 2

The progress theorem constitutes the inductive case of the proof of the

soundness theorem 5.4.3.

5.4.6 Exercise [«]: Prove Theorem 5.4.3. 2

5.5 The Representation and Checking of Proofs

In previous sections, we showed how verification­condition generation can be

used to verify certain properties of low­level code. The soundness theorem

states that VCGen constructs a valid verification condition for an agent pro­

gram only if the agent meets the safety policy. One way to verify the validity

of the verification condition is to witness a derivation using a sound system

of proof rules. In PCC such a derivation must be attached to the untrusted

code so that the Checker module can find and check it. For this to work prop­

erly in practice, we need a framework for encoding proofs of logical formulas

so that they are relatively compact and easy to check. We would like to have a

framework and not just one proof checker for a given logic because we want

to be able to change the set of axioms and inference rules as we adapt PCC to

different safety policies. We would like to be able to adapt proof checking to

other safety policies with as few changes to the infrastructure as possible. In

this section we present a logical framework derived from the Edinburgh Log­

ical Framework (Harper, Honsell, and Plotkin, 1993), along with associated

proof representation and proof checking algorithms, that have the following

desirable properties:

• The framework can be used to encode judgments and derivations from a

wide variety of logics, including first­order and higher­order logics.

• The implementation of the proof checker is parameterized by a high­level

description of the logic. This allows a unique implementation of the proof

checker to be used with many logics and safety policies.
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• The proof checker performs a directed, one­pass inspection of the proof

object, without having to perform search. This leads to a simple imple­

mentation of the proof checker that is easy to trust and install in existing

extensible systems.

• Even though the proof representation is detailed, it is also compact.

The above desiderata are important not only for proof­carrying code but

for any application where proofs are represented and manipulated explicitly.

One such application is a proof­generating theorem prover. A theorem prover

that generates an explicit proof object for each successfully proved predicate

enables a distrustful user to verify the validity of the proved theorem by

checking the proof object. This effectively eliminates the need to trust the

soundness of the theorem prover at the relatively small expense of having to

trust a much simpler proof checker.

The first impulse when designing efficient proof representation and vali­

dation algorithms is to specialize them to a given logic or a class of related

logics. For example, we might define the representation and validation algo­

rithms by cases, with one case for each proof rule in the logic. This approach

has the major disadvantage that new algorithms must be designed and im­

plemented for each logic. To make matters worse, the size of such proof

checking implementations grow with the number of proof rules in the logic.

We would prefer instead to use general algorithms parameterized by a high­

level description of the particular logic of interest.

We choose the Edinburgh Logical Framework (LF) as the starting point in

our quest for efficient proof manipulation algorithms because it scores very

high on the first three of the four desirable properties listed above. Edinburgh

LF is a simple variant of λ­calculus with the property that, if a predicate is

represented as an LF type then any LF expression of that type is a proof of that

predicate. Thus, the simple logic­independent LF type­checking algorithm can

be used for checking proofs.

The Edinburgh Logical Framework

The Edinburgh Logical Framework (also referred to as LF) has been intro­

duced by Harper, Honsell, and Plotkin (1993) as a metalanguage for high­level

specification of logics. LF provides natural support for the management of

binding operators and of the hypothetical and schematic judgments through

LF bound variables. Consider for example, the usual formulation of the im­

plication introduction rule impi in first­order logic, shown in Figure 5­5. This

rule is hypothetical because the proof of the right­hand side of the implica­

tion can use the assumption that the left­hand side holds. However, there is
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a side condition requiring that this assumption not be used elsewhere in the

proof. As we shall see below, LF can represent this side condition in a natural

way by representing the assumption as a local variable bound in the proof

of the right side of the implication. The fact that these techniques are sup­

ported directly by the logical framework is a crucial factor for the succinct

formalization of proofs.

The LF type theory is a language with entities at three levels: objects, types

and kinds, whose abstract syntax is shown below:

Kinds K ::= Type | Πx :A.K

Types A ::= a | A M | Πx :A1.A2

Objects M ::= x | c | M1M2 | λx :A.M

Types are used to classify objects and similarly, kinds are used to classify

types. The type Πx :A.B is a dependent function type with x bound in B. In the

special case when x does not occur in B, we use the more familiar notation

A → B. Also, Type is the base kind, a is a type constant and c is an object

constant. Dependent types are covered in detail in Chapter 2.

The encoding of a logic in LF is described by an LF signature Σ that contains

declarations for a set of LF type constants and object constants correspond­

ing to the syntactic formula constructors and to the proof rules. For a more

concrete discussion, I describe in this section the LF representation of the

safety policy that we have developed for our example agent.

The syntax of the logic is described in Figure 5­10. This signature defines

an LF type constant for each kind of syntactic entity in the logic: expressions

(ι), formulas (o), word types (w ), and structure types (s). Then, there is an LF

constant declaration for each syntactic constructor, whose LF type describes

the arity of the constructor and the types of the arguments and constructed

value. Two of these are worth explaining. The settype constructor, used to

represent word types of the form {y | F(y)}, has one argument, the func­

tion F from expressions to formulas; similarly, the all constructor encodes

universally quantified formulas. In both of these cases, we are representing a

binding in the object logic (i.e., the logic that is being represented) with a bind­

ing in LF. The major advantage of this representation is that α­equivalence

and β­reduction in the object logic are supported implicitly by the similar

mechanisms in LF. This higher­order representation strategy is essential for a

concise representation of logics with binding constructs.

The LF representation function [·\ is defined inductively on the structure

of expressions, types and formulas. For example:

[P ⇒ (P ∧ P)\ = imp [P\ (and [P\ [P\)

[∀x.addr x\ = all (λx : ι.addr x)
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ι : Type

o : Type

w : Type

s : Type

zero : ι

sel : ι→ ι→ ι

upd : ι→ ι→ ι→ ι

int : w

list : w → w

seq1 : w → s

seq2 : w → s → s

ptr : s → w

settype : (ι→ o) → w

true : o

and : o→ o→ o

impl : o→ o→ o

all : (ι→ o)→ o

eq : ι→ ι→ o

neq : ι→ ι→ o

addr : ι→ o

hastype : ι→ w → o

ge : ι→ ι→ o

(a) (b)

Figure 5­10: LF signature for the syntax of first­order predicate logic with

equality and subscripted variables, showing expression (a) and predicate

(b) constructors

5.5.1 Exercise [«]: Write the LF representation of the predicate∀a.a : ptr {int} ⇒

addr a. 2

The strategy for representing proofs in LF is to define a type family “pf ”

indexed by representation of formulas. Then, we represent the proof of “F”

as an LF expression having type “pf F .” This representation strategy is called

“judgments as types and derivations as objects” and was first used in the

work of Harper, Honsell, and Plotkin (1993). Note that the dependent types

of LF allow us to encode not only that an expression encodes a proof but also

which formula it proves.

One can view the axioms and inference rules as proof constructors. This

justifies representing the axioms and inference rules in a manner similar to

the syntactic constructors, by means of LF constants. The signature shown

in Figure 5­11 contains a fragment of the proof constructors required for the

proof rules shown in Figure 5­5 (for first­order logic) and Figure 5­6 (for our

safety policy). Note how the dependent types of LF can define precisely the

meaning of each rule. For example, the declaration of the constant “andi”
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pf : o→ Type

truei : pf true

andi : Πp :o.Πr :o.pf p → pf r → pf (and p r)

andel : Πp :o.Πr :o.pf (and p r)→ pf p

ander : Πp :o.Πr :o.pf (and p r)→ pf r

impi : Πp :o.Πr :o.(pf p → pf r)→ pf (impl p r)

impe : Πp :o.Πr :o.pf (impl p r)→ pf p → pf r

alli : Πp :ι→ o.(Πv :ι.pf (p v))→ pf (all p)

alle : Πp :ι→ o.Πe :ι.pf (all p) → pf (p e)

mem0 : Πm :ι.Πa :ι.Πv :ι.Πa′ :ι.pf (eq a a′)→ pf (eq (sel (updm a v) a′) v)

mem1 :
Πm :ι.Πa :ι.Πv :ι.Πa′ :ι.

pf (neq a a′)→ pf (eq (sel (updm a v) a′) (selm a′))

cons : ΠE :ι.ΠW :w.

pf (hastype E (list W))→ pf (neq E zero)→

pf (hastype E (ptr (seq2 W (seq1 (list W))))).

set : ΠE :ι.ΠF :ι→ o.pf (hastype E (settype F)) → pf (F E).

Figure 5­11: LF signature for safety policy proof rules

says that, in order to construct the proof of a conjunction of two predicates,

one can apply the constant “andi” to four arguments, the first two being the

two conjuncts and the other two being the representations of proofs of the

conjuncts respectively.

The LF representation function [·\ is extended to derivations and is defined

recursively on the derivation, as shown in the following examples (the letters

D are used to name sub­derivations):

[ D1

F1

D2

F2

F1 ∧ F2

\

= andi [F1\ [F2\ [D1\ [D2\

[ F1

... Du

F2

F1 ⇒ F2

\

= impi [F1\ [F2\ (λu :pf [F1\.[D
u\)
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M = impi [F\ (and [F\ [F\)

(λx :pf [F\.andi [F\ [F\ x x)

Figure 5­12: LF representation of a proof of F ⇒ (F ∧ F)

In the representation of the implication introduction proof rule, the letter

u is the name of the assumption that F1 holds. Note how the representation

encodes the constraint that this assumptions must be local to the proof of F2.

To conclude the presentation of the LF representation, consider the proof

of the formula “F ⇒ (F ∧ F).” The LF representation of this proof is shown in

Figure 5­12.

5.5.2 Exercise [«]: Write the LF representation of the proof of the formula ∀a.a :

ptr {int} ⇒ addr a, using the proof rules from our safety policy. 2

The LF Type System

The main advantage of using LF for proof representation is that proof validity

can be checked by a simple type­checking algorithm. That is, to check that the

LF object M is the representation of a valid proof of the predicate F we use

the LF typing rules (to be presented below) to verify that M has type pf [F\

in the context of the signature Σ declaring the valid proof rules.

Type checking in the LF type system is defined by means of four judgments

described below:

Γ `
LF
A : K A is a valid type of kind K

Γ `
LF
M : A M is a valid object of type A

A ≡βη B type A is βη­equivalent to type B

M ≡βη N object M is βη­equivalent to object N

where Γ is a typing context assigning types to LF variables. These typing judg­

ment are with respect to a given signature Σ.

The derivation rules for the LF typing judgments are shown in Figure 5­13.

For the βη­equivalence judgments we omit the rules that define it to be an

equivalence and a congruence.

As an example of how LF type checking is used to perform proof checking,

consider LF term M shown in Figure 5­12, representing a proof of the pred­

icate F ⇒ (F ∧ F by implication introduction followed by conjunction intro­

duction. It is easy to verify, given the LF typing rules and the declaration of the
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Types Γ `LF A : K

Σ(a) = K

Γ `
LF
a : K

Γ `LF A : Πx :B.K Γ `LF M : B

Γ `LF A M : [M�x]K

Γ `LF A : Type Γ , x : A `LF B : Type

Γ `LF Πx :A.B : Type

Objects Γ `
LF
M : A

Σ(c) = A

Γ `
LF
c : A

Γ(x) = A

Γ `
LF
x : A

Γ , x : A `LF M : B

Γ `LF λx :A.M : Πx :A.B

Γ `LF M : Πx :A.B Γ `LF N : A

Γ `
LF
MN : [N�x]B

Γ `LF M : A A ≡βη B

Γ `LF M : B

Equivalence M ≡βη N

(λx :A.M)N ≡βη [N�x]M

Figure 5­13: The LF type system

constants involved, that this proof has the LF type “pf (imp[F\ (and[F\ [F\)).”

The adequacy of LF type checking for proof checking in the logic under con­

sideration is stated formally in the Theorems 5.5.3 and 5.5.4 below. These

theorems follow immediately from lemmas proved in Harper, Honsell, and

Plotkin (1993). They continue to hold if the logic is extended with new ex­

pression and predicate constructors.

5.5.3 Theorem [Adequacy of syntax representation]:

1. If E is a closed expression, then · `
LF
[E\ : ι. If M is a closed LF object such

that · `
LF
M : ι, then there exists an expression E such that [E\ ≡βη M .

2. If W is a word­type, then · `
LF
[W\ : w . If M is a closed LF object such that

· `
LF
M : w , then there exists a word type W such that [W\ ≡βη M .

3. If S is a structured type, then · `
LF
[S\ : s. If M is a closed LF object such

that · `
LF
M : s, then there exists a structured type S such that [S\ ≡βη M .

4. If F is a closed formula, then · `LF [F\ : o. If M is a closed LF object such

that · `
LF
M : o, then there exists a formula F such that [F\ ≡βη M . 2

5.5.4 Theorem [Adequacy of Derivation Representation]:

1. If D is a derivation of F then · `
LF
[D\ : pf [F\.
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2. If M is a closed LF object such that · `LF M : pf [F\, then there exists a

derivationD of F such that [D\ ≡βη M . 2

In the context of PCC, Theorem 5.5.4(2) says that if the agent producer

can exhibit an LF object having the type “pf [VC\” then there is a derivation

of the verification condition within the logic, which in turn means that the

verification condition is valid and the agent code satisfies the safety policy.

Owing to the simplicity of the LF type system, the implementation of the

type checker is simple and easy to trust. Furthermore, because all of the de­

pendencies on the particular object logic are separated in the signature, the

implementation of the type checker can be reused directly for proof checking

in various first­order or higher­order logics. The only logic­dependent com­

ponent of the proof checker is the signature, which is usually easy to verify

by visual inspection.

Unfortunately, the above­mentioned advantages of LF representation of

proofs come at a high price. The typical LF representation of a proof is large,

due to a significant amount of redundancy. This fact can already be seen in

the proof representation shown in Figure 5­12, where there are six copies

of F as opposed to only three in the predicate to be proved. The effect of

redundancy observed in practice increases non­linearly with the size of the

proofs. Consider for example, the representation of the proof of the n­way

conjunction F ∧ . . . ∧ F . Depending on how balanced is the binary tree repre­

senting this predicate, the number of copies of F in the proof representation

ranges from an expected value of n logn (when the tree is perfectly balanced)

to a worse case value of n2/2 (when the tree degenerates into a list). The

redundancy of representation is not only a space problem but also leads to

inefficient proof checking, because all of the redundant copies have to be

type checked and then checked for equivalence with instances of F from the

predicate to be proved.

The proof representation and checking framework presented in the next

section is based on the observation that it is possible to retain only the skele­

ton of an LF representation of a proof and to use a modified LF type­checking

algorithm to reconstruct on the fly the missing parts. The resulting implicit LF

(or LFi) representation inherits the advantages of the LF representation (i.e.,

small and logic­independent implementation of the proof checker) without

the disadvantages (i.e., large proof sizes and slow proof checking).

Implicit LF

The solution to the redundancy problem is to eliminate the redundant sub­

terms from the proof. In most cases we can eliminate all copies of a given
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subterm from the proof and rely instead on the copy that exists within the

predicate to be proved, which is constructed by the VCGen and is trusted to

be well formed. But now the code receiver will be receiving proofs with miss­

ing subterms. One possible strategy is for the code receiver to reconstruct

the original form of the proof and then to use the simple LF type checking

algorithm to validate it. But this does not save proof­checking time and re­

quires significantly more working memory than the size of the incoming LFi

proof. Instead, we modify the LF type­checking algorithm to reconstruct the

missing subterms while it performs type checking. One major advantage of

this strategy is that terms that are reconstructed based on copies from the

verification condition do not need to be type checked themselves.

We will not show the formal details of the type reconstruction algorithm

but will show instead how it operates on a simple example. For expository

purposes, the missing proof subterms are marked with placeholders, written

as ∗. Consider now the proof of the predicate F ⇒ (F ∧ F) of Figure 5­12. If

we replace all copies of “F” with placeholders we get the following LFi object:

impi ∗1 ∗2 (λu :∗3.andi ∗4 ∗5 u u)

This implicit proof captures the structure of the proof without any redun­

dant information. The subterms marked with placeholders can be recovered

while verifying that the term has type “pf (impl[F\ (and[F\ [F\)),” as de­

scribed below.

Reconstruction starts by recognizing the top­level constructor impi. The

expected type of the entire term, “pf (impl [F\ (and [F\ [F\)),” is “matched”

against the result type of the impi constant, as given by the signature Σ. The

result of this matching is an instantiation for placeholders 1 and 2 and a

residual type­checking constraint for the explicit argument of impi, as fol­

lows:

∗1 ≡ [F\

∗2 ≡ and [F\ [F\

` (λu :∗3.andi ∗4 ∗5 u u) : pf [F\ → pf (and [F\ [F\)

Reconstruction continues with the remaining type­checking constraint. From

its type we can recover the value of placeholder 3 and a typing constraint for

the body:

∗3 ≡ pf [F\

u : pf [F\ ` andi ∗4 ∗5 u u : pf (and [F\ [F\)

Now andi is the top­level constant and by matching its result type as declared

in the signature with the goal type of the constraint we get the instantiation
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for placeholders 4 and 5 and two residual typing constraints:

∗4 ≡ [F\

∗5 ≡ [F\

u : pf [F\ ` u : pf [F\

u : pf [F\ ` u : pf [F\

The remaining two constraints are solved by the variable typing rule. Note

that this step involves verifying the equivalence of the objects [F\ from the

assumption and the goal. This concludes the reconstruction and checking of

the entire proof. We reconstructed the full representation of the proof by in­

stantiating all placeholders with well­typed LF objects. We know that these

instantiations are well­typed because they are ultimately extracted from the

original constraint type, which is assumed to contain only well­typed sub­

terms.

The formalization of the reconstruction algorithm described informally

above is in two stages. First, we show a variant of the LF type system, called

implicit LF or LFi , that extends LF with placeholders. This type system has the

property that all well­typed LFi terms can be reconstructed to well­typed LF

terms. However, unlike the original LF type system, the LFi type system is not

amenable to a direct implementation of deterministic type checking. Instead,

we use a separate reconstruction algorithm.

An object M is fully reconstructed, or fully explicit, when it is placeholder

free. We write PF(M) to denote this property. We extend this notation to type

environments and write PF(Γ) to denote that all types assigned in Γ to vari­

ables are placeholder free.

The LFi typing rules are an extension of the LF typing rules with two new

typing rules for dealing with implicit abstraction and placeholders, and one

new β­equivalence rule dealing with implicit abstraction. These additions are

shown in Figure 5­14. The LFi typing judgment is written Γ `i M : A.

Note that according to the LFi type system placeholders cannot occur on

a function position, but only as arguments in an application. This restriction

allows us to simplify the reconstruction algorithm by avoiding higher­order

unification. Note also that several LFi rules require that the types involved

do not contain placeholders. This restriction simplifies greatly the proofs of

soundness of the reconstruction algorithms and does not seem to diminish

the effectiveness of the LFi representation.

A quick analysis of the LFi typing rules reveals that they are not directly

useful for type checking or type inference. The main reason is that type check­

ing an application involves “guessing” appropriate A and N. The type A can

sometimes be recovered from the type of the application head, but the term
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Objects Γ `i M : A

Γ `
i
M : A A ≡βη B PF(A)

Γ `
i
M : B

Γ , x : A `i M : B

Γ `i λx :∗.M : Πx :A.B

Γ `i M : Πx :A.B Γ `i N : A PF(A)

Γ `
i
M N : [N/x]B

Γ `i M : Πx :A.B Γ `i N : A PF(A)

Γ `i M ∗ : [N/x]B

Equivalence M ≡βη N

(λx :∗.M)N ≡βη [N/x]M

Figure 5­14: The rules that are new in the LFi type system

N in an application to a placeholder cannot be found easily in general. This

is not a problem for us because we need the LFi type­system only as a step in

proving the correctness of the type­reconstruction algorithm, and not as the

basis for an implementation of a type­checking algorithm.

The only property of interest of the LFi type system is that once we have

a typing derivation we can reconstruct the object involved and a correspond­

ing LF typing derivation for it. To make this more precise we introduce the

notation M ↗ M′ to denote that M′ is a fully­reconstructed version of the

implicit object M (i.e., PF(M′)). This means that M′ can be obtained from M

by replacing all of its placeholders with fully­explicit LF objects. Note that the

reconstruction relation is not a function as there might be several reconstruc­

tions of a given implicit object or type.

5.5.5 Theorem [Soundness of LFi typing]: If Γ `
i
M : A and PF(Γ), PF(A), then

there exists M′ such that M ↗ M′ and Γ `
LF
M′ : A. 2

5.5.6 Exercise [««, 3]: Prove Theorem 5.5.5 2

5.6 Proof Generation

We have seen that a successfully checked proof of the verification condition

guarantees that the verification condition is valid, which in turn guarantees

that the code adheres to the safety policy. The PCC infrastructure is simple,

easy­to­trust and automatic. But this is only because all the difficult tasks

have been delegated to the code and proof producers. The first difficult task,

besides writing code that is indeed safe, is to generate the code annotations

consisting of loop invariants for all loops and of function specifications for all
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Figure 5­15: Interaction between untrusted PCC tools (continuous lines)

and trusted PCC infrastructure (interrupted lines)

local functions. The other difficult task is to prove the verification condition

produced by the verification­condition generator.

Fortunately there are important situations when both the generation of

the annotations and of the proof can be automated. Consider the situation

in which there exists a high­level language, perhaps a domain­specific one,

in which the safety policy is guaranteed to be satisfied by a combination of

static and run­time checks. For example, if the safety policy is memory safety

then any memory­safe high­level language can be used. The key insight is that

in these systems the safety policy is guaranteed to hold by the design of the

static and run­time checks. In essence, the high­level type checker acts as a

theorem prover. All we have to do is to show that a sufficient number and

kind of static and run­time checks have been performed.

Figure 5­15 shows the interaction between the untrusted PCC tools used by

the code producer and the trusted PCC infrastructure used by the code re­

ceiver. The annotations are generated automatically by a certifying compiler

from high­level language to assembly language. For safety polices that follow

closely the high­level type system, it is surprisingly easy for a compiler to

produce the loop invariants, which are essentially conjunctions of type dec­

larations for the live registers at the given program point. This is information

that the compiler can easily maintain and emit.

Before it can generate the required proofs, the code producer must pass

the annotated code to a local copy of VCGen. The proof itself is generated by

a theorem prover customized for the specific safety policy. As discussed in

Section 5.3, such a theorem prover is little more than a type checker. However,

unlike a regular type checker or theorem prover, the PCC theorem prover

must generate explicit representation of the proofs. The architecture shown

in Figure 5­15 is described in detail in Necula (1998).
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Figure 5­16: A privacy policy

5.7 PCC beyond Types

The presentation of PCC so far has focused on type­based safety policies. We

have shown that verification condition generation followed by theorem prov­

ing can overcome many of the difficulties of type checking programs written

in low­level languages. It should be obvious that we can take the example

that we used so far and change the type system by simply changing the proof

rules, with no changes to the infrastructure itself. But the machinery we have

constructed in the process can be used to enforce more complex safety po­

lices than are usually associated with types. And we can do this with very

few changes, thanks both to the modular design of the infrastructure and to

the choice of using the lower­level mechanism of logic rather than commit­

ting to a high­level type system. However, everytime the set of proof rules is

changed, one must redo the proof of soundness. In this section, we explore

one example of a safety policy that goes beyond types.

Consider a safety policy that allows access to two host services: read the

contents of a local file and send data over the network. The host wishes to

enforce the policy that the agent cannot send data after it has read local files.

This is a conservative way to ensure that no local file contents will be leaked.

This example is taken from Schneider (2000).

This safety policy can be described using the state machine shown in Fig­

ure 5­16. Initially the agent is in the public state in which it can use both the

send and the read services. However, once it uses the read service the agent

transitions in the private state, in which it can use only the read service.

In order to enforce such a safety policy, it is sufficient to check that the

send service cannot be used after the read service has been used. At the

level of assembly language, these services would be most likely implemented

as function calls. In that case the privacy safety policy can be implemented as

a precondition on the send function. Instead of introducing a general mecha­

nism for handling function calls (see Exercise 5.3.5), we use a special­purpose

handling of the instructions call read and call send.
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In the presentation of PCC from previous sections, there is no element

of the state of the computation that reflects whether a certain function has

been invoked or not. One way to address this issue is to require that the agent

code keep track of its own public/private state at run­time, presumably in a

register or a memory location. Then the postcondition of read would require

that this state element reflect the private state and the precondition of send

would require that the state element reflect the public state. This strategy

is appropriate when the producer of the agent code wishes to use run­time

checking to enforce the safety policy, in which case it would have to prove

that the appropriate checks have been inserted. This strategy also has the

benefit of not requiring any changes in the PCC infrastructure.

We will pursue another alternative. We will modify VCGen and the symbolic

evaluator to keep track of the public/private state. And since we prefer to ex­

tend the PCC infrastructure with a general­purpose mechanism rather than a

specific policy, the VCGen extension should be able to record any information

about the history of the execution, not just its public/private state.

For this purpose we extend the symbolic evaluation state with another

pseudo­register, called rH to store a sequence of interesting events in the

past of the computation. The set of symbolic expressions that this register

can have are shown below:

Histories H ::= x | event V H

Events V ::= init | read | send

Additionally we add a number of formulas that we can use for stating prop­

erties of the history of execution:

Formulas F ::= . . . | publicState H | privateState H

As usual when we extend the language of formulas we must also extend

the proof rules. For our safety policy we add the following three proof rules:

publicState (event init H) (init)

publicState H

publicState (event send H)
(send)

privateState (event read H) (read)

The definition of the VCGen and the symbolic evaluator can remain un­

changed for the instructions considered so far, except that the rH register

can be used in loop invariants and function preconditions and postcondi­

tions. In particular, for the privacy safety policy the invocations of the read
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and send services can be handled in the symbolic evaluator as follows:

SE(i, σ) =




. . .

SE(i + 1, σ[rH ← (σ (event read rH))]) if Πi = call read

publicState (σ rH) ∧ if Πi = call send

SE(i + 1, σ[rH ← (σ (event send rH))])

The symbolic evaluator extends the history state with information about

the services that were used. Additionally, the send call requires through

its precondition that the history of the computation be consistent with the

public state of the safety policy. A realistic symbolic evaluator would sup­

port a general­purpose function call instruction, in which case the effect of

the read and send functions could be achieved by appropriate function pre­

conditions and postconditions.

5.7.1 Exercise [««, 3]: Add two actions lock e and unlock e that can be used

to acquire and release a lock that is denoted by the expression e. Define a

PCC safety policy (extensions to the logic, new proof rules and changes to

the symbolic evaluator) that requires correct use of locks: a lock cannot be

acquired or released twice in a row, and the agent must release all locks upon

return. 2

5.7.2 Exercise [««, 3]: The verification­condition generator that we described in

Section 5.3 cannot enforce a safety policy that allows the agent to “probe” the

accessibility of a memory page by attempting a read from an address within

that page. This is a common way to check for stack overflow in many systems.

Show how you can change the symbolic evaluator to use the history register

for the purpose of specifying such a safety policy. 2

This example shows how to use PCC for safety policies that go beyond type

checking. In fact, PCC is extremely powerful in this sense. Any safety policy

that could be enforced by an interpreter using run­time checking could in

principle be enforced by PCC. A major advantage of PCC over interpreters is

that it can check properties that would be very expensive to check at run time.

Consider, for example, how complicated it would be to write an interpreter

that enforces at run­time a fine grained memory safety policy. Each memory

word would have to be instrumented with information whether it is accessible

or not. By comparison, we can use PCC along with a strong type system to

achieve the same effect, with no run­time penalty.
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5.8 Conclusion

Below is a list of the most important ways in which PCC improves over other

existing techniques for enforcing safe execution of untrusted code:

• PCC operates at load time before the agent code is installed in the host

system. This is in contrast with techniques that enforce the safety policy

by relying on extensive run­time checking or even interpretation. As a re­

sult PCC agents run at native­code speed, which can be ten times faster

than interpreted agents (written for example using Java bytecode) or 30%

faster than agents whose memory operations are checked at run time.

Additionally, by doing the checking at load time it becomes possible to en­

force certain safety policies that are hard or impossible to enforce at run

time. For example, by examining the code of the agent and the associated

“explanation” PCC can verify that a certain interrupt routine terminates

within a given number of instructions executed or that a video frame ren­

dering agent can keep up with a given frame rate. Run­time enforcement

of timing properties of such fine granularity is hard.

• The trusted computing base in PCC is small. PCC is simple and small be­

cause it has to do a relatively simple task. In particular, PCC does not have

to discover on its own whether and why the agent meets the safety policy.

• For the same reason, PCC can operate even on agents expressed in native­

code form. And because PCC can verify the code after compilation and op­

timization, the checked code is ready to run without needing an additional

interpreter or compiler on the host. This has serious software engineering

advantages since it reduces the amount of security critical code and it is

also a benefit when the host environment is too small to contain an in­

terpreter or a compiler, such as is the case for many embedded software

systems.

• PCC is general. All PCC has to do is to verify safety explanations and to

match them with the code and the safety policy. By standardizing a lan­

guage for expressing the explanations and a formalism for expressing the

safety policies, it is possible to implement a single algorithm that can per­

form the required check, for any agent code, any valid explanation and a

large class of safety policies. In this sense a single implementation of PCC

can be used for checking a variety of safety policies.

The PCC infrastructure is designed to complement a cryptographic authen­

tication infrastructure. While cryptographic techniques such as digital sig­

natures can be used by the host to verify external properties of the agent
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program, such as freshness and authenticity, or the author’s identity, the

PCC infrastructure checks internal semantic properties of the code such as

what the code does and what it does not do. This enables the host to prevent

safety breaches due to either malicious intent (for agents originating from un­

trusted sources) or due to programming errors (for agents originating from

trusted sources).

However, proof­carrying code is not without costs. The most notable chal­

lenge to using PCC is the difficulty of producing code annotations and proofs.

In some cases, these can be produced automatically based on some high­level

language invariants. But in general a human is required to be involved and the

more complex the safety policy the more onerous the burden of proof can be

expected to be. All that PCC offers in this direction is a way to shift this bur­

den from the code received to the code producer who can be expected to have

more computational power, and especially more knowledge of why the code

satisfies the safety policy.

Proof­carrying code is a witness to the fact that programming language

technology and type theory are the basis of valuable techniques for solving

practical engineering problems. However, in the process of applying these

techniques for the design of a PCC infrastructure, it became necessary to

adapt the off­the­shelf techniques in non­trivial ways to the particular ap­

plication domain. Some of that adaptation can be carried out in a theoretical

setting, such as the extension of Edinburgh LF to implicit LF, while other parts

involve real engineering.
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Logical Relations and a Case Study in

Equivalence Checking

Karl Crary

Logical relations are a fundamental technique for proving properties of pro­

gramming languages. Logical relations arise when a property is to be proven

of all well­formed terms in the language, but that property is not preserved

by one or more of the language’s elimination forms. For example, one such

property is termination: if a function expression tfun and its argument targ

both terminate, it does not follow that the application of tfun to targ necessar­

ily terminates.

In cases such as this, it is impossible to prove directly by induction on

typing derivations that all well­formed terms enjoy the property in question.

However, such a property may nevertheless be true; for example, normaliza­

tion holds for all well­typed terms in the simply typed lambda­calculus (TAPL,

Chapter 12). Logical relations surmount this difficulty by proving a stronger

property based on a term’s type. In the example above, for tfun one would

show (informally speaking) not only that tfun itself terminates, but also that

any application of tfun to a terminating argument also terminates.

The classic application of logical relations is to prove various sorts of termi­

nation properties, especially strong normalization (Tait, 1967). A very simple

example of a logical relation argument is given in TAPL, Chapter 12, to prove

a simple termination result. However, the technique has wide applicability

beyond just termination properties. This chapter will develop the technique

of logical relations via a case study in decision procedures for equivalence

of terms. Then, the next chapter will exploit this technique in developing a

powerful theory of typed operational reasoning.

This chapter draws on material from TAPL, Chapters 1 through 12, 23,

and 29. As usual, we will identify terms that differ only in the names of bound

variables, and our substitution is capture avoiding. (Recall TAPL, §5.3.)
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Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

k constant

T ::= types:

b base type

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Typing Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ , x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2

(T­Abs)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

Γ ` k : b (T­Const)

Equivalence Γ ` s ≡ t : T

Γ ` t : T

Γ ` t ≡ t : T
(Q­Refl)

Γ ` t ≡ s : T

Γ ` s ≡ t : T
(Q­Symm)

Γ ` s ≡ t : T Γ ` t ≡ u : T

Γ ` s ≡ u : T
(Q­Trans)

Γ , x:T1 ` s2 ≡ t2 : T2

Γ ` λx:T1.s2 ≡ λx:T1.t2 : T1→T2

(Q­Abs)

Γ ` s1 ≡ t1 : T1→T2 Γ ` s2 ≡ t2 : T1

Γ ` s1 s2 ≡ t1 t2 : T2

(Q­App)

Γ , x:T1 ` s12 ≡ t12 : T2 Γ ` s2 ≡ t2 : T1

Γ ` (λx:T1.s12) s2 ≡ [x, t2]t12 : T2

(Q­Beta)

Γ , x:T1 ` s x ≡ t x : T2

Γ ` s ≡ t : T1→T2

(Q­Ext)

Figure 6­1: Simply typed lambda­calculus with a base type (λ→b)

6.1 The Equivalence Problem

We are concerned with the problem of determining whether or not two terms

in the simply typed lambda calculus are equivalent. The system we will con­

sider is formulated in Figure 6­1. In order that the problem not be trivial, the

system includes a single base type b that is inhabited by an unspecified set

of constants. The constants are ranged over by the metavariable k.

The equivalence judgment, which will be our key subject of concern, is

written Γ ` s ≡ t : T, meaning that (in context Γ ) the terms s and t are

equivalent, when considered as members of the type T. (The alert reader may

observe that the type T at which terms are compared does not play an impor­

tant role in the rules in Figure 6­1; however, it will be of critical importance

in our future developments.) It is important to observe that this notion of

equivalence is defined directly, rather than by an appeal to an operational
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semantics. For this reason, this form of equivalence is often referred to as

definitional equivalence.

The equivalence system consists of seven rules. The first three rules ex­

press that term equivalence is an equivalence relation, and the next two rules

express that it is a congruence with respect to abstraction and application.

Finally, there are two substantiative rules. The first expresses that a beta re­

dex is equivalent to its contractum. The second is an extensionality principle;

it says that two functions (i.e., terms of type T1→T2) are equivalent if all ap­

plications to an argument are equivalent.1 (A variable is used to stand in for

all possible arguments.)

Motivation

Term equivalence is important for a variety of reasons, but one of the most

important applications of the system relates not to the equivalence of terms,

but of types. Recall the language λω from TAPL, Chapter 29. In λω the type

system provided type expressions of higher kind in order to provide a facility

for type operators. As a result, the type system of λω was essentially a copy

of the simply typed lambda calculus “one level up,” in which terms became

types and types became kinds.

Conversely, we may view the simply typed lambda calculus as the type

system of λω viewed “one level down,” in which types become terms and

kinds become types. Thus, the type b in λ→b corresponds to the kind ∗ of

types in λω. By solving the problem of checking equivalence of terms, we

also learn how to check equivalence of types, which is in turn essential to the

problem of type checking.

Note that λ→b contains no actual terms standing for types such as Nat;

they correspond to the uninterpreted constants k of type b. Terms standing

for built­in type operators such as → would correspond to constants of type

b→b→b. For simplicity, we include no such built­in operators, but they would

be easy to add.

6.2 Non­Type­Directed Equivalence Checking

The most common strategy for checking for term equivalence is normalize­

and­compare. To determine whether two well­typed terms, say s and t, are

1. Although extensionality considerably broadens definitional equivalence, many systems pre­

fer to omit extensionality because it can sometimes complicate equivalence checking. However,

for the approach to equivalence checking we discuss in this chapter, extensionality actually

simplifies matters, so we do not hesitate to include it.
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equal, the strategy computes their normal forms s′ and t′ using a reduction

relation derived from the equivalence rules and then compares to see if s′

and t′ are identical.2 The original terms s and t are equivalent if and only if

the normal forms s′ and t′ are identical.

Normalize­and­compare relies on three facts:

• One must be able to derive a reduction relation s⇒t from the equivalence

rules. This relation must be suitable in the sense that, if Γ ` s : T and

Γ ` t : T, then Γ ` s ≡ t : T iff s a∗ t, where a∗ is the symmetric,

transitive closure of ⇒. For λ→b a suitable relation is given in Figure 6­2.

• The reduction relation must be confluent, meaning that if r ⇒∗ s and

r ⇒∗ t then there exists some term u such that s ⇒∗ u and t ⇒∗ u. If the

relation is confluent, then its symmetric, transitive closure may be decided

by comparing normal forms, as stated by Lemma 6.2.1 below.

• The reduction relation must be normalizing, meaning that every term must

have a normal form, and those normal forms must be effectively com­

putable. Given the existence and computability of normal forms, one may

use the preceding two facts to show that two terms are equivalent exactly

when their normal forms coincide.

6.2.1 Lemma: Suppose ⇒ is confluent and the normal forms of s and t are s′ and

t′. Then sa∗t iff s′ = t′. 2

Proof: Exercise [««, 3]. 2

In summary, to employ the normalize­and­compare strategy, one must de­

fine a suitable reduction relation, and prove that it is suitable, confluent, and

normalizing. In some cases, the strategy is not applicable, either because the

suitable relation fails to be confluent and normalizing, or because no suitable

relation can be defined in the first place. It is this latter case that will arise

in the next section. In fact, many proofs of normalization employ a logical

relation (such as those in the presence of polymorphism [Girard, Lafont, and

Taylor, 1989]), so the normalize­and­compare strategy, even when applicable,

often still involves logical relations.

6.2.2 Exercise [««]: Prove one half of the suitability of ⇒ for definitional equiv­

alence: if Γ ` s ≡ t : T then s a∗ t. (Hint: in the case for Q­Ext, use the

reduction rule QR­Eta.) 2

2. Actually, nearly all implementations of equivalence checkers refine this strategy to inter­

leave comparison with the computation of normal forms. This is done for two reasons: First, if

the terms are inequivalent, it can be detected earlier. Second, once any corresponding compo­

nents of the normal forms are determined to be equivalent, they can be discarded. Thus, one

can avoid storing the entire normal forms, which can be large.
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Parallel reduction s⇒ t

t⇒ t (QR­Refl)

s2 ⇒ t2

λx:T1.s2 ⇒ λx:T1.t2

(QR­Abs)

s1 ⇒ t1 s2 ⇒ t2

s1 s2 ⇒ t1 t2

(QR­App)

s1 ⇒ t1 s2 ⇒ t2

(λx:T1.s1) s2 ⇒ [x, t2]t1

(QR­Beta)

s⇒ t x not free in s

λx:T.s x⇒ t
(QR­Eta)

Figure 6­2: Parallel reduction of terms

New syntactic forms

t ::= . . . terms:

unit unit term

T ::= . . . types:

Unit unit type

Typing Γ ` t : T

Γ ` unit : Unit (T­Unit)

Equivalence Γ ` s ≡ t : T

Γ ` s : Unit Γ ` t : Unit

Γ ` s ≡ t : Unit
(Q­Unit)

Figure 6­3: Unit type (λ→b1)

6.2.3 Exercise [««]: Because of the rule QR­Eta, the reduction relation⇒ is conflu­

ent only for well­typed terms. Give an example of an ill­typed term for which

confluence fails. 2

6.3 Type­Driven Equivalence

One case in which the normalize­and­compare strategy is inapplicable is when

the definition of equivalence is type sensitive. The example we will work with

arises when we add a second base type corresponding to Unit (recall TAPL,

§11.2). The important thing about this type is that it contains exactly one

element; the sole element of Unit is written unit. These additions are sum­

marized in Figure 6­3.

The interesting facet of the extension with unit is its equivalence rule:

Γ ` s : Unit Γ ` t : Unit

Γ ` s ≡ t : Unit
(Q­Unit)

This rule expresses the fact that, since the type Unit contains exactly one

element, any two elements of Unit must actually be the same. It is important
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to note that this rule is strictly stronger than the alternative rule:

Γ ` unit ≡ unit : Unit (Q­Unit­Weak)

Although Q­Unit­Weak is sound (indeed, it is derivable from either Q­Unit

or Q­Refl), it cannot derive equivalences involving unit variables, such as:

T­Unit
x:Unit, y:Unit ` x : Unit

T­Unit
x:Unit, y:Unit ` y : Unit

Q­Unit
x:Unit, y:Unit ` x ≡ y : Unit

This example also illustrates why the normalize­and­compare strategy is

inapplicable once the unit type is added. The terms x and y must be judged to

be equivalent, but the reason for this has nothing to do with the form of x or

y. Indeed, x and y are already in normal form according to the usual reduction

relation. The terms must be judged equivalent because of their types, and the

normalize­and­compare strategy has no way to account for that.

There are a variety of ways to address this difficulty. Many repair the

normalize­and­compare strategy by, in one way or another, giving it the abil­

ity to exploit type information. However, we will consider an entirely different

strategy, an algorithm that tests for equivalence directly, without computing

normal forms.

6.3.1 Exercise [«]: The need for types in deciding equivalence is not limited to

open terms. Give two closed terms that are equivalent but have distinct nor­

mal forms. 2

6.4 An Equivalence Algorithm

We wish to devise an algorithm for the equivalence problem. Stated precisely,

the problem is this: Supposing Γ ` s : T and Γ ` t : T, determine whether or

not Γ ` s ≡ t : T.

To solve this problem, we will employ a type­driven algorithm. This algo­

rithm is based on two main observations:

1. If T is Unit, we can immediately return true. This is because we then have

Γ ` s : Unit and Γ ` t : Unit from our assumptions, and Γ ` s ≡ t :

Unit follows directly by Q­Unit.

2. If T is T1→T2, we can reduce the problem to a related problem where T is

just T2. To do so, we replace any query of the form:

Γ ` s
?
≡ t : T1→T2
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with the equivalent query:

Γ , x:T1 ` s x
?
≡ t x : T2

These queries are equivalent because the latter judgment immediately im­

plies the former using the Q­Ext rule, and the former implies the latter

using the Q­App rule and a weakening lemma:

6.4.1 Lemma [Weakening]: If Γ ` s ≡ t : T then Γ , x:S ` s ≡ t : T. 2

Proof: Straightforward induction on equivalence and typing derivations.

(Recall TAPL Lemma 9.3.7.) 2

The significance of these observations is that they give us a means to re­

duce an equivalence problem at an arbitrary type to one at the base type b.

Therefore, it remains only to find an algorithm that decides equivalence at

type b.

Equivalence at Base Type

At type b we can use a variant of the normalize­and­compare strategy. Infor­

mally, this is because we address elsewhere the type Unit, which mandated

type­directed consideration. The normalization phase (discussed in detail be­

low) will place the equivalence problem in one of five forms (or a symmetric

form):3

1. Γ ` x s1 ... sn
?
≡ x t1 ... tn : b

2. Γ ` k
?
≡ k : b

3. Γ ` x s1 ... sm
?
≡ y t1 ... tn : b (where x ≠ y)

4. Γ ` x s1 ... sn
?
≡ k : b

5. Γ ` k
?
≡ k′ : b (where k ≠ k′)

Clearly, in case 2 we may immediately return true, and in case 5 we may

immediately return false. We may also return false in case 3, since we know

nothing about what the variables x and y represent, and therefore they could

return distinct types. Similarly, we can return false for case 4.

3. Note that in case 1, x must be applied to the same number of arguments on each side, since

both sides have the same type.
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However, in case 1, a subtlety remains: Suppose, for example, that we wish

to determine whether x s ≡ x t : b, where x has the type T→b, and s and t

have type T. Since we know nothing about what the variable x represents, this

equivalence holds exactly when s ≡ t : T. Thus, although x s ≡ x t : b is an

equivalence problem at type b, to decide it we must still decide an equivalence

problem at type T (which could be anything, such as Unit), and we have seen

that we cannot do so with a simple syntactic comparison.

Thus, if the normalization portion of the normalize­and­compare phase

writes the problem in the form:

Γ ` x s1 ... sn
?
≡ x t1 ... tn : b

the comparisons of si to ti should be done using the entire type­driven algo­

rithm, and not simple syntactic comparison.

Weak Head Normalization

One additional insight is necessary to understand the algorithm. Since the

comparison portion works on a term of the form x t1 ... tn by using the

entire algorithm on the subterms ti , there is no point in normalizing the

term any more than is required to put it in that form.

For example, if we wish to determine whether x s ≡ x t : b, where x has the

type Unit→b, and s and t have type Unit, the answer will always be true, so

any effort spent normalizing s or t is wasted.

Consequently, our algorithm will employ a less aggressive form of nor­

malization called weak head normalization. In weak head normalization, the

leftmost, outermost redex is always selected for reduction, and the process

is halted as soon as the term begins with something other than a lambda

abstraction.

Such terms of type b will always either be a constant k or be in the form

x t1 ... tn. These terms are called paths. (Although some other terms—such

as abstractions—are also weak head normal, those other terms cannot have

type b so they will not arise.)

The Algorithm

An algorithm based on the preceding observations is given in Figure 6­4. The

algorithm is given in the form of rules defining four relations:

1. Algorithmic term equivalence: Γ ` sa t : T. This portion of the algorithm

is directed by the type T. It works by driving the type T down to b. All of Γ ,

s, t, and T are inputs to this relation.



6.4 An Equivalence Algorithm 231

Syntax

p,q ::= paths:

x variable

p t application

k constant

Weak head reduction s ; t

(λx:T11.t12) t2 ; [x, t2]t12 (QAR­Beta)

t1 ; t′1

t1 t2 ; t′1 t2

(QAR­App)

Weak head normalization s ⇓ t

s ; t t ⇓ u

s ⇓ u
(QAN­Reduce)

t 6;

t ⇓ t
(QAN­Normal)

Algorithmic term equivalence Γ ` sa t : T

s ⇓ p t ⇓ q Γ ` p↔ q : b

Γ ` sa t : b
(QAT­Base)

Γ , x:T1 ` s xa t x : T2

Γ ` sa t : T1→T2

(QAT­Arrow)

Γ ` sa t : Unit (QAT­One)

Algorithmic path equivalence Γ ` p↔ q : T

x:T ∈ Γ

Γ ` x↔ x : T
(QAP­Var)

Γ ` p↔ q : T1→T2 Γ ` sa t : T1

Γ ` p s↔ q t : T2

(QAP­App)

Γ ` k↔ k : b (QAP­Const)

Figure 6­4: Equivalence algorithm for λ→b1

2. Algorithmic path equivalence: Γ ` p↔ q : T. This portion of the algorithm

is directed by the structure of the paths p and q. It works by checking

that the head variables of p and q are the same (or that p and q are the

same constant), and then comparing corresponding subterms of the path

for algorithmic term equivalence. The type T is an output of this relation,

and Γ , p, and q are inputs.

3. Weak head reduction: s ; t. This portion of the algorithm reduces one

redex at the head of the term s. It implements one step of weak head

normalization.

4. Weak head normalization: s ⇓ t. This portion of the algorithm computes

weak head normal forms by performing weak head reductions until no

more can be performed. (We write t 6; to mean that there exists no term

t′ such that t ; t′.)

6.4.2 Exercise [««, 3]: Hand­execute the algorithm on:

f:(Unit→Unit)→b ` f (λx:Unit.unit)
?
a f (λx:Unit.x) : b→b

2
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6.4.3 Exercise [««««, 3]: Prove that the algorithm is sound. That is, show that if

Γ ` sa t : T (where Γ ` s : T and Γ ` t : T) then Γ ` s ≡ t : T. 2

6.5 Completeness: A First Attempt

There are two parts to showing that the algorithm is correct. First, we wish to

show that the algorithm is sound; that is, that the algorithm says yes only for

equivalent terms. We considered soundness in Exercise 6.4.3. Second, we wish

to show that the algorithm is complete; that is, that the algorithm says yes for

all equivalent terms. Completeness is a good deal trickier than soundness,

and is the subject of the remainder of this chapter.

We wish to show the following result:

6.5.1 Proposition: If Γ ` s ≡ t : T then Γ ` sa t : T. 2

Our first attempt to prove this would naturally be to try proving it directly

by induction on derivations. This attempt encounters a variety of difficulties,

most of which are surmountable. Because of the Q­Refl rule, we must first

prove something about typing:

6.5.2 Proposition: If Γ ` t : T then Γ ` ta t : T. 2

With this addition, several cases for the two propositions go through with­

out difficulty: for Proposition 6.5.1, T­Const and T­Unit; and for Proposi­

tion 6.5.2, Q­Refl, Q­Ext, and Q­Unit. Four other rules are more difficult, but

can be dealt with, as follows:

• Cases Q­Symm and Q­Trans: For these cases, we must prove lemmas stating

that the algorithm is symmetric and transitive (Lemmas 6.5.3 and 6.5.4

below).

• Case Q­Abs (T­Abs is similar): Here we wish to show that Γ ` λx:T1.s2 a

λx:T1.t2 : T1→T2, for which we must prove that:

Γ , x:T1 ` (λx:T1.s2)xa (λx:T1.t2)x : T2

However, the induction hypothesis provides us a related but different fact:

Γ , x:T1 ` s2 a t2 : T2

To conclude this case from the available information, we need another

lemma stating that the algorithm is closed under weak head expansion

(Lemma 6.5.5 below).
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6.5.3 Lemma [Algorithmic Symmetry]: If Γ ` sa t : T then Γ ` ta s : T. 2

6.5.4 Lemma [Algorithmic Transitivity]: If Γ ` s a t : T and Γ ` t a u : T

then Γ ` sa u : T. 2

Proof: Both proofs are by induction on derivations, with a simultaneous in­

duction showing the analogous property for algorithmic path equivalence. 2

6.5.5 Lemma [Algorithmic Weak Head Closure]: If Γ ` sa t : T and s′ ;
∗ s

and t′ ;∗ t then Γ ` s′a t′ : T. 2

Proof: By induction on the derivation of algorithmic term equivalence. 2

6.5.6 Exercise [«, 3]: Verify Lemma 6.5.5. 2

Trouble with Application

This leaves four rules: two dealing with application (T­App and Q­App), and two

dealing with variables and substitution (T­Var and Q­Beta). It is the applica­

tion rules that bring the proof attempt to a standstill.4

The essential problem is that the induction hypothesis gives us no infor­

mation about what happens when a term is applied to an argument. Consider

the case Q­App:

Γ ` s1 ≡ t1 : T1→T2 Γ ` s2 ≡ t2 : T1

Γ ` s1 s2 ≡ t1 t2 : T2

(Q­App)

The induction hypothesis gives us that Γ ` s1 a t1 : T1→T2 and Γ ` s2 a

t2 : T1. We wish to conclude that Γ ` s1 s2 a t1 t2 : T2, but we cannot.

By inversion on Γ ` s1 a t1 : T1→T2 we obtain the fact that Γ , x:T1 `

s1 xa t1 x : T2, but that is as close as we get, since the behavior of the algo­

rithm comparing s1 x to t1 x is entirely different from its behavior comparing

s1 s2 to t1 t2.

6.6 Logical Relations

The problem discussed above arises because the algorithmic equivalence re­

lation is not logical, in the following sense:5

4. The variable and substitution rules could be addressed using a device we develop in Sec­

tion 6.9, but we will not bother to employ it here, since this proof attempt is doomed by

application.

5. Actually, it is more precise to say that algorithmic term equivalence is not evidently logical;

that is, we cannot prove it at this stage in the proof. (See Exercise 6.9.12.)
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6.6.1 Definition: Suppose R(s,t,T) is a relation indexed by types T, such that s

and t are terms having type T. Then R is logical if whenever R(s1,t1,T1→T2)

and R(s2,t2,T1) hold, it follows that R(s1 s2,t1 t2,T2) also holds. 2

That is, a relation is logical when the relatedness of two applications s1 s2

and t1 t2 is inherited from the pairwise relatedness of their constituent func­

tion and argument (s1 with t1, and s2 with t2). Such a relation is called

“logical” because it respects the actions of the logical operators (in this case

implication) that correspond to the language’s type constructors.

The idea behind proof by logical relations is to circumvent problems result­

ing from the absence of logicality by defining another relation that is logical,

and that also implies the desired property (in this case algorithmic equiva­

lence). The new, logical relation is then used in the induction hypothesis in

the proof.

Our overall proof strategy, then, consists of three stages:

1. Define a suitable logical relation. When two terms are related by the logical

relation, we will say that they are logically equivalent.

2. Show that logical equivalence implies algorithmic equivalence.

3. Show that definitional equivalence implies logical equivalence.

A Logical Relation

A direct way to define a logical relation is essentially by fiat. The definition

proceeds inductively by cases on the index type, asserting algorithmic equiv­

alence at base types, and asserting exactly the necessary property at function

types. This gives us the following first attempt at a definition of logical equiv­

alence:

Γ ` s is t : T if and only if either:

T=Unit,

or T=b and Γ ` sa t : b,

or T=T1→T2 and for all s′, t′,

if Γ ` s′ is t′ : T1

then Γ ` s s′ is t t′ : T2.

Note that the first clause of the definition could equivalently be “T=Unit and

Γ ` sa t : Unit,” since the algorithmic equivalence at Unit always holds.
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Monotonicity

This relation is clearly logical, and at base types it just as clearly implies al­

gorithmic equivalence. The question is, does it imply algorithmic equivalence

at function types? The answer turns out to be almost, but not quite:

Suppose Γ ` s is t : T1→T2. We wish to show that Γ ` sa t : T1→T2, for

which it is sufficient to show:

Γ , x:T1 ` s xa t x : T2

Since T2 is smaller than T1→T2, we can conclude by induction that the desired

algorithmic equivalence follows from the corresponding logical equivalence.

Thus it remains to show:

Γ , x:T1 ` s x is t x : T2

From the definition of logical equivalence, we can deduce the desired logical

equivalence from:

1. Γ , x:T1 ` s is t : T1→T2, and

2. Γ , x:T1 ` x is x : T1.

The latter is not obvious, but we will be able to prove it (for our final def­

inition). The former, on the other hand, is very similar to our assumption,

Γ ` s is t : T1→T2. All we need to know is that logical equivalence is

preserved when bindings are added to the context. This property is called

monotonicity (or, preservation under weakening).

Failure of Monotonicity

Unfortunately, monotonicity fails for our current definition of logical equiva­

lence. It is not difficult to show monotonicity for the algorithm:

6.6.2 Lemma [Algorithmic Monotonicity]: Suppose Γ ′ ⊇ Γ . Then:

1. If Γ ` sa t : T then Γ ′ ` sa t : T.

2. If Γ ` p↔ q : T then Γ ′ ` p↔ q : T. 2

Proof: By induction on derivations. 2

The lemma gives us monotonicity of logical equivalence for type b, and

logical equivalence is trivially monotone for type Unit. That leaves T1→T2,

where monotonicity fails.
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To see why, let us attempt to prove the special case where the context is

extended with a single binding. We suppose Γ ` s is t : T1→T2 and attempt

to show Γ , x:S ` s is t : T1→T2. By the definition, it is sufficient to show

that if Γ , x:S ` s′ is t′ : T1 then Γ , x:S ` s s′ is t t′ : T2. Since T2 is

smaller than T1→T2, induction gives us monotonicity for T2, so it is sufficient

to show that Γ ` s s′ is t t′ : T2. This follows from our original supposition

by the definition of logical equivalence, provided that Γ ` s′ is t′ : T1.

Unfortunately, our second supposition provides only Γ , x:S ` s′ is t′ : T1.

Thus, at type T1 we need not monotonicity (which induction could provide),

but the converse, antitonicity (or, preservation under strengthening), which is

certainly false.

6.6.3 Exercise [«]: Let antitonicity be the property that if Γ , x:S ` s is t : T then

Γ ` s is t : T. Produce a counterexample for antitonicity. 2

6.6.4 Exercise [«««]: Suppose the language contains exactly one constant k. Pro­

duce a counterexample for monotonicity and give the proof. 2

6.7 A Monotone Logical Relation

Earlier we addressed the problem of logicality by fiat, crafting a definition

that provided exactly the necessary property. We can address the problem of

monotonicity in essentially the same manner. The problem is that the defini­

tion’s clause for function types could hold for a context Γ , but not evidently

hold for a larger context Γ ′.

To resolve this difficulty, we revise the definition so that the clause for

function types must hold not only for the current context Γ , but also for any

extended context Γ ′ ⊇ Γ . This gives us our final definition of logical equiva­

lence:

6.7.1 Definition [Logical Equivalence]:

Γ ` s is t : T if and only if either:

T=Unit,

or T=b and Γ ` sa t : b,

or T=T1→T2 and, for all s′, t′ and all Γ ′ ⊇ Γ ,

if Γ ′ ` s′ is t′ : T1

then Γ ′ ` s s′ is t t′ : T2. 2

With this definition, we can easily prove the monotonicity of logical equiva­

lence:

6.7.2 Lemma [Logical Monotonicity]: If Γ ` s is t : T and Γ ′ ⊇ Γ then Γ ′ ` s is

t : T. 2
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Proof: By induction on T, appealing to algorithmic monotonicity in the case

where T = b. 2

An Aside

A logical relation made monotone in this manner is often called a Kripke log­

ical relation, by analogy to Kripke models for modal logic. Modal logic is a

form of logic designed for reasoning about the differences between various

degrees or forms of truth, typically including contingent truths—truths that

happen to hold given the existing state of affairs—and necessary (or “cate­

gorical”) truths, which must hold in any reasonable state of affairs.

A Kripke model for modal logic is based on a set of “worlds,” where each

world supports a different set of truths. The set of worlds is additionally

structured by a notion of which worlds are “reachable” from which other

worlds. In such a model, a contingent truth is one that holds in the current

world, and a necessary truth is one that holds in all worlds reachable from the

current world. (Any world not reachable from the current world is ignored,

since there is no way to observe its existence.)

The connection to Kripke models arises in the logical relation’s use of a

context Γ , which we may view as specifying a world. Each world provides a

different set of variables, and we may reach another world by adding variables

to the current context. Thus, when we require that our logical relation be

monotone (that is, that it continues to hold in all reachable contexts), we are

saying that we are interested in necessary equivalence, not accidental (i.e.,

contingent) equivalence.6

6.8 The Main Lemma

With a monotone logical relation in hand, we are now ready to prove the com­

pleteness of the algorithm. Recalling our proof strategy from page 234, we

have accomplished the first step, the definition of a suitable logical relation.

We now wish to show that logical equivalence implies algorithmic equiva­

lence. It will then remain to show that definitional equivalence implies logical

equivalence.

The former fact is established by the following “main lemma.” The Main

Lemma actually establishes two facts simultaneously. First, it shows that

logical equivalence implies algorithmic equivalence. To appreciate the sec­

ond fact, recall (from page 235) that to show that logical implies algorithmic

6. Exercise 6.6.4 in essence asks you to produce an example of an accidental equivalence, one

that holds only in a certain world.
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equivalence, we also need to establish that variables are logically equivalent

to themselves. To do so, we prove the stronger result that algorithmically

equivalent paths are logically equivalent. The necessary result for variables

follows, since a variable is always algorithmically path equivalent to itself

(rule QAP­Var).

In the following proof, observe how inseparably the two induction hypothe­

ses of the lemma are intertwined. It is typical of logical relations proofs to use

a lemma such as this, wherein one clause of the lemma establishes the logical

relation and the other clause exploits it. This structure of the proof usually

results from the definition of the logical relation in the arrow case, where the

relation appears on both the left and the right of the implication.

6.8.1 Lemma [Main Lemma]:

1. If Γ ` s is t : T then Γ ` sa t : T.

2. If Γ ` p↔ q : T then Γ ` p is q : T. 2

Proof: By induction on T.

Case: T = b

1. Suppose Γ ` s is t : b. By definition, Γ ` sa t : b.

2. Suppose Γ ` p ↔ q : b. Since p and q are paths, it follows that p 6; and

q 6;, so p ⇓ p and q ⇓ q by QAN­Normal. Therefore Γ ` p a q : b by

QAT­Base, and Γ ` p is q : b follows by the definition.

Case: T = Unit

1. For any s and t, Γ ` sa t : Unit by QAT­One.

2. For any p and q, Γ ` p is q : Unit by the definition.

Case: T = T1→T2

1. Suppose Γ ` s is t : T1→T2. We wish to show that Γ ` s a t : T1→T2.

It is sufficient to show that Γ , x:T1 ` s x a t x : T2. This will follow by

induction, if we can show that Γ , x:T1 ` s x is t x : T2.

By induction (using the second clause), since Γ , x:T1 ` x ↔ x : T1 (by

QAP­Var), we may deduce that Γ , x:T1 ` x is x : T1. Therefore, since

(Γ , x:T1) ⊇ Γ , we may conclude that Γ , x:T1 ` s x is t x : T2, as desired.

2. Suppose Γ ` p ↔ q : T1→T2. We wish to show that Γ ` p is q : T1→T2.

Suppose further that Γ ′ ⊇ Γ and Γ ′ ` s is t : T1. Then we wish to show



6.9 The Fundamental Theorem 239

that Γ ′ ` p s is q t : T2. This will follow by induction, if we can show that

Γ ′ ` p s↔ q t : T2.

By induction (using the first clause), Γ ′ ` sa t : T1. By algorithmic mono­

tonicity (Lemma 6.6.2), Γ ′ ` p ↔ q : T1→T2. Therefore, by rule QAP­App,

Γ ′ ` p s↔ q t : T2, as required. 2

6.9 The Fundamental Theorem

The final step in the completeness proof is to show that definitional equiva­

lence implies logical equivalence. We will refer to the theorem showing this

fact as the “Fundamental Theorem.”

Recall our attempted proof from Section 6.5. The principal problem we en­

countered was with application; we could not deduce from the algorithmic

equivalence of two functions anything about the equivalence of their applica­

tions to arguments. We have solved that problem by using a logical relation,

which explicitly provides the necessary conclusions about applications.

Structural Properties of Logical Equivalence

Since we are now using logical equivalence in place of algorithmic equiva­

lence, we must revisit some of our other devices from Section 6.5. To ad­

dress the Q­Symm, Q­Trans, Q­Abs, and T­Ans, we showed that the algorithm is

symmetric, transitive, and closed under weak head reduction (Lemmas 6.5.3,

6.5.4, and 6.5.5). We will now require analogs of these lemmas applicable to

logical equivalence:

6.9.1 Lemma [Logical Symmetry]: If Γ ` s is t : T then Γ ` t is s : T. 2

Proof: By induction on T, appealing to algorithmic symmetry (Lemma 6.5.3)

in the case where T = b. 2

6.9.2 Lemma [Logical Transitivity]: If Γ ` s is t : T and Γ ` t is u : T then

Γ ` s is u : T. 2

Proof: Exercise [Recommended, ««, 3]. 2

6.9.3 Lemma [Logical Weak Head Closure]: If Γ ` s is t : T and s′ ;
∗ s and

t′ ;∗ t then Γ ` s′ is t′ : T. 2

Proof: By induction on T; in the case where T = b, we appeal to algorithmic

weak head closure (Lemma 6.5.5). 2
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Closure under Substitution

There remain two more cases we did not consider in Section 6.5, T­Var and

Q­Beta. We could deal with T­Var immediately, since a consequence of the

Main Lemma is that variables are logically equivalent to themselves. However,

we will actually end up dealing with T­Var somewhat differently in light of one

last remaining complication. (See the T­Var case of Theorem 6.9.8.)

That final complication stems from the rule Q­Beta:

Γ , x:T1 ` s12 ≡ t12 : T2 Γ ` s2 ≡ t2 : T1

Γ ` (λx:T1.s12) s2 ≡ [x, t2]t12 : T2

(Q­Beta)

Suppose we employ the obvious induction hypothesis: if Γ ` s ≡ t : T then

Γ ` s is t : T. Then, for the Q­Beta case, we need to show that:

Γ ` (λx:T1.s12) s2 is [x, t2]t12 : T2

Using logical weak head closure (Lemma 6.9.3), it is sufficient to show that:

Γ ` [x, s2]s12 is [x, t2]t12 : T2

Induction provides us with Γ , x:T1 ` s12 ≡ t12 : T2 and Γ ` s2 ≡ t2 : T1.

Thus, we could complete the proof by showing that logical equivalence is

closed under logically equivalent substitutions. Unfortunately, it is not clear

how to prove such a proposition at this stage in the completeness proof, as

the form of the logical relation gives us no leverage on the matter.

The Theorem

Fortunately, we can work around this difficulty by building this notion of

equivalent substitutions into the Fundamental Theorem itself. First we re­

quire a few definitions:

6.9.4 Definition [Substitutions]: A substitution is a function from some set of

variables to terms. 2

6.9.5 Definition [Substitutions and Terms]: Suppose γ is a substitution and t

is a term such that the free variables of t are contained in dom(γ). Then we

write γ(t) to refer to the term resulting from simultaneously carrying out on

t all the substitutions specified by γ. 2

6.9.6 Definition [Substitution Extension]: Suppose x 6∈ dom(γ). Then we de­

fine γ[x, t] as the substitution with domain dom(γ)∪ {x} such that:

(γ[x, t])(y) =

{
γ(y) x ≠ y

t x = y 2
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6.9.7 Definition [Logically Equivalent Substitutions]: Logical equivalence of

substitutions is defined as follows:

Γ ′ ` γ is δ : Γ if dom(γ) = dom(δ) = dom(Γ) and for every x:T ∈ Γ we

have Γ ′ ` γ(x) is δ(x) : T. 2

Now we can state the Fundamental Theorem by uniformly considering all

equivalences under the application of equivalent substitutions. Since typing

never depends on equivalence, we can separate the Fundamental Theorem

into two parts (one for typing and one for equivalence) and prove each in

turn.

6.9.8 Theorem [Fundamental Theorem 1]: If Γ ` t : T and Γ ′ ` γ is δ : Γ then

Γ
′ ` γ(t) is δ(t) : T. 2

Proof: By induction on derivations. We show several cases; the rest are left

as exercises.

Case T­Var: t = x

with x:T ∈ Γ

By assumption, Γ ′ ` γ(x) is δ(x) : T.

Case T­Abs: t = λx:T1.t2

T = T1→T2

We wish to show that Γ ′ ` γ(λx:T1.t2) is δ(λx:T1.t2) : T1→T2. Suppose

Γ
′′ ⊇ Γ ′ and Γ ′′ ` s′ is t′ : T1. We wish to show that Γ ′′ ` (λx:T1.γ(t2))s′ is

(λx:T1.δ(t2))t′ : T2. By logical weak head closure (Lemma 6.9.3), it is suffi­

cient to show that Γ ′′ ` [x, s′]γ(t2) is [x, t′]δ(t2) : T2.

By logical monotonicity, Γ ′′ ` γ is δ : Γ . Thus, Γ ′′ ` γ[x , s′] is

δ[x , t′] : (Γ ,x:T1). Therefore, by induction, Γ ′′ ` γ[x , s′](t2) is δ[x ,

t′](t2) : T2, which is equivalent to the desired conclusion.

Case T­App: t = t1 t2

T = T12

By induction, Γ ′ ` γ(t1) is δ(t1) : T1→T2 and Γ
′ ` γ(t2) is δ(t2) : T1.

By the definition of the logical relation, since Γ ′ ⊇ Γ , we may conclude Γ ′ `

γ(t1)γ(t2) is δ(t1)δ(t2) : T2. That is, Γ ′ ` γ(t1 t2) is δ(t1 t2) : T2. 2

6.9.9 Theorem [Fundamental Theorem 2]: If Γ ` s ≡ t : T and Γ ′ ` γ is δ : Γ

then Γ ′ ` γ(s) is δ(t) : T. 2

Proof: By induction on derivations. We show one case; the rest are left as

exercises.
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Case Q­Beta: s = (λx:T1.s12) s2

t = [x, t2]t12 : T2

T = T2

By induction, Γ ′ ` γ(s2) is δ(t2) : T1. Thus Γ ′ ` γ[x , γ(s2)] is δ[x ,

δ(t2)] : (Γ , x:T1). Therefore, by induction:

Γ
′ ` γ[x, γ(s2)](s12) is δ[x, δ(t2)](t12) : T2

By rearranging substitutions:

Γ
′ ` [x, γ(s2)]γ(s12) is δ([x , t2]t12) : T2

Finally, by logical weak head closure (Lemma 6.9.3):

Γ
′ ` (λx:T1.γ(s12))γ(s2) is δ([x, t2]t12) : T2

That is:

Γ
′ ` γ((λx:T1.s12) s2) is δ([x, t2]t12) : T2 2

6.9.10 Exercise [Recommended, «««]: Complete the proof of Theorems 6.9.8 and

6.9.9. 2

Now we can establish the algorithm’s completeness, using the Fundamental

Theorem with an identity substitution:

6.9.11 Corollary [Completeness]: If Γ ` s ≡ t : T then Γ ` sa t : T. 2

Proof: Suppose Γ ` s ≡ t : T. Let γ be the identity substitution on dom(Γ).

For all x:T in Γ , observe that Γ ` x is x : T by the Main Lemma. Therefore

Γ ` γ is γ : Γ . By the Fundamental Theorem, Γ ` γ(s) is γ(t) : T, which is

to say Γ ` s is t : T. Therefore Γ ` sa t : T by the Main Lemma. 2

6.9.12 Exercise [«]: An irony arises from the use logical relations to show com­

pleteness: it turns out that algorithmic equivalence actually is logical after all

(at least for well­formed terms); we just cannot prove it until we have already

proven the algorithm to be sound and complete. Show that if Γ ` s1 a t1 :

T1→T2 and Γ ` s2 a t2 : T1 (where Γ ` s1 : T1→T2, Γ ` t1 : T1→T2, Γ ` s2 : T1,

and Γ ` t2 : T1), then Γ ` s1 s2 a t1 t2 : T2. 2

6.9.13 Exercise [««««]: We have shown that the equivalence algorithm is sound

and complete. To show that the algorithm decides the equivalence problem,

it remains to show that it terminates on all well­formed inputs. Show that if

Γ ` s : T and Γ ` t : T then there exists no infinite proof search rooted in

Γ ` sa t : T.

Hint: Termination is a corollary of completeness. You will not need to prove

any additional non­trivial facts about the algorithm. 2
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New syntactic forms

t ::= . . . terms:

〈t,t〉 pair

t.1 first projection

t.2 second projection

T ::= . . . types:

T1 × T2 product type

Typing Γ ` t : T

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` 〈t1,t2〉 : T1 × T2

(T­Pair)

Γ ` t : T1 × T2

Γ ` t.1 : T1

(T­Proj1)

Γ ` t : T1 × T2

Γ ` t.2 : T2

(T­Proj2)

Equivalence Γ ` s ≡ t : T

Γ ` s1 ≡ t1 : T1 Γ ` s2 ≡ t2 : T2

Γ ` 〈s1,s2〉 ≡ 〈t1,t2〉 : T1 × T2

(Q­Pair)

Γ ` s ≡ t : T1 × T2

Γ ` s.1 ≡ t.1 : T1

(Q­Proj1)

Γ ` s ≡ t : T1 × T2

Γ ` s.2 ≡ t.2 : T2

(Q­Proj2)

Γ ` s1 ≡ t : T1 Γ ` s2 : T2

Γ ` 〈s1,s2〉.1 ≡ t : T1

(Q­Beta­Prod1)

Γ ` s2 ≡ t : T2 Γ ` s1 : T1

Γ ` 〈s1,s2〉.2 ≡ t : T2

(Q­Beta­Prod2)

Γ ` s.1 ≡ t.1 : T1 Γ ` s.2 ≡ t.2 : T2

Γ ` s ≡ t : T1×T2

(Q­Ext­Prod)

Figure 6­5: Product types (λ→×b1)

6.9.14 Exercise [Recommended, ««««]: Our language can be extended straightfor­

wardly with pairs. Figure 6­5 gives the extended syntax and type system, and

Figure 6­6 extends the equivalence algorithm to account for pairs. Extend the

completeness proof to cover the extended language and algorithm. 2

6.9.15 Exercise [«««]: Unfortunately, some extensions of the technique of logical

relations, such as for universal types, are not as simple as that for pairs.

Suppose our language and algorithm are extended in the natural manner to

support universal types as in System F (TAPL, Chapter 23). To prove the al­

gorithm complete involves defining a logical relation. However, to define the

necessary logical relation is not straightforward. Observe what goes wrong. 2

6.10 Notes

The ideas behind logical relations were first developed by Tait (1967) and

Howard (1973), and were refined further by Plotkin (1980). Logical relations

were first proposed as a general proof technique by Statman (1985).
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Syntax

p,q ::= . . . paths:

p.1 first projection

p.2 second projection

Weak head reduction s ; t

〈t1,t2〉.1 ; t1 (QAR­Beta­Prod1)

〈t1,t2〉.2 ; t2 (QAR­Beta­Prod2)

t ; t′

t.1 ; t′.1
(QAR­Proj1)

t ; t′

t.2 ; t′.2
(QAR­Proj2)

Algorithmic term equivalence Γ ` sa t : T

Γ ` s.1a t.1 : T1 Γ ` s.2a t.2 : T2

Γ ` sa t : T1 × T2

(QAT­Prod)

Algorithmic path equivalence Γ ` p↔ q : T

Γ ` p↔ q : T1 × T2

Γ ` p.1↔ q.1 : T1

(QAP­Proj1)

Γ ` p↔ q : T1 × T2

Γ ` p.2↔ q.2 : T2

(QAP­Proj2)

Figure 6­6: Equivalence algorithm for λ→×b1

The idea of using a Kripke logical relation to show the completeness of an

equivalence algorithm is due to Coquand (1991), who applies it to algorithms

for various similar type systems. Unlike the algorithm we consider here, Co­

quand’s algorithms are not type­directed. Coquand’s technique was adopted

by Stone and Harper (2000), who use a more sophisticated form of logical re­

lation to show the completeness of an equivalence algorithm for a language

with singleton kinds. (Singleton kinds arise from a form of type definitions,

and are discussed in §9.3.)

A broader survey of applications of logical relations appears in Mitchell’s

Foundations for Programming Languages (1996). A good introductory text on

modal logic and Kripke models is Sally Popkorn’s First Steps in Modal Logic

(1994). A shorter introduction to modal logic from a different perspective

(leaving out connections to Kripke models) is given by Pfenning and Davies

(2001).



7 Typed Operational Reasoning

Andrew Pitts

The aim of this chapter is to explain, by example, some methods for reason­

ing about equivalence of programs based directly upon a type system and

an operational semantics for the programming language in question. We will

concentrate on methods for reasoning about equivalence of representations

of abstract data types. This provides an excellent example: it is easy to appre­

ciate why such methods are useful and at the same time non­trivial problems

have to be solved to get a sound reasoning principle in the presence of non­

termination and recursion. Rather than just treat abstract data types, we will

cover full existential types, using a programming language combining a pure

fragment of ML (including records and recursive functions) with System F.

7.1 Introduction

As explained in TAPL, Chapter 24, type systems involving existentially quan­

tified type variables provide a useful foundation for explaining and relating

various features of programming languages to do with information hiding.

To establish the properties of such type­theoretic interpretations of infor­

mation hiding requires a theory of semantic equivalence for expressions of

existential type. Methods involving type­indexed families of relations between

between expressions have proved very useful in this respect. Study of rela­

tional properties of typed calculi goes back to the logical relations for simply

typed lambda calculus in Plotkin (1973) and Statman (1985) and discussed in

Chapter 6, and the notion of relational parametricity for polymorphic types

in Reynolds (1983). More relevant to the kind of example considered in this

chapter is Mitchell’s principle for establishing the denotational equivalence

of programs involving higher­order functions and different implementations

of an abstract datatype in terms of the existence of a simulation relation be­
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tween the implementations (Mitchell, 1991a). This principle was extended by

Plotkin and Abadi (1993) to encompass all the (possibly impredicative) exis­

tential types of the Girard­Reynolds polymorphic lambda calculus.

One feature of these works is that they develop proof principles for deno­

tational models of programming languages. The relevance of such principles

to the operational behavior of programs relies upon ‘goodness of fit’ results

(some published, some not) connecting operational and denotational seman­

tics. Another feature of the above works is that they do not treat the use of

general recursive definitions; and so the languages considered are not Tur­

ing powerful. It is folklore that a proof principle for denotational equality at

existential type, phrased in terms of the existence of certain simulation rela­

tions, is still valid in the presence of recursively defined functions of higher

type, provided one imposes some admissibility conditions on the notion of

relation. In fact using techniques for defining operationally based logical re­

lations developed in Pitts (2000), we will see in this chapter that suitable

admissibility conditions for relations and an associated proof principle for

operational equivalence at existential type can be phrased directly, and quite

simply, in terms of the syntax and operational semantics of a programming

language combining existential types with recursively defined, higher­order

functions. The programming language we work with combines a pure frag­

ment of ML (including records and recursive functions) with the polymorphic

lambda calculus of Girard (1972) and Reynolds (1974).

7.2 Overview

In order to get the most out of this chapter you should have some familiarity

with TAPL, Chapters 23 and 24. The material in this chapter is technically

quite intricate (especially the definition and properties of the logical relation

in §7.6) and it is easy to lose sight of the wood for the trees. So here is an

overview of the chapter.

Equivalence of programs One application of formal semantics of program­

ming languages is to give a mathematically precise definition of what it

means for one program to be semantically equal to another. In this chapter

we use operational semantics and discuss a notion of program equivalence

called contextual equivalence (§7.5).

Extensionality principles In order to reason about program equivalence, it

is useful to establish the validity of proof methods for it. The most basic

method uses the congruence property—reasoning by “replacing equals by

equals”—which holds of contextual equivalence by construction. In §7.1
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we discuss informally some methods for proving contextual equivalence

of implementations of abstract datatypes. The discussion culminates with

the Extensionality Principle 7.3.6. One goal of this chapter is to give a

mathematically precise formulation of this principle and to establish its

validity.

Logical relations The Extensionality Principle is phrased in terms of type­

respecting relations between the terms of our example language. In order

to formulate this principle precisely and then prove it we develop an alter­

native characterisation of contextual equivalence in terms of a certain “log­

ical relation” (§7.6). The combination of features in our language—higher­

order recursive functions and fully impredicative polymorphic types—

force us to use a form of logical relation with quite a difficult definition.

Chapter 6 presents another use of logical relations with a simpler defini­

tion; as such, that chapter provides a useful warm­up for this one.

7.3 Motivating Examples

In this section we motivate the use of logical relations for reasoning about

existential types by giving some examples.

To begin, let us recall the syntax for expressions involving existentially

quantified type variables from TAPL, Chapter 24. If T is a type expression and

X is a type variable, then we write {∃X,T} for the corresponding existentially

quantified type. Free occurrences of X in T become bound in this type expres­

sion. We write [X , S]T for the result of substituting a type S for all free

occurrences of X in T, renaming bound type variables as necessary to avoid

capture.1 It t is a term of type [X , S]T, then we can “pack” the type S and

the term t together to get a term

{*S,t} as {∃X,T} (7.1)

of the indicated existential type. To eliminate such terms we use the form

let {*X,x}=t1 in t2 (7.2)

This is a binding construct: free occurrences of the type variable X and the

value variable x in t2 become bound in the term. The typing of such terms

goes as follows:

if t1 has type {∃X,T} and t2 has type T2 when we assume the variable

x has type T, then provided X does not occur free in T2, we can conclude

that the term in (7.2) has type T2.

1. Throughout this chapter we will always identify expressions, be they types or terms, up to

renaming of bound variables.
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(Such rules are better presented symbolically, but we postpone doing that

until we give a formal definition of the language we will be using, in the next

section.) The italicized restriction on free occurrences of X in T2 in the above

rule is what distinguishes an existential type from a type­indexed dependent

sum, where there is free access both to the type component as well as the

term component of a “packed” term: see Mitchell and Plotkin (1988), p. 474 et

seq, for a discussion of this point.

Since we wish to consider existential types in the context of an ML­like

language, we adopt an eager strategy for evaluating expressions like (7.1)

and (7.2). Thus to evaluate the first, one evaluates t to canonical form, v say,

and returns the canonical form {*S,v} as {∃X,T}; to evaluate the second,

one evaluates t1 to canonical form, {*S,v} as {∃X,T} say, and then evalu­

ates [X, S][x, v]t2.

7.3.1 Example: Consider the existentially quantified record type

type Counter = {∃X, {mk:X, inc:X→X, get:X→Int}}

where Int is a type of integers. Values of type Counter consist of some type

together with values of the appropriate types implementing mk, inc, and get.

For example

val counter1 = {*Int, {mk = 0,

inc = λx:Int.x+1,

get = λx:Int.x } as Counter

and

val counter2 = {*Int, {mk = 0,

inc = λx:Int.x­1,

get = λx:Int.0­x } as Counter

are both values of type Counter. The terms

let {*X,x} = counter1 in x.get(x.inc(x.mk))

let {*X,x} = counter2 in x.get(x.inc(x.mk))

(where we use the syntax r.f for selecting field f of record r) are both terms

of type Int which evaluate to 1. By contrast, of the terms

let {*X,x} = counter1 in x.get(x.inc(1))

let {*X,x} = counter2 in x.get(x.inc(1))

the first evaluates to 2, whereas the second evaluates to 0; but in this case

neither term is well­typed. Indeed, it is the case that any well­typed closed

term involving occurrences of the term counter1 will exhibit precisely the

same evaluation behavior if we replace those occurrences by counter2. In

other words, counter1 and counter2 are equivalent in the following sense. 2
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7.3.2 Definition [Contextual equivalence, informally]: We write t1 =ctx t2:T

to indicate that two terms t1 and t2 of the same type T are contextually equiv­

alent. By definition, this means that for all well­typed terms t[t1] containing

instances of t1, if t[t2] is the term obtained by replacing those instances

by t2, then t[t1] and t[t2] give exactly the same observable results when

evaluated. 2

This notion of program equivalence assumes we have already fixed upon a

definition of the “observable results” of evaluating terms. It also presupposes

that the meaning of a well­typed term should only depend upon the final

result (if any) of evaluating it. This is reasonable for deterministic and non­

interactive programming even in the presence of computational effects like

side­effecting state or raising exceptions, provided we include those effects as

part of the observable results of evaluation. Certainly, contextual equivalence

is a widely used notion of program equivalence in the literature and it is the

one we adopt here.

For the terms in Example 7.3.1, it is the case that

counter1 =ctx counter2:Counter (7.3)

but the quantification over all possible contexts t[−] in the definition of =ctx

makes a direct proof of this and similar facts rather difficult. Thus one is

led to ask whether there are proof principles for contextual equivalence that

make proving such equivalences at existential types more tractable. Since

values {*S,v} as {∃X,T} of a given existential type {∃X,T} are specified by

pairs of data S and v, as a first stab at such a proof principle one might

try componentwise equivalence. Equivalence in the second component will of

course mean contextual equivalence; but in the first component, where the

expressions involved are types, what should equivalence mean? If we take

it to mean syntactic identity, =, (which for us includes renaming of bound

variables) we obtain the following proof principle.2

7.3.3 Principle [Extensionality for ∃­types, Version I]: For an existential type

E
def
= {∃X,T}, types T1, T2, and values v1, v2, if T1 = T2 and v1 =ctx v2:[X ,

T2]T, then ({*T1,v1} as E) =ctx ({*T2,v2} as E):{∃X,T}. 2

The hypotheses of Principle 7.3.3 are far too strong for it to be very useful.

For example, it cannot be used to prove (7.3), since in this case T1 = Int = T2,

but

2. This and subsequent proof principles for {∃X,T} are called extensionality principles by

analogy with the familiar extensionality principle for functions; it is a convenient terminology,

but perhaps the analogy is a little stretched.
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val v1 = {mk=0, inc=λx:Int.x+1, get=λx:Int.x}

and

val v2 = {mk=0, inc=λx:Int.x­1, get=λx:Int.0­x}

are clearly not contextually equivalent values of the record type

{mk:Int,inc:Int→Int,get:Int→Int}

(for example, we get different integers when evaluating t[v1] and t[v2] when

t[−] is (−.inc)0). However, they do become contextually equivalent if in

the second term we use a variant of integers in which the roles of positive

and negative are reversed. Such “integers” are of course in bijection with

the usual ones and this leads us to our second version of an extensionality

principle for existential types—in which the use of syntactic identity as the

notion of type equivalence is replaced by the more flexible one of bijection.

A bijection i : T1 � T2 means a closed term i : T1→T2 for which there is

a closed term i−1 : T2→T1 which is a two­sided inverse up to contextual

equivalence: i−1(i x1) =ctx x1 : T1 and i(i−1 x2) =ctx x2 : T2.

7.3.4 Principle [Extensionality for ∃­types, Version II]: For each existential

type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a bijection

i : T1 � T2 such that T(i) v1 =ctx v2 : [X, T2]T, then

({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}.

In stating this principle we have used the notation T(i) for the “action” of

types T on bijections i: given a type T, possibly containing free occurrences

of a type variable X, one can define an induced bijection T(i) : [X , T1]T �

[X, T2]T (with inverse T(i−1)). For example, if T is the type

{mk:X, inc:X→X, get:X→Int}

then T(i) is

λx:{ mk:T1, inc:T1→T1, get:T1→Int}.

{ mk = i(x.mk),

inc = λx2:T2.i(x.inc(i
−1 x2)),

get = λx2:T2.x.get(i
−1 x2)) }

and T(i−1) is

λx:{ mk:T2, inc:T2→T2, get:T2→Int}.

{ mk = i−1(x.mk),

inc = λx1:T1.i
−1(x.inc(i x1)),

get = λx1:T1.x.get(i x1)) }.
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(In general, if T is a simple type then the definition of T(i) and T(i−1) can

be done by induction on the structure of T; for recursively defined types, the

definition of the induced bijection is not so straightforward.) 2

We can use this second version of the extensionality principle for existen­

tial types to prove the contextual equivalence in (7.3), using the bijection

i
def
= (λx:Int.0­x) : Int � Int.

This does indeed satisfy T(i) v1 =ctx v2 : Int when v1, v2, and T are de­

fined as above. (Of course these contextual equivalences, and indeed the fact

that this particular term i is a bijection, all require proof; but the methods

developed in this chapter render this straightforward.) However, the use of

bijections between types is still too restrictive for proving many common ex­

amples of contextual equivalence of abstract datatype implementations, such

as the following.

7.3.5 Example: Consider the following existentially quantified record type, where

Bool is a type of booleans.

type Semaphore = {∃X, {bit:X, flip:X→X, read:X→Bool}}

The following terms have type Semaphore:

val semaphore1 =

{*Bool, {bit = true

flip = λx:Bool.not x,

read = λx:Bool.x } as Semaphore;

val semaphore2 =

{*Int, {bit = 1,

flip = λx:Int.0­2*x,

read = λx:Int.x >= 0} as Semaphore

There is no bijection Bool � Int, so one cannot use Principle 7.3.4 to prove

semaphore1 =ctx semaphore2 : Semaphore. (7.4)

Nevertheless, this contextual equivalence does hold. An informal argument

for this makes use of the following relation r : Bool ↔ Int between values

of type Bool and of type Int.

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0}

∪ {(false,m) |m = (−2)n for some odd n ≥ 0}.

Write si for the second component of semaphorei (i = 1,2). Then
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• s1.bit evaluates to true; s2.bit evaluates to 1; and (true,1) ∈ r ;

• if (t1,t2) ∈ r , then (s1.flip)t1 and (s2.flip)t2 evaluate to a pair of

values which are again r ­related;

• if (t1,t2) ∈ r , then (s1.read)t1 and (s2.read)t2 evaluate to the same

boolean value.

The informal argument for the contextual equivalence (7.4) goes as follows:

“any context t[−] which is well­typed whenever its hole ‘−’ is filled with a

term of type Semaphore can only make use of a term placed in its hole by

opening it as an abstract pair {X,x} and applying the methods bit, flip,

and read in some combination; therefore the above observations about r

are enough to show that t[semaphore1] and t[semaphore2] always have the

same evaluation behavior.” 2

The validity of this informal argument and in particular the assumptions

it makes about the way a context can “use” its hole are far from immediate

and need formal justification. Leaving that for later, at least we can state the

relational principle a bit more precisely.

7.3.6 Principle [Extensionality for ∃­types, Final Version]: For each existen­

tial type E
def
= {∃X,T}, types T1, T2, and values v1, v2, if there is a relation

r : T1 ↔ T2 between terms of type T1 and of type T2, such that (v1,v2) ∈ T[r],

then ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T}. 2

Evidently this principle presupposes the existence of an “action” of types on

term­relations that sends relations r : T1 ↔ T2 to relations T[r] : [X ,

T1]T ↔ [X , T2]T and with certain other properties. It is the definition of

this action that is at the heart of the matter. It has to be phrased with some

care in order for the above extensionality principle to be valid for languages

involving non­termination of evaluation (through the presence of fixpoint re­

cursion for example). We will give a precise definition in §7.6 (Definition 7.6.9)

for a language combining impredicative polymorphism with fixpoint recur­

sion at the level of terms. How best to define such relational actions in the

presence of recursion at the level of types is still a matter for research (see

Exercise 7.8.1).

7.3.7 Note: Principle 7.3.4 generalizes Principle 7.3.3, because if T1 = T2, then the

identity function i
def
= λx:T1.x is a bijection T1 � T2 satisfying

(T(i) v) =ctx v (for any v)
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so that v1 =ctx v2 implies (T(i) v1) =ctx v2. Principle 7.3.6 generalizes Prin­

ciple 7.3.4, because each bijection i : T1 � T2 can be replaced by its graph

ri
def
= {(u1,u2) | i u1 =ctx u2}

which in fact has the property that (v1,v2) ∈ T[ri] if and only if (T(i) v1) is

contextually equivalent to v2. 2

As mentioned in the Introduction, Principle 7.3.6 is an operational gen­

eralization of similar principles for the denotational semantics of abstract

datatypes over the simply typed lambda calculus (Mitchell, 1991a) and rela­

tionally parametric models of the polymorphic lambda calculus (Plotkin and

Abadi, 1993). It permits many examples of contextual equivalence at existen­

tial types to be proved rather easily. Nevertheless, we will see in §7.7 that it is

incomplete for the particular ML­like language we consider here, in the sense

that ({*T1,v1} as E) =ctx ({*T2,v2} as E) : {∃X,T} can hold even though

there is no relation r for which (v1,v2) ∈ T[r] holds (see Example 7.7.4).

7.4 The Language

In this section we define a small, ML­like programming language that we will

use in the rest of the chapter. It combines Girard’s System F (1972) (in other

words, the polymorphic lambda calculus of Reynolds [1974]) with recursively

defined functions, record types and ground types; in common with ML (Mil­

ner, Tofte, Harper, and MacQueen, 1997), evaluation order is strict (i.e., left­to­

right, call­by­value). We will call the language FML. Its syntax and type system

are specified in Figure 7­1 and its operational semantics in Figure 7­2.

Syntax

In Figure 7­1, X and x respectively range over disjoint countably infinite sets

of type variables and value variables; l ranges over a countably infinite set

of field labels; c ranges over the constants true, false and n (for n ∈ Z);

Gnd is either the type of booleans Bool or the type of integers Int; and op

ranges over a fixed collection of arithmetic and boolean operations (such as

+, =, not, etc).

To simplify the definition of the language’s operational semantics we em­

ploy the now quite common device of using a syntax for terms that is in a

“reduced” (or “A­normal”) form, with all sequential evaluation expressed via

let­expressions. For example, the general form of (left­to­right, call­by­value)

function application is coded by

t1 t2
def
= let x1=t1 in (let x2=t2 in x1 x2). (7.5)
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Syntax

t ::= terms:

v value

if v then t else t conditional

op(vi
i∈1..n) operation

v v application

v.l projection

v T type application

let {*X,x}=v in t unpacking

let x=t in t sequencing

v ::= values:

x value variable

c constant

fun x(x:T)=t:T recursive function

{li=vi
i∈1..n} record value

λX.v type abstraction

{*T,v} as {∃X,T} package value

T ::= types:

X type variable

Gnd ground type

T→T function type

{li:Ti
i∈1..n} record type

∀X.T universally quantified type

{∃X,T} existentially quantified type

Γ ::= typing contexts:

∅ empty context

Γ , x:T non­empty context

Γ , X non­empty context

Typing terms Γ ` t : T

x:T ∈ Γ

Γ ` x : T
(T­Var)

Γ ` c : Typeof (c) (T­Const)

Γ , f:T, x:T1 ` t : T2 T = T1→T2

Γ ` fun f(x:T1)=t:T2 : T
(T­Fun)

(Γ ` vi : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}
(T­Rcd)

Γ , X ` v : T X ∉ ftv(Γ)

Γ ` λX.v : ∀X.T
(T­Tabs)

Γ ` v1 : [X, T1]T T′ = {∃X, T}

Γ ` {*T1,v1} as T′ : T′
(T­Pack)

Γ ` v : Bool

Γ ` t1 : T Γ ` t2 : T

Γ ` if v then t1 else t2 : T
(T­If)

op:Gnd1,...,Gndn→Gnd

(Γ ` vi : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) : Gnd

(T­Op)

Γ ` v1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 : T2

(T­App)

Γ ` v : {li:Ti
i∈1..n}

Γ ` v.lj : Tj
(T­Proj)

Γ ` v : ∀X.T

Γ ` v T1 : [X, T1]T
(T­Tapp)

Γ , X, x:T ` t : T1

X ∉ ftv(Γ ,T1) Γ ` v : {∃X,T}

Γ ` let {*X,x}=v in t : T1

(T­Unpack)

Γ ` t1 : T1 Γ , x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2

(T­Seq)

Figure 7­1: FML syntax and typing
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As a further simplification, function abstraction and recursive function dec­

laration have been rolled into the one form fun f(x:T1) = t:T2, which corre­

sponds to the expressions

let fun f (x:T1) = t:T2 in f end in Standard ML

or let rec f (x:T1) = t:T2 in f in Ocaml.

Ordinary function abstraction can be coded as

λx:T1.t
def
= fun f(x:T1) = t:T2 (7.6)

where f does not occur freely in t (and T2 is the type of t, given f has type

T1→T2 and x has type T1). In what follows we shall use the abbreviations (7.5)

and (7.6) without further comment. We shall also use infix notation for appli­

cation of constant arithmetic and boolean operators such as +, =, etc.

7.4.1 Remark [Value­restriction]: Note that the operation λX.(−) of polymor­

phic generalization is restricted to apply only to values. This is a real re­

striction since for a non­value term t, one cannot define λX.t to be the term

let x=t in λX.x, since the latter will in general be an ill­typed term. In an ML­

like language λX.t is not yet fully evaluated if t is a non­value; and thus eval­

uation must go under type abstraction λX.(−) and work on terms at types

with free type variables. By imposing the restriction that λX.t is only well­

formed when t is a value we can restrict attention to the evaluation of closed

terms of closed type, simplifying the technical development. The restriction

does not seem to affect the expressiveness of FML in practice and is compara­

ble to the “value restriction” on let­bound polymorphism used in the 1997

revision of Standard ML (Milner et al., 1997) and in Objective Caml (Leroy,

2000). However, this restriction does have an effect on the properties of FML.

For example, with the restriction the type∀X.X contains no closed values (see

Exercise 7.7.6); whereas without the restriction there are closed values of that

type, such as λX. (fun f(x:Bool) = f x : X) true. The “emptiness” of∀X.X

plays a role in the properties explored in Example 7.7.4 and Remark 7.7.7. 2

Operational Semantics

Although we do not do so, the operational semantics of FML could be speci­

fied in the style of the Definition of Standard ML (Milner, Tofte, Harper, and

MacQueen, 1997) as a syntax­directed, inductively defined relation between

terms and values.3 Here we are interested primarily in the notion of contex­

3. That Definition uses environments assigning values to value variables. For reasons of tech­

nical convenience we eliminate the use of environments by substituting them into the term

and only considering the evaluation relation between closed terms and values.
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Frame stack syntax

S ::= frame stacks:

Id nil stack

S ◦ (x.t) stack cons

Typing frame stacks Γ ` S : T1 Ç T2

Γ ` Id : T Ç T (S­Nil)

Γ , x:T1 ` t : T2 Γ ` S : T2 Ç T3

Γ ` S ◦ (x.t) : T1 Ç T3

(S­Cons)

Primitive reductions t1 ; t2

if true then t1 else t2

; t1
(R­IfTrue)

if false then t1 else t2

; t2
(R­IfFalse)

the value of op(ci i∈1..n) is c

op(ci
i∈1..n) ; c

(R­Op)

v1 is fun f(x:T1)=t:T2

v1 v2 ; [f, v1][x, v2]t
(R­AppAbs)

{li=vi
i∈1..n}.j ; vj (R­ProjRcd)

(λX.v)T ; [X, T]v (R­TappTabs)

v is {*T1,v1} as {∃X,T}

let {*X,x}=v in t

; [X, T1][x, v1]t

(R­UnpackPack)

Termination 〈S, t〉 ↓ and t ↓

〈Id,v〉 ↓ (S­NilVal)

〈S, [x, v]t〉 ↓

〈S ◦ (x.t),v〉 ↓
(S­ConsVal)

〈S ◦ (x.t2),t1〉 ↓

〈S,let x=t1 in t2〉 ↓
(S­Seq)

t1 ; t2 〈S,t2〉 ↓

〈S,t1〉 ↓
(S­Red)

〈Id,t〉 ↓

t ↓
(Term)

Figure 7­2: FML operational semantics

tual equivalence (Definition 7.3.2) that this evaluation relation determines by

observing the results of evaluating terms in context. Because evaluation in

FML is strict and the language has a sufficiently expressive collection of con­

structs for deconstructing values, it turns out that the notion of contextual

equivalence is not affected much by the choice of what to observe of evalua­

tion. Most reasonable choices give rise to the same equivalence as the one we

adopt (see Exercise 7.5.10 below), which is based upon observing termination:

whether or not a term evaluates to some value, we care not which. So instead

of defining the relation of evaluation between terms and values, we proceed

directly to a definition of the termination relation, t ↓, for FML. This is given

in Figure 7­2, using an auxiliary notion of frame stack. (The conventions and

notations used in Figure 7­2 in connection with binding, free variables and

substitution are summarized in Figure 7­3.)

Frame stacks are finite lists of individual “evaluation frames.” They provide

a convenient syntax for the notion of evaluation context E[−] (Felleisen and

Hieb, 1992; Wright and Felleisen, 1994). Every closed term can be decomposed
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Binding constructs

let {*X,x}=v in (−)

let x=t in (−)

fun f(x:T1)=(−:T2)

λX.(−)

∀X.(−)

{∃X,(−)}

S ◦ (x.(−))

We identify expressions up to renaming of

bound value and type variables.

Notation for free variable sets

ftv(E) is the finite set of free type variables

of the expression E (a type, a term, or a

frame stack);

fv(E) is the finite set of free value variables

of an expression E (a term, or a frame stack,

but not a type, since types do not contain

occurrences of value variables).

Closed types, terms and frame stacks

A type T is closed if ftv(T) = ∅.

A term or frame stack E is closed if fv(E) =

∅ (even if ftv(E) 6= ∅).

Notation for substitution

[X, T]E denotes the result of capture­

avoiding substitution of a type T for all free

occurrences of a type variable X in E (a type,

a term, or a frame stack);

[x, v]E denotes the result of capture­

avoiding substitution of a value v for all free

occurrences of the value variable x in a term

or frame stack E.

(Note that as their name suggests, value variables

stand for unknown values—the substitution of a

non­value term for a variable makes no sense syn­

tactically, in that it may result in an ill­formed ex­

pression.)

Figure 7­3: Binding, free variables and substitution

uniquely as E[t] where the evaluation context E[−] is a context with a unique

hole (−) occurring in the place where the next step of evaluation (called a

primitive reduction in Figure 7­2), if any, will take place. With FML’s reduced

syntax, such evaluation contexts turn out to be just nested sequences of the

let­construct

E[−] = let x1=(...(let xn=(−) in tn)...) in t1.

The corresponding frame stack

S = Id ◦ (x1.t1) ◦ · · · ◦ (xn.tn)

records this sequence as a list of evaluation frames, xi.ti (with free occur­

rences of xi in ti being bound in xi.ti). Under this correspondence it can be

shown that E[t] evaluates to some value in the standard evaluation­style (or

“big­step”) structural operational semantics if and only if 〈S,t〉 ↓ holds, for

the relation 〈−,−〉↓ defined in Figure 7­2. Not only does the use of frame
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stacks enable a conveniently syntax­directed inductive definition of termina­

tion, but also frame stacks play a big role in §7.6 when defining the logical

relation that we use to establish properties of FML contextual equivalence.

7.4.2 Exercise [Recommended, ««]: Consider a relation 〈S1,t1〉 -→ 〈S2,t2〉 de­

fined by cases according to the structure of the term t1 and the frame stack

S1, as follows:

• 〈S ◦ (x.t),v〉 -→ 〈S, [x, v]t〉

• 〈S,let x=t1 in t2〉 -→ 〈S ◦ (x.t2),t1〉

• 〈S,t1〉 -→ 〈S,t2〉, if t1 ; t2.

Show that

〈S′@S,t〉 ↓ a (∃v) 〈S,t〉 -→
∗
〈Id,v〉 & 〈S′,v〉 ↓ (7.7)

where -→∗ denotes the reflexive­transitive closure of the -→ relation, and

S′@S is the frame stack obtained by appending the two lists of evaluation

frames S′ and S. Deduce that t ↓ holds if and only if there is some value v

with 〈Id,t〉 -→∗ 〈Id,v〉. 2

Typing

We will consider the termination relation only for frame stacks and terms

that are well­typed. A term t is well­typed with respect to a particular typing

context Γ if a typing judgment

Γ ` t : T (7.8)

can be derived for some type T using the rules in Figure 7­1. We identify

typing contexts Γ up to rearranging their constituent hypotheses (“X” or “x :

X”) and eliminating duplicates. Thus a typical typing context looks like

Γ = X1, . . . , Xm, x1 : T1, . . . , xn : Tn

where the type variables Xi and the value variables xj are all distinct (and

m = 0 or n = 0 is allowed). The typing judgments that are derivable from

the rules all have the property that the free type variables of T and each Tj

occur in the set {X1, . . . , Xm}, and the free value variables of t occur in the set

{x1, . . . , xn}. This is ensured by including some explicit side­conditions about

free variable occurrences in the typing rules (T­Abs) and (T­Unpack). In TAPL,

Chapters 23 and 24, such side­conditions are implicit, being subsumed by
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extra well­formedness conditions for typing judgments. Also, we have chosen

to include sufficient explicit type information in terms to ensure that for any

given Γ and t, there is at most one T for which (7.8) holds. Apart from such

minor differences, the rules in Figure 7­1 for inductively generating the valid

FML typing judgments are all quite standard.

The judgment for typing frame stacks takes the form

Γ ` S : T1 Ç T2 (7.9)

where, in terms of the evaluation context corresponding to S, T2 is the overall

type of the context, given that T1 is the type of the hole. The rules for gen­

erating this judgment are given in Figure 7­2. Unlike for terms, we have not

included explicit type information in the syntax of frame stacks; for example,

Id is not tagged with a type. However, it is not hard to see that, given Γ , S,

and T1, there is at most one T2 for which (7.9) holds. This property is enough

for our purposes, since the argument type of a frame stack will always be

supplied in any particular situation in which we use it.

7.4.3 Exercise [«, 3]: Write Γ ` 〈S,t〉 : T to mean that Γ ` S : T′ Ç T and Γ ` t :

T′ hold for some type T′. Using the relation -→ from Exercise 7.4.2, show that

if ∅ ` 〈S1,t1〉 : T and 〈S1,t1〉 -→ 〈S2,t2〉, then ∅ ` 〈S2,t2〉 : T. 2

Unwinding Recursive Functions

In what follows we will need a finiteness property of recursively defined func­

tions with respect to the termination relation. This unwinding property, as

it is called, is a syntactic analog of the fact that the denotation of a re­

cursively defined function is constructed as the least upper bound (lub) of

finite approximations obtained by successively unfolding its definition start­

ing with the bottom denotation, i.e., the totally undefined partial function.

This gives rise to the useful principle of Scott induction in denotational se­

mantics: given an admissible property of denotations, i.e., one closed under

the formation of lubs of increasing chains, to show that it holds of the deno­

tation of recursively defined data it suffices to show that it holds of bottom

and is closed under application of the function that defines the data as a

fixed point. Here we use a syntactic analog of Scott induction for recursively

defined functions, fun f(x:T1) = u:T2, in order to prove the “fundamental

property” (Lemma 7.6.17) of the logical relation constructed in §7.6.

The proof of the unwinding property that we give here is made easier by

our syntax­directed definition of termination using frame stacks. For state­

ments and proofs of similar properties see for example: Mason, Smith, and

Talcott (1996), Section 4.3, Pitts and Stark (1998), Theorem 3.2, Birkedal and

Harper (1999), Section 3.1, and Lassen (1998), Section 4.5.
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7.4.4 Theorem [Unwinding]: Given any closed recursive function value F of the

form fun f(x:T1)=u:T2, define the followings abbreviations4 :

F0
def
= fun f(x:T1) = (f x) : T2

Fn+1
def
= fun f(x:T1) = [f, Fn]u : T2

Thus F0 is a closed function value describing a function of type T1→T2 that

diverges when applied to any argument, and the Fn are obtained from this

by repeatedly substituting for the the value variable f in the body u of the

original function value F. Then for all terms t containing at most f free we

have [f, F]t ↓ if and only if (∃n) [f, Fn]t ↓. 2

Proof: By definition of the relation t ↓ in terms of the relation 〈S,t〉 ↓ (via

rule (Term) in Figure 7­2), it suffices to prove the more general property that

for all terms t and frame stacks S (containing at most f free) we have

〈[f, F]S, [f , F]t〉 ↓ a (∃n) 〈[f, Fn]S, [f , Fn]t〉 ↓ (7.10)

The proof of (7.10) is via a series of straightforward, if somewhat tedious,

inductions that we leave as an exercise. 2

7.4.5 Exercise [«««, 3]: This exercise leads you through a proof of (7.10). First

prove that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, F]S, [f , F]t〉 ↓ (7.11)

holds for all n, S and t by induction on the derivation of 〈[f , Fn]S, [f ,

Fn]t〉 ↓ from the rules in Figure 7­2. Conversely show that

〈[f, F]S, [f , F]t〉 ↓ ⇒ (∃n) 〈[f, Fn]S, [f, Fn]t〉 ↓ (7.12)

holds for all S and t, by induction on the derivation of 〈[f, F]S, [f, F]t〉 ↓

from the rules. To do this, you will first need to prove by induction on n that

〈[f, Fn]S, [f, Fn]t〉 ↓ ⇒ 〈[f, Fn+1]S, [f, Fn+1]t〉 ↓ (7.13)

holds for all n, S and t; the base case n = 0 involves yet another induction,

this time over the derivation of 〈[f, F0]S, [f , F0]t〉 ↓ from the rules. 2

4. Note that in the definition of Fn+1 , the outer binding instance of f is a dummy, since f does

not occur free in [f, Fn]u.
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7.5 Contextual Equivalence

Definition 7.3.2 gave an informal definition of the notion of contextual equiv­

alence that applies to any (typed) programming language. In giving a precise

definition of this notion for the FML language we will take the more abstract,

relational approach of Gordon (1998) and Lassen (1998) that avoids the ex­

plicit use of program contexts t[−] in favor of congruence relations. For one

thing, program contexts are an inconveniently concrete notion, because sub­

stitution of terms t′ for the hole “−” in a context t[−] to produce a term

t[t′] may involve the capture of free variables in t′ by binders in t[−]. For

example, when we replace the hole “−” in the context fun f(x:T) = f [−] by

the term f x, its free value variables are captured by the fun­binder. Con­

sequently, contexts have to be treated more concretely than terms since re­

naming their bound variables may not preserve their meaning. For example,

if we identified fun f(x:T) = f [−] with fun g(x:T) = g [−] (where f and g

are distinct value variables), then we should have to identify the results of

filling the hole with f x, that is, we should have to identify the syntactically

unequal terms fun f(x:T) = f(f x) and fun g(x:T) = g(f x). But more than

this, the abstract treatment of contextual equivalence that we use focuses at­

tention upon the key features of this kind of program equality, namely that it

is a congruence and is “adequate” for observing termination. In a nutshell, we

will define contextual equivalence to be the largest type­respecting congru­

ence relation between FML terms that is adequate for observing termination.

7.5.1 Definition: A type­respecting binary relation between FML terms is a set R

of quadruples (Γ ,t,t′,T), each consisting of a typing context, two terms and

a type satisfying Γ ` t : T and Γ ` t′ : T. Figure 7­4 defines the properties

of reflexivity, symmetry, transitivity, substitutivity, and compatibility for such

relations; R has one of these properties if it is closed under the axioms and

rules under the corresponding heading in the figure. In these figures, and

elsewhere, we write Γ ` t R t′ : T instead of (Γ ,t,t′,T) ∈ R. We say that R is

• an equivalence relation if it has the reflexivity, symmetry and transitivity

properties;

• a congruence relation if it is an equivalence relation with the substitutivity

and compatibility properties;

• adequate (for the termination relation ↓ defined in Figure 7­2) if whenever

∅ ` t R t′ : T holds, then t ↓ holds if and only if t′ ↓ does. 2

7.5.2 Definition: We will need to use the following constructions on type­res­

pecting binary relations.
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Reflexivity

Γ ` t : T

Γ ` t R t : T

Symmetry

Γ ` t R t′ : T

Γ ` t′ R t : T

Transitivity

Γ ` t R t′ : T Γ ` t′ R t′′ : T

Γ ` t R t′′ : T

Substitutivity

Γ ` v R v′ : T1 Γ , x : T1 ` t R t′ : T2

Γ ` [x, v]t R [x, v′]t′ : T2

Γ , X ` t R t′ : T

Γ ` [X, T1]t R [X, T1]t′ : [X, T1]T

Compatibility

(x:T) ∈ Γ

Γ ` x R x : T

Γ ` c R c : Typeof (c)

Γ , f:T1→T2, x:T1 ` t R t′ : T2

Γ ` fun f(x:T1)=t:T2 R

fun f(x:T1)=t
′:T2 : T1→T2

(Γ ` vi R v′i : Ti) i∈1..n

Γ ` {li=vi
i∈1..n} R {li=v

′
i
i∈1..n}

: {li:Ti
i∈1..n}

Γ , X ` v R v′ : T X ∉ ftv(Γ)

Γ ` λX.v R λX.v′ : ∀X.T

Γ ` v1 R v′1 : [X, T1]T

Γ ` {*T1,v1} as {∃X,T} R

{*T1,v
′
1} as {∃X,T} : {∃X,T}

Γ ` v R v′ : Bool

Γ ` t1 R t′1 : T Γ ` t2 R t′2 : T

Γ ` if v then t1 else t2 R

if v′ then t′1 else t
′
2 : T

op:Gnd1,...,Gndn→Gnd

(Γ ` vi R v′i : Gndi) i∈1..n

Γ ` op(vi
i∈1..n) R op(v′i

i∈1..n) : Gnd

Γ ` v1 R v′1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v′1 v
′
2 : T2

Γ ` v R v′ : {li:Ti
i∈1..n}

Γ ` v.lj R v′.lj : Tj

Γ ` v R v′ : ∀X.T

Γ ` v T1 R v′ T1 : [X, T1]T

Γ , X, x:T ` t R t′ : T1

X ∉ ftv(Γ ,T1) Γ ` v R v′ : {∃X,T}

Γ ` let {*X,x}=v in t R

let {*X,x}=v′ in t′ : T1

Γ ` t1 R t′1 : T1 Γ , x:T1 ` t2 R t′2 : T2

Γ ` let x=t1 in t2 R let x=t′1 in t′2 : T2

Figure 7­4: Properties of a type­respecting relation R between FML terms

(i) The identity relation is Id
def
= {(Γ ,t,t,T) | Γ ` t : T}.

(ii) The reciprocal of the relation R is Rop def
= {(Γ ,t′,t,T) | Γ ` t R t′ : T}.

(iii) The composition of relations R1 and R2 is

R1 ◦ R2
def
= {(Γ ,t,t′′,T) | ∃t′. Γ ` t R1 t

′ : T & Γ ` t′ R2 t
′′ : T}.
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(iv) The transitive closure of the relation R is the countable union R+
def
=⋃

i∈N Ri , where R0 = R and Ri+1 = R ◦Ri .

(v) The open extension of the relation R is denoted R◦ and consists of all

quadruples (Γ ,t,t′,T) such that ∅ ` σ(t) R σ(t′) : σ(T) holds for all

Γ ­closing substitutions σ . If Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn, then a Γ ­

closing substitution is given by a function [Xi , Ti | i = 1..m] mapping the

type variables Xi to closed types Ti and by a function [xj , vj | j = 1..n]

mapping the value variables xj to closed values vj of appropriate type,

namely satisfying ∅ ` vj : [Xi , Ti | i = 1..m]Tj .

(Note that R◦ only depends on the quadruples of the form (∅,t,t′,T) in

R.) 2

We wish to define contextual equivalence to be the largest adequate con­

gruence relation, but it is not immediately clear why a largest such relation

exists. Therefore we give a theorem rather than a definition.

7.5.3 Theorem [FML contextual equivalence, =ctx]: There exists a largest type­

respecting binary relation between FML terms that is a congruence and ade­

quate. We call it contextual equivalence and write it =ctx. 2

Proof: The proof makes use of the following series of facts, only the last of

which is not entirely straightforward to prove (see Exercise 7.5.4).

(i) The identity relation Id is an adequate congruence relation.

(ii) The collection of adequate relations is closed under taking unions.

(iii) Every compatible relation is reflexive, i.e., contains Id.

(iv) The set of all of compatible relations is closed under the operations

of composition and reciprocation; similarly for the set of all substitutive

relations and the set of all adequate relations.

(v) If the union of a non­empty family of compatible relations is transi­

tive, it is also compatible; similarly, if the union of a non­empty family of

reflexive and substitutive relations is transitive, it is also (reflexive and)

substitutive.

Let =ctx be the union of the family of relations that are adequate, compatible

and substitutive. Note that this family is non­empty by (i). By (ii), =ctx is ad­

equate. So it suffices to show that it is a congruence relation. It is certainly

reflexive by (i); and (iv) implies that it is also symmetric and transitive. So it

just remains to show that it is compatible and substitutive, and this follows

from (v), whose proof needs (iii). 2
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7.5.4 Exercise [««]: Prove properties (iii) and (v) stated in the above proof. 2

It is not easy to use either the formulation in terms of contexts in Defi­

nition 7.3.2 or the more abstract characterisation of Theorem 7.5.3 to prove

that a particular pair of terms are contextually equivalent. For example, it is

not easy to see from these characterisations that terms in the primitive reduc­

tion relation of Figure 7­2 are contextually equivalent (Corollary 7.5.8). That

this is so follows from the coincidence of =ctx with a notion of equivalence

popularized by Mason and Talcott (1991).

7.5.5 Definition [ciu­Equivalence, =ciu]: Two closed FML terms belonging to the

same (closed) type are ciu­equivalent if they have the same termination be­

havior when they are paired with any frame stack (a “use” of the terms);

the relation is extended to open terms via closing substitutions (or “closed

instantiations”—thus we arrive at an explanation of the rather cryptic name

for this equivalence).

More formally, we define =ciu to be the type­respecting relation R◦ (us­

ing the operation from Definition 7.5.2(v)), where R consists of quadruples

(∅,t,t′,T) satisfying ∅ ` t : T, ∅ ` t′ : T, and ∀S. 〈S,t〉 ↓ a 〈S,t′〉 ↓. 2

7.5.6 Lemma: For any frame stack S and term t, define a term S[t] by induction of

the length of the stack S as follows:

Id[t]
def
= t

S ◦ (x.t′)[t]
def
= S[let x=t in t′]


 (7.14)

Then 〈S,t〉 ↓ if and only if S[t]↓ (i.e., 〈Id, S[t]〉 ↓). 2

Proof: This is proved by induction on the length of S. The base case S = Id

is trivial. The induction step follows from the fact that 〈S,let x=t in t′〉 ↓

holds if and only if it was derived using rule (S­Seq) in Figure 7­4, if and only

if 〈S ◦ (x.t′),t〉 ↓ holds. 2

7.5.7 Theorem [CIU Theorem for FML]: The contextual and ciu­equivalence rela­

tions coincide. 2

Proof: We first show that =ctx is contained in =ciu. Suppose

Γ ` t =ctx t
′ : T. (7.15)

Since=ctx satisfies the substitutivity and reflexivity properties from Figure 7­4,

it follows that

∅ ` σ(t) =ctx σ(t
′) : σ(T) (7.16)
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for any Γ ­closing substitution σ . For any frame stack S, since =ctx satisfies

the compatibility (and reflexivity) properties from Figure 7­4, from (7.16) we

deduce that ∅ ` S[σ(t)] =ctx S[σ(t′)] : σ(T) (using the notation of (7.14)).

Since =ctx is adequate, this means that S[σ(t)]↓ if and only if S[σ(t′)]↓;

hence by Lemma 7.5.6, 〈S,σ(t)〉 ↓ if and only if 〈S,σ(t′)〉 ↓. As this holds for

all σ and S, we have Γ ` t =ciu t
′ : T, as required.

To complete the proof of the theorem we have to show conversely that

=ciu is contained in =ctx. We can deduce this as a corollary of a stronger

characterisation of =ctx in terms of logical relations (Theorem 7.6.25) that we

establish later; so we postpone the rest of this proof until then. 2

7.5.8 Corollary [Conversions]: The following are valid contextual equivalences:

(i) Γ ` if true then t1 else t2 =ctx t1 : T and

Γ ` if false then t1 else t2 =ctx t2 : T, where Γ ` ti : T for i = 1,2.

(ii) Γ ` op(ci
i∈1..n) =ctx c : Gnd, where c is the value of op(ci i∈1..n) and

Typeof (c) = Gnd.

(iii) Γ ` v1 v2 =ctx [f, v1][x, v2]t : T2,

where v1 = fun f(x:T1)=t:T2.

(iv) Γ ` {li=vi
i∈1..n}.j =ctx vj : Tj ,

where Γ ` {li=vi
i∈1..n} : {li:Ti

i∈1..n}.

(v) Γ ` (λX.v)T1 =ctx [X, T1]v : [X, T1]T, where Γ ` v : ∀X.T.

(vi) Γ ` let {*X,x}=({*T1,v1} as {∃X,T}) in t =ctx [X , T1][x , v1]t :

T2, where Γ , X, x:T ` t : T2 with X ∉ ftv(Γ ,T2).

(vii) Γ ` let x=v in t =ctx [x , v]t : T2, where Γ ` v : T1 and Γ , x:T1 `

t : T2.

(viii) Γ ` let x1=t1 in (let x2=t2 in t) =ctx

let x2=(let x1=t1 in t2) in t : T, where Γ ` t1 : T1,

Γ , x1:T1 ` t2 : T2 and Γ , x2:T2 ` t : T. 2

Proof: These are all ciu­equivalences, so we can just apply Theorem 7.5.7 (us­

ing the difficult half of the theorem whose proof we have postponed to §7.6!).

The ciu­equivalences all follow easily from the definition of the termination

relation (Figure 7­2) except for the last one, where one can apply property (7.7)

from Exercise 7.4.2 to reduce proving (viii) for =ciu to the special case when

t1 is a value: see the following exercise. 2
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7.5.9 Exercise [«, 3]: Given

∅ ` t1 : T1

x1:T1 ` t2 : T2

x2:T2 ` t : T

use property (7.7) to show for all frame stacks S that

〈S ◦ (x1.let x2=t2 in t),t1〉 ↓ iff 〈S ◦ (x2.t) ◦ (x1.t2),t1〉 ↓.

Deduce part (viii) of Corollary 7.5.8. 2

7.5.10 Exercise [««]: Recall from Definition 7.5.1 the notion of an adequate type­

respecting binary relation. Let us call a type­respecting binary relation R

true­adequate if, whenever ∅ ` t R t′ : Bool holds, 〈Id,t〉 -→∗ 〈Id,true〉

holds if and only if 〈Id,t′〉 -→∗ 〈Id,true〉 does. Here -→∗ is the relation de­

fined in Exercise 7.4.2. One can adapt the proof of Theorem 7.5.3 to show that

there is a largest type­respecting binary relation =true
ctx between FML terms that

is a congruence and true­adequate. Show that =true
ctx coincides with contex­

tual equivalence, =ctx. 2

7.6 An Operationally Based Logical Relation

We now have a precise definition of contextual equivalence for FML terms. Be­

fore showing that the Extensionality Principle 7.3.6 holds for existential types

in FML, we need a precise definition of the action of types on term­relations,

r , T[r], mentioned in the principle. That is the topic of this section. We will

end up with a characterisation of =ctx in terms of a logical relation, yielding

several useful extensionality properties of contextual equivalence.

7.6.1 Notation: Let Typ denote the set of closed FML types. Given T ∈ Typ, let

• Term(T) denote the set of closed terms of type T, i.e., those terms t for

which ∅ ` t : T holds;

• Val(T) denote the subset of Term(T) whose elements are values; and

• Stack(T) denote the set of closed frame stacks whose argument type is T,

i.e., those frame stacks S for which ∅ ` S : T Ç T′ for some T′ ∈ Typ.

Given T,T′ ∈ Typ, let

• TRel(T,T′) denote the set of all subsets of Term(T) × Term(T′); we call

its elements term­relations;
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• VRel(T,T′) denote the set of all subsets of Val(T) × Val(T′); we call its

elements value­relations;

• SRel(T,T′) denote the the set of all subsets of Stack(T) × Stack(T′); we

call its elements stack­relations. 2

Note that every value­relation is also a term­relation (since values are par­

ticular sorts of term): VRel(T,T′) ⊆ TRel(T,T′). On the other hand we can

obtain a value­relation from a term­relation just by restricting attention to

values: given r ∈ TRel(T,T′), define r v ∈ VRel(T,T′) by

r v def
= {(v,v′) ∈ Val(T)× Val(T′) | (v,v′) ∈ r}. (7.17)

We will be particularly interested in term­relations r that are indistinguish­

able, as far as termination properties are concerned, from their value restric­

tions, r v . Definition 7.6.3 makes this precise, using a Galois connection be­

tween term­relations and stack­relations. The definition may appear to be

rather mysterious; its nature will emerge as we develop the action of types

on term­relations and its properties. First we recall for the reader what is

meant in general by a “Galois connection.”

7.6.2 Definition: A Galois connection between partially ordered sets (P ,≤P) and

(Q,≤Q) is specified by a pair of functions f : P → Q and g : Q → P satisfying

q ≤Q f (p) if and only if p ≤P g(q), for all p ∈ P and q ∈ Q. 2

7.6.3 Definition [Closed and valuable term­relations]: Let T ∈ Typ and T′ ∈

Typ be closed types. Given a term­relation r ∈ TRel(T,T′), define a stack­

relation r s ∈ SRel(T,T′) by

(S, S′) ∈ r s if and only if for all (t,t′) ∈ r , 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Conversely, given a stack­relation s ∈ SRel(T,T′), define a term­relation st ∈

TRel(T,T′) by

(t,t′) ∈ st if and only if for all (S, S′) ∈ s, 〈S,t〉 ↓ holds if and only if

〈S′,t′〉 ↓ does.

Call a term­relation r ∈ TRel(T,T′) closed if it satisfies r = r s t and valuable if

it satisfies r = r v s t . 2

7.6.4 Note: The operator (−)s t is denoted (−)>> in Pitts (1998; 2000). 2
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7.6.5 Lemma: The operations (−)s and (−)t for turning term­relations into stack­

relations and vice versa, form a Galois connection:

s ⊆ r s if and only if r ⊆ st . (7.18)

Hence the operator (−)s t on term­relations is monotone (r1 ⊆ r2 implies

(r1)s t ⊆ (r2)s t ), inflationary (r ⊆ r s t ), and idempotent ((r s t)s t = r s t ). 2

Proof: If s ⊆ r s , then for any (t,t′) ∈ r we have for all (S, S′) ∈ s that

(S, S′) ∈ r s , so 〈S,t〉 ↓ iff 〈S′,t′〉 ↓; hence (t,t′) ∈ st . Thus s ⊆ r s implies

r ⊆ st . The converse implication holds by a similar argument. Once we have

(7.18), the other properties follow by standard arguments true of any Galois

connection, which we give in case the reader has not seen them before.

Thus for any term­relation r , since r s ⊆ r s , from (7.18) we conclude that

r ⊆ r s t ; so (−)s t is inflationary (and symmetrically, so is the operator (−)t s

on stack­relations).

Now we can deduce that (−)s and (−)t are order­reversing. For if r1 ⊆ r2,

then r1 ⊆ r2 ⊆ r
s t
2 , so by (7.18), r s

2 ⊆ r
s
1. Similarly, s1 ⊆ s2 implies st

2 ⊆ s
t
1.

Hence (−)s t is monotone (and so is (−)t s).

Finally, for idempotence, in view of the inflationary property we just have to

show (r s t)s t ⊆ r s t . But applying (7.18) to r s t ⊆ r s t we get r s ⊆ (r s t)s ; applying

the order­reversing operator (−)t to this yields (r s t)s t ⊆ r s t , as required. 2

7.6.6 Corollary: Every valuable term­relation is—in particular—a closed term­

relation. 2

Proof: Note that because (−)s t is idempotent (by the above lemma), any

term­relation of the form r s t is closed. Thus valuable term­relations (ones

satisfying r = r v s t ) are in particular closed. 2

The following exercise establishes a supply of valuable term­relations that

we will need later.

7.6.7 Exercise [Recommended, ««]: Given any value­relation r ∈ VRel(T,T′), show

that r s t is valuable, i.e., satisfies r s t = (r s t)v s t . 2

Closed term­relations (and hence also valuable term­relations) have excel­

lent “admissibility” properties that we record in the following lemma.

7.6.8 Lemma: If r ∈ TRel(T,T′) satisfies r = r s t (and in particular if it is valuable),

then it has the following properties.

Equivalence­respecting If (t,t′) ∈ r ,∅ ` t =ciu t1 : T, and∅ ` t′ =ciu t
′
1 :

T, then (t1,t
′
1) ∈ r .
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Admissibility Given recursive function values F
def
= fun f(x:T1)=u:T2 and

F′
def
= fun f(x:T1)=u

′:T2, let Fn and F′n (n = 0,1, . . .) be their “unwindings,”

as in Theorem 7.4.4. If ([x, Fn]t, [x, F′n]t
′) ∈ r for all n = 0,1, . . ., then

([x, F]t, [x, F′]t′) ∈ r . 2

Proof: Suppose (t,t′) ∈ r , ∅ ` t =ciu t1 : T and ∅ ` t′ =ciu t′1 : T. To see

that (t1,t
′
1) ∈ r , since r = (r s)t , it suffices to show for all (S, S′) ∈ r s that

〈S,t1〉 ↓ iff 〈S′,t′1〉 ↓. But

〈S,t1〉 ↓ iff 〈S,t〉 ↓ (since ∅ ` t =ciu t1 : T)

iff 〈S′,t′〉 ↓ (since (S, S′) ∈ r s and (t,t′) ∈ r )

iff 〈S′,t′1〉 ↓ (since ∅ ` t′ =ciu t
′
1 : T).

For the Admissibility property we apply the Unwinding Theorem. Suppose

([x, Fn]t, [x, F′n]t
′) ∈ r holds for all n = 0,1, . . .. Then for any (S, S′) ∈ r s

we have

〈S, [x, F]t〉 ↓

iff for some n, 〈S, [x, Fn]t〉 ↓ (by Theorem 7.4.4)

iff for some n, 〈S′, [x, F′n]t
′〉 ↓ (since (S, S′) ∈ r s and

([x, Fn]t, [x, F′n]t
′) ∈ r )

iff 〈S, [x, F′]t′〉 ↓ (by Theorem 7.4.4 again)

and therefore ([x, F]t, [x, F′]t′) ∈ (r s)t ; but r s t = r . 2

7.6.9 Definition [Action of types on term­relations]: The action of types on

term­relations takes the following form: if T(X) is a type whose free type

variables lie among the list X = X1, . . . ,Xn, then given a corresponding list

of term relations r1 ∈ TRel(T1,T
′
1), . . . , rn ∈ TRel(Tn,T′n), we define a term

relation T[r] ∈ TRel([X , T]T, [X , T′]T). The definition is by induction on

the structure of T as follows.

Xi[r]
def
= (ri)

v s t

Gnd[r]
def
= (IdGnd)

s t

(T1→T2)[r]
def
= fun(T1[r],T2[r])

s t

{li:Ti
i∈1..n}[r]

def
= {li=Ti[r]

i∈1..n}s t

(∀X.T)[r]
def
= (λr.T[r , r])s t

{∃X,T}[r]
def
= {∃r,T[r , r]}s t



270 7 Typed Operational Reasoning

IdGnd ∈ VRel(Gnd,Gnd)

is {(c,c) | Typeof (c) = Gnd}.

fun(r1, r2) ∈ VRel(T1→T2,T
′
1→T

′
2),

given r1 ∈ TRel(T1,T
′
1) and r2 ∈ TRel(T2,T

′
2),

is defined by:

(v,v′) ∈ fun(r1, r2) if and only if for all

(v1,v
′
1) ∈ (r1)

v , it is the case that

(v v1,v′ v
′
1) ∈ r2.

{li=ri i∈1..n} ∈ VRel({li:Ti i∈1..n},

{li:T
′
i
i∈1..n})

given (ri ∈ TRel(Ti,T
′
i)

i∈1..n),

is defined by:

(v,v′) ∈ {li=ri i∈1..n} if and only if for all

i ∈ 1..n, it is the case that

(v.li ,v′.li) ∈ ri .

λr.R(r) ∈ VRel(∀X.T,∀X.T′),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ λr.R(r) if and only if for all

T1,T
′
1 ∈ Typ and all r ∈ TRel(T1,T

′
1), it

is the case that (v T1,v′ T
′
1) ∈ R(r).

{∃r,R(r)} ∈ VRel({∃X,T},{∃X,T′}),

given R(r) ∈ TRel([X , T1]T, [X , T′1]T
′)) for

r ∈ TRel(T1,T
′
1) and T1,T

′
1 ∈ Typ,

is defined by:

(v,v′) ∈ {∃r,R(r)} if and only if there

exist T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1) and

(v1,v
′
1) ∈ R(r) with

v = {*T1,v1} as {∃X,T} and

v′ = {*T′1,v
′
1} as {∃X,T′}.

Figure 7­5: Type­directed constructions on term­relations

In addition to the operations on term­, value­ and stack­relations given in

Definition 7.6.3, these definitions make use of the operations for constructing

value­relations from term­relations given in Figure 7­5. 2

We can use the action of types on term­relations to define a type­respecting

binary relation between open terms (in the sense of Definition 7.5.1) by in­

sisting that if we substitute related terms for the free value variables, the re­

sulting terms are still related. This “mapping related things to related things”

property is the common characteristic of the wide variety of constructs called

logical relations that have arisen since the seminal work of Plotkin (1973) and

Statman (1985) concerning simply typed λ­calculus; see also Chapter 6.

7.6.10 Definition [Logical relation, ∆]: Given Γ ` t : T and Γ ` t′ : T, with

Γ = X1, . . . ,Xm, x1 : T1, . . . ,xn : Tn say, we write Γ ` t ∆ t′ : T to mean that

for all Γ ­closing substitutions σ,σ ′ (cf. Definition 7.5.2(v)) and all families of

term­relations r = (ri ∈ TRel(σ(Xi), σ ′(Xi)) i∈1..m), if (σ(xj), σ ′(xj)) ∈ Tj[r]v

holds for each j = 1, . . . , n, then (σ(t), σ ′(t′)) ∈ T[r]. 2

7.6.11 Remark: Since it is far from straightforward, the form of Definitions 7.6.9

and 7.6.10 deserves some explanation. These definitions embody certain ex­
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tensionality and parametricity properties (see §7.7 and Theorem 7.7.8) that

we wish to show hold for FML contextual equivalence: eventually we show

that the above logical relation ∆ coincides with contextual equivalence (Theo­

rem 7.6.25). To get that coincidence we have to formulate the definition of ∆

so that it satisfies the crucial property of Lemma 7.6.17 below (the so­called

fundamental property of the logical relation) and is adequate (Lemma 7.6.24).

The definition of the action of types on term­relations in Definition 7.6.9 is

carefully formulated to ensure these properties hold.

First of all, note the use of closing substitutions to reduce the logical re­

lation for open terms to that for closed ones. This builds in the “instantia­

tion” aspect of ciu­equivalence that we wish to prove of contextual equiva­

lence. (It also means that the logical relation has the “monotonicity” prop­

ertymonotonicity property of logical relations considered in Chapter 6.)

Secondly, we want T[r] to always be a closed term­relation, because then it

has the equivalence­respecting and admissibility properties noted in Lemma

7.6.8. This accounts for the use of (−)s t in the definition. The (−)s and (−)t

operators build into the logical relation a delicate interplay between terms

and frame stacks. Of course this relies on the formulation of the operational

semantics of FML in §7­3: although more traditional “big­step” or “small­

step” operational semantics lead to the same termination relation (cf. Exer­

cise 7.4.2), the pairing between frame stacks and terms defined in Figure 7­2

is ideal for our purposes.

Lastly, the call­by­value nature of FML dictates that relational parametric­

ity properties of polymorphic types should be with respect to term­relations

that are valuable; but instead of letting r range over such relations in the

definition of (∀X.T)[r] and {∃X,T}[r] we have used an equivalent formula­

tion in which r ranges over all term­relations (of appropriate type), but type

variables X are interpreted using the closure of the value­restriction opera­

tor (−)v : for in fact as r ranges over all term­relations, r v s t ranges over all

valuable term­relations. 2

The rest of this section is devoted to showing that contextual equivalence

and ciu­equivalence coincide with the logical relation.

7.6.12 Lemma: Each of the term relations T[r] defined in Definition 7.6.9 is valuable,

i.e., satisfies T[r] = T[r]v s t , and hence in particular by Corollary 7.6.6 is

closed. 2

Proof: It is immediate from the definition that each T[r] is of the form r s t

for some value­relation r ; so just apply Exercise 7.6.7. 2

The following lemma helps with calculations involving the action on term­

relations of function types. We give its proof in detail since it typifies the kind
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of reasoning needed when working with the Galois connection given by the

(−)s and (−)t operators. (For related properties for record and ∀­types, see

Exercise 7.6.14.)

7.6.13 Lemma: The operation fun(−,−) from Definition 7.6.9(ii) satisfies

fun(r1, (r2)
s t)s t v = fun(r1, (r2)

s t) (7.19)

fun((r1)
v s t , (r2)

s t) = fun(r1, (r2)
s t). (7.20)

Proof: To prove (7.19), first note that since (−)s t is inflationary (Lemma 7.6.5)

we have fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t ; and since fun(r1, (r2)s t) is a value­

relation, it follows that fun(r1, (r2)s t) ⊆ fun(r1, (r2)s t)s t v . For the reverse

inclusion it suffices to prove

fun(r1, (r2)
s t)s t ⊆ fun(r1, (r2)

s t) (7.21)

and then apply (−)v to both sides (noting that fun(r1, (r2)s t), being a value­

relation, is equal to fun(r1, (r2)s t)v ). For (7.21) we use the following simple

property of the termination relation (Figure 7­2) with respect to application:

〈S ◦ (f.f v1),v〉 ↓ a 〈S,v v1〉 ↓

and hence

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (f.f v1),v〉 ↓a 〈S′ ◦ (f.f v′1),v
′〉 ↓) (7.22)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then we have (v v1,v′ v
′
1) ∈

(r s
2)

t by definition of the fun(−,−) operation on term­relations (Figure 7­5).

So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.22)

〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓.

Since this holds for all (v,v′) ∈ fun(r1, (r2)s t), we deduce that

(S, S′) ∈ (r2)
s & (v1,v

′
1) ∈ (r1)

v ⇒

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s.

So for any (S, S′) ∈ (r2)s and (v1,v
′
1) ∈ (r1)

v , since

(S ◦ (f.f v1), S
′ ◦ (f.f v′1)) ∈ fun(r1, (r2)

s t)s



7.6 An Operationally Based Logical Relation 273

it follows that if

(v,v′) ∈ fun(r1, (r2)
s t)s t (7.23)

then 〈S ◦ (f.f v1),v〉 ↓ a 〈S′ ◦ (f.f v′1),v
′〉 ↓, and hence by (7.22) it fol­

lows that 〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s ,

it follows that (v v1,v′ v
′
1) ∈ (r2)

s t whenever (v1,v
′
1) ∈ (r1)

v . So (v,v′) ∈

fun(r1, (r2)s t) whenever (7.23) holds; thus we have proved the inclusion in

(7.21), as required.

Turning to the proof of (7.20), first note that since since (−)s t is inflation­

ary, we have (r1)v ⊆ (r1)v s t . So since fun(−,−) is clearly order­reversing

in its first argument, we have fun((r1)v s t , (r2)s t) ⊆ fun((r1)v , (r2)s t); and

fun((r1)v , (r2)s t) = fun(r1, (r2)s t), because fun(−,−) only depends upon the

values related by its first argument. Thus to prove (7.20), we just have to show

fun(r1, (r2)
s t) ⊆ fun((r1)

v s t , (r2)
s t). (7.24)

For this we use the following fact about termination

〈S ◦ (x.v x),v1〉 ↓a 〈S,v v1〉 ↓

which is immediate from the definition in Figure 7­2. From this it follows that

(〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓) a

(〈S ◦ (x.v x),v1〉 ↓a 〈S′ ◦ (x.v′ x),v′1〉 ↓) (7.25)

If (v,v′) ∈ fun(r1, (r2)s t) and (v1,v
′
1) ∈ (r1)

v , then by definition of fun(−,−)

we have (v v1,v′ v
′
1) ∈ (r2)

s t . So if (S, S′) ∈ (r2)s , then

〈S,v v1〉 ↓ a 〈S′,v′ v′1〉 ↓

and hence by (7.25) we have

〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓.

Since this holds for all (v1,v
′
1) ∈ (r1)

v , we deduce that

(S, S′) ∈ (r2)
s & (v,v′) ∈ fun(r1, (r2)

s t) ⇒

(S ◦ (x.v x), S′ ◦ (x.v′ x)) ∈ (r1)
v s.

So for any (S, S′) ∈ (r2)s and (v,v′) ∈ fun(r1, (r2)s t), since (S ◦ (x.v x), S′ ◦

(x.v′ x)) ∈ (r1)v s , it follows for any (v1,v
′
1) ∈ ((r1)

v s t)v ⊆ ((r1)v s)t that

we have 〈S ◦ (x.v x),v1〉 ↓ a 〈S′ ◦ (x.v′ x),v′1〉 ↓, and hence by (7.25) that

〈S,v v1〉 ↓a 〈S′,v′ v′1〉 ↓. Since this holds for all (S, S′) ∈ (r2)s , it follows that

(v v1,v′ v
′
1) ∈ (r2)

s t . Hence (v,v′) ∈ fun((r1)v s t , (r2)s t) whenever (v,v′) ∈

fun(r1, (r2)s t), as required for (7.24). 2
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7.6.14 Exercise [Recommended, «]: Show that constructions (iii) and (iv) in Defini­

tion 7.6.9 satisfy

{li=(ri)
s t i∈1..n}s t v = {li=(ri)

s t i∈1..n} (7.26)

(λr.R(r)s t)s t v = λr.R(r)s t . (7.27)

(Cf. the proof of Lemma 7.6.13.) 2

7.6.15 Lemma: For all ground types Gnd, (IdGnd)s t v = IdGnd. 2

Proof: Since (−)s t is idempotent (Lemma 7.6.5), we have IdGnd ⊆ (IdGnd)s t ;

and since IdGnd is a value­relation it follows that IdGnd ⊆ (IdGnd)s t v . To prove

the reverse inclusion, for each constant c of type Gnd consider

diverge
def
= (fun f(b:Bool) = f b : Bool)true

Sc
def
= Id ◦ (x. if x=c then true else diverge).

Note that for all constants c′ of type Gnd

〈Sc,c
′〉 ↓ a c = c′. (7.28)

Furthermore, since (c′,c′′) ∈ IdGnd iff c′ = c′′, we have that (Sc, Sc) ∈ (IdGnd)s ;

so if the constants c and c′ satisfy (c,c′) ∈ (IdGnd)s t , then we have 〈Sc,c〉 ↓a

〈Sc,c′〉 ↓. So by (7.28), (c,c′) ∈ (IdGnd)s t implies c = c′; thus (IdGnd)s t v ⊆

IdGnd. 2

7.6.16 Lemma: The action of types on term­relations of Definition 7.6.9 has the fol­

lowing substitution property. For any types T and T′ with ftv(T) ⊆ X,X and

ftv(T′) ⊆ X, it is the case that ([X, T′]T)[r] = T[T′[r], r]. 2

Proof: This follows by induction on the structure of the type T; for the base

case when T = X, use Lemma 7.6.12. 2

7.6.17 Lemma [Fundamental property of the logical relation]: The logical re­

lation ∆ of Definition 7.6.10 has the substitutivity and compatibility proper­

ties defined in Figure 7­4. 2

Proof: The first substitutivity property in Figure 7­4 (closure under substi­

tuting values for value variables) holds for ∆ because of the way it is de­

fined in terms of closing substitutions. The second substitutivity property

(closure under substituting types for types variables) holds for ∆ because of

Lemma 7.6.16.
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Now consider the compatibility properties given in Figure 7­4. There is one

for each clause in the grammar of FML terms and values (Figure 7­1). We con­

sider each in turn, giving the details in some cases and setting the others as

exercises (with solutions).

Value variables: This case is immediate from the definition of ∆ in Defini­

tion 7.6.10.

Constants: We have to show for each constant c, with Typeof (c) = Gnd

say, that (c,c) ∈ Gnd[r] = (IdGnd)s t . But by definition of IdGnd (Figure 7­5),

(c,c) ∈ IdGnd; and IdGnd ⊆ (IdGnd)s t by Lemma 7.6.5.

Recursive functions: Using property (7.19) and the fact that each T[r] is

valuable and hence closed (Lemma 7.6.12), the compatibility property for re­

cursive functions reduces to proving the property in Exercise 7.6.18.

Record values: This case follows from the property in Exercise 7.6.19.

Type abstractions: This case follows from the property in Exercise 7.6.20.

Package values: This case follows easily from the definition of {∃r,R(r)}

in Figure 7­5, using Lemma 7.6.16.

Conditionals: This case follows from the property in Exercise 7.6.21.

Operations: In view of Lemma 7.6.15, this compatibility property follows

once we prove (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t for any (suitably typed)

constants ci and operator op. But if the value of op(ci
i∈1..n) is the constant c

say, then for any S

〈S,op(ci
i∈1..n)〉 ↓ a 〈S,c〉 ↓.

Hence for any (S, S′) ∈ (IdGnd′)s (where Gnd′ = Typeof (c)), we have

〈S,op(ci
i∈1..n)〉 ↓a 〈S,c〉 ↓

a 〈S′,c〉 ↓ (since (c,c) ∈ IdGnd′ )

a 〈S′,op(ci
i∈1..n)〉 ↓.

So we do indeed have (op(ci i∈1..n),op(ci i∈1..n)) ∈ (IdGnd)s t .

Applications: This case amounts to proving that if recursive function values

v and v′ satisfy (v,v′) ∈ fun(r1, r2)s t for some closed term­relations r1 and

r2, then for any (v1,v
′
1) ∈ r1 it is the case that (v v1,v′ v

′
1) ∈ r2. But this

property follows immediately from the definition of fun(−,−) using the first

part of Lemma 7.6.13: for

(v,v′) ∈ fun(r1, r2)
s t v

= fun(r1, (r2)
s t)s t v (since r2 is closed)

= fun(r1, (r2)
s t) (by (7.19))

= fun(r1, r2) (since r2 is closed).
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Projections: This case is similar to the previous one, but using property

(7.26) from Exercise 7.6.14 rather than (7.19).

Type applications: This case is similar to the previous one, using property

(7.27) from Exercise 7.6.14.

Unpacking: This case follows from the property in Exercise 7.6.22.

Sequencing: This case follows from the property in Exercise 7.6.23. 2

7.6.18 Exercise [Recommended, «««]: Suppose

F
def
= fun f(x:T1)=t:T2 ∈ Val(T1→T2)

F′
def
= fun f(x:T′1)=t

′:T′2 ∈ Val(T′1→T
′
2)

r1 ∈ TRel(T1,T
′
1)

r2 ∈ TRel(T2,T
′
2)

satisfy r2 = (r2)s t and

([f, v][x, v1]t, [f, v′][x, v′1]t
′) ∈ r2,

for all (v,v′) ∈ fun(r1, r2) and (v1,v
′
1) ∈ (r1)

v .

(7.29)

Use the admissibility property of valuable term­relations established in Lem­

ma 7.6.8 to show that (F,F′) ∈ fun(r1, r2). 2

7.6.19 Exercise [««]: Suppose for i ∈ 1..n that vi ∈ Val(Ti), v
′
i ∈ Val(T′i) and ri ∈

TRel(Ti,T
′
i) with ri = (ri)s t . Putting

v
def
= {li=vi

i∈1..n} ∈ Val({li:Ti
i∈1..n})

v′
def
= {li=v

′
i
i∈1..n} ∈ Val({li:T

′
i
i∈1..n})

show that if (vi ,v
′
i) ∈ ri for i ∈ 1..n, then (v,v′) is in the value­relation

{li=ri i∈1..n} defined in Figure 7­5. 2

7.6.20 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r) in

TRel([X , T1]T, [X , T′1]T
′)) (i.e., R(r) = R(r)s t ). Show that if the values v

and v′ satisfy

X ` v : T

X ` v′ : T′

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ([X, T1]v, [X, T′1]v

′) ∈ R(r)

then (λX.v, λX.v′) is in the value­relation λr.R(r) defined in Figure 7­5. 2
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7.6.21 Exercise [««]: Suppose (v,v′) ∈ (IdBool)s t and (t1,t
′
1), (t2,t

′
2) ∈ r , where

r ∈ TRel(T,T′) is closed (i.e., r = (r)s t ). Show that

(if v then t1 else t2,if v′ then t′1 else t′2)

is in r . 2

7.6.22 Exercise [««]: Let T and T′ be types with at most X free. For each T1,T
′
1 ∈ Typ

and r1 ∈ TRel(T1,T
′
1) suppose we are given a closed term­relation R(r1) =

R(r1)s t in TRel([X , T1]T, [X , T′1]T
′)). Suppose we are also given a closed

term­relation r2 = (r2)s t ∈ TRel(T2,T
′
2) for some closed types T2,T

′
2 ∈ Typ.

Show that if the terms t,t′ satisfy

X, x : T ` t : T2

X, x : T′ ` t′ : T′2

∀T1,T
′
1 ∈ Typ, r1 ∈ TRel(T1,T

′
1), (v1,v

′
1) ∈ (r1)

v .

([X, T1][x, v1]t, [X, T1][x, v1]t) ∈ r2

then whenever (v,v′) ∈ {∃r1,R(r1)}s t v , it is also the case that

(let {*X,x}=v in t,let {*X,x}=v′ in t′)

is in r2. 2

7.6.23 Exercise [««]: Suppose we are given r1 ∈ TRel(T1,T
′
1), r2 ∈ TRel(T2,T

′
2) with

r1 valuable (i.e., r1 = (r1)v s t ) and r2 closed (i.e., r2 = (r2)s t ). Show that if the

terms t2,t
′
2 satisfy

x : T1 ` t2 : T2

x : T′1 ` t′2 : T′2

∀(v1,v
′
1) ∈ (r1)

v . ([x, v1]t2, [x, v′1]t
′
2) ∈ r2

then whenever (t1,t
′
1) ∈ r1, it is also the case that

(let x=t1 in t2,let x=t
′
1 in t′2)

is in r2. 2

7.6.24 Lemma [Adequacy]: The logical relation ∆ is adequate (Definition 7.5.1). 2

Proof: Suppose ∅ ` t ∆ t′ : T; we have to show that t ↓ holds iff t′ ↓ does,

or equivalently that

〈Id,t〉 ↓ iff 〈Id,t′〉 ↓. (7.30)
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Unraveling Definition 7.6.10, the assumption that the closed terms t and t′

of closed type T are ∆­related means that (t,t′) ∈ T[], the latter being the

action of the type T on the empty list of term­relations. By Lemma 7.6.12, T[]

is valuable; so (t,t′) ∈ T[]v s t . Hence to prove (7.30), it suffices to show that

(Id, Id) ∈ (T[]v)s ; but for any (v,v′) ∈ T[]v ,

〈Id,v〉 ↓ iff 〈Id,v′〉 ↓

holds trivially by axiom (S­NilVal) in Figure 7­2. 2

We are finally able to put all the pieces together and prove the main result

of this section. At the same time we complete the proof of Theorem 7.5.7.

7.6.25 Theorem [=ctx equals ∆ equals =ciu]: FML contextual equivalence, =ctx, (as

defined in Theorem 7.5.3) coincides with the logical relation ∆ of Defini­

tion 7.6.10 and with ciu­equivalence, =ciu (Definition 7.5.5): Γ ` t =ctx t
′ : T

holds if and only if Γ ` t ∆ t′ : T does, if and only if Γ ` t =ciu t
′ : T does. 2

Proof: It suffices to show that the following chain of inclusions holds:

=ctx

(1)
⊆ =ciu

(3)
⊆ ∆

(2)
⊆ =ctx.

(1) This is the half of Theorem 7.5.7 that we have already proved in §7.5.

(2) We have not yet shown that ∆ is an equivalence relation; and in fact we

will only deduce this once we have shown that it coincides with =ctx and

=ciu (which are easily seen to be equivalence relations). However, we have

shown that ∆ is compatible, substitutive and adequate (Lemmas 7.6.17 and

7.6.24). In the proof of Theorem 7.5.3 we constructed =ctx as the union of

all such type­respecting relations, without regard to whether they were

also equivalence relations; therefore ∆ is contained in =ctx.

(3) Noting how =ciu and ∆ are defined on open terms via substitutions, we

can combine the first part of Lemma 7.6.8 with Lemma 7.6.12 to give

Γ ` t =ciu t
′ : T & Γ ` t′ ∆ t′′ : T ⇒ Γ ` t ∆ t′′ : T. (7.31)

We noted in the proof of Theorem 7.5.3 that every compatible term­relation

is reflexive. (This is easily proved by induction on the structure of terms.)

So since ∆ is compatible (Lemma 7.6.17) it is in particular reflexive. So

we can take t′ = t′′ in (7.31) to deduce that Γ ` t =ctx t′ : T implies

Γ ` t ∆ t′ : T. 2
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7.7 Operational Extensionality

In this section we develop some of the consequences of Theorem 7.6.25.

Now that we know that contextual equivalence coincides with ciu­equivalence

(Theorem 7.5.7), when giving general properties of =ctx we restrict attention

to closed terms of closed type where possible, since the corresponding prop­

erty for open terms can be obtained via closing substitutions.

7.7.1 Theorem [Extensionality for values]: We now give extensionality princi­

ples for the various types of value; for package values, the principle is a for­

malization of the final one discussed in the Introduction (Principle 7.3.6).

1. Constants: Given constants c, c′ of the same ground type, Gnd say, ∅ `

c =ctx c
′ : Gnd holds if and only if c = c′.

2. Functions: Given f:T1→T2, x:T1 ` t : T2 and f:T1→T2, x:T1 ` t′ : T2,

writing v and v′ for the recursive function values fun f(x:T1)=t:T2 and

fun f(x:T1)=t
′:T2 respectively, then ∅ ` v =ctx v′ : T1→T2 if and only

if for all ∅ ` v1 : T1, it is the case that ∅ ` [f , v][x , v1]t =ctx [f ,

v′][x, v1]t′ : T2.

3. Records: Given values ∅ ` vi : Ti and ∅ ` v′i : Ti for i ∈ 1..n, then

∅ ` {li=vi
i∈1..n} =ctx {li=v

′
i
i∈1..n} : {li:Ti

i∈1..n} if and only if for each

i ∈ 1..n, ∅ ` vi =ctx v
′
i : Ti .

4. Type abstractions: Given X ` v : T and X ` v′ : T, then ∅ ` λX.v =ctx

λX.v′ : ∀X.T if and only if for all closed types T′,∅ ` [X, T′]v =ctx [X,

T′]v′ : [X, T′]T.

5. Packages: For any closed existential type {∃X,T}, closed types T1, T2, and

values ∅ ` vi : [X, Ti]T (i = 1,2),

∅ ` {*T1,v1} as {∃X,T} =ctx {*T2,v2} as {∃X,T} : {∃X,T}

holds if there is some term­relation r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. 2

Proof:

1. The property for constants follows from Lemma 7.6.15 combined with

Theorem 7.6.25.

2. Suppose for all ∅ ` v1 : T1 that

∅ ` [f, v][x , v1]t =ctx [f, v′][x, v1]t
′ : T2 (7.32)
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where v and v′ are as in part 2 of the theorem. To show ∅ ` v =ctx

v′ : T1→T2, by Theorem 7.6.25 it suffices to show ∅ ` v ∆ v′ : T1→T2,

i.e., that (v,v′) ∈ (T1→T2)[] = fun(T1[],T2[])s t . In fact we show that

(v,v′) ∈ fun(T1[],T2[]). For this we have to prove that if (v1,v
′
1) ∈ T1[]v ,

then (v v1,v′ v
′
1) ∈ T2[]. By Theorem 7.6.25 again, this is the same as

showing: if ∅ ` v1 =ctx v
′
1 : T1, then ∅ ` v v1 =ctx v

′ v′1 : T2. As noted in

Corollary 7.5.8, we can turn the primitive reduction for function applica­

tion into a ciu­equivalence and hence by Theorem 7.6.25 into a contextual

equivalence:

∅ ` v v1 =ctx [f, v][x, v1]t : T2 (7.33)

and similarly for v′ v′1. Therefore we just need to show: if∅ ` v1 =ctx v
′
1 :

T1, then ∅ ` [f , v][x , v1]t =ctx [f , v′][x , v′1]t
′ : T2. But this

follows from the assumption (7.32) using the reflexivity and substitutivity

properties of =ctx. So we have established one half (the difficult half) of

the property in 2. For the converse, if ∅ ` v =ctx v
′ : T1→T2, then for any

∅ ` v1 : T1, the compatibility properties of =ctx give∅ ` v v1 =ctx v
′ v1 :

T2; and then as before, we can compose with (7.33) to get (7.32).

3. We leave the extensionality property for records as an exercise (7.7.2).

4. For the property for type abstractions, suppose

∀T′ ∈ Typ. ∅ ` [X, T′]v =ctx [X, T′]v′ : [X, T′]T. (7.34)

Note that since ∆ coincides with =ctx (Theorem 7.6.25) it is reflexive and

hence X ` v ∆ v : T holds. According to Definition 7.6.10 this means

that for all T1,T
′
1 ∈ Typ and r ∈ TRel(T1,T

′
1), ([X , T1]v, [X , T′1]v) ∈

T[r]. Since T[r] is closed (Lemma 7.6.12), we can combine (7.34) with the

first part of Lemma 7.6.8 (using =ctx in place of =ciu by virtue of Theo­

rem 7.6.25) to conclude that ([X , T1]v, [X, T′1]v
′) ∈ T[r] for all r . Then

using the equivalence in Corollary 7.5.8(v), we have

∀T1,T
′
1 ∈ Typ, r ∈ TRel(T1,T

′
1). ((λX.v)T1,(λX.v

′)T′1) ∈ T[r]

and hence (λX.v, λX.v′) is in λr.T[r]. Since λr.T[r] ⊆ (λr.T[r])s t and

the latter is equal to (∀X.T)[] by definition, we have ∅ ` λX.v ∆ λX.v′ :

∀X.T, and hence by Theorem 7.6.25, ∅ ` λX.v =ctx λX.v′ : ∀X.T. So

we have established one half (the difficult half) of the property in 4. The

argument for the other half is similar to that for property 2, using Corol­

lary 7.5.8(v) and the congruence properties of =ctx.
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5. Finally, let us consider the extensionality property for package values.

(Note that unlike the other four, this only gives a sufficient condition for

contextual equivalence; Example 7.7.4 below shows that the condition is

not necessary.) If (v1,v2) ∈ T[r], then from Definition 7.6.9 we have

({*T1,v1} as {∃X,T},{*T2,v2} as {∃X,T}) ∈ {∃r,T[r]}

⊆ {∃r,T[r]}s t

= {∃X,T}[].

Thus ∅ ` {*T1,v1} as {∃X,T} ∆ {*T2,v2} as {∃X,T} : {∃X,T} and we

can apply Theorem 7.6.25 to get the desired contextual equivalence. 2

7.7.2 Exercise [««, 3]: Use Theorem 7.6.25, Corollary 7.5.8 and the definition of

the term­relation {li=ri i∈1..n} in Definition 7.6.9 to deduce extensionality prop­

erty 3 of Theorem 7.7.1. 2

To see how Theorem 7.7.1(5) can be used in practice, we will apply it to

establish the contextual equivalence of Example 7.3.5 from the Introduction.

7.7.3 Example: Recall the type Semaphore and its values semaphore1, semaphore2

from Example 7.3.5. To show∅ ` semaphore1 =ctx semaphore2 : Semaphore

using Theorem 7.7.1(5), it suffices to show that (v1,v2) ∈ T[r] where

T
def
= {bit:X, flip:X→X, read:X→Bool}

v1
def
= {bit=true, flip=λx:Bool.not x, read=λx:Int.x}

v2
def
= {bit=1, flip=λx:Int.0­2*x, read=λx:Int.x >= 0}

and r ∈ VRel(Bool,Int) is

r
def
= {(true,m) |m = (−2)n for some even n ≥ 0} ∪

{(false,m) |m = (−2)n for some odd n ≥ 0}.

Since r is a value­relation, we can use Lemma 7.6.13 to slightly simplify T[r]:

T[r]
def
= {bit=r s t ,flip=fun(r s t , r s t)s t ,read=fun(r s t , Ids t

Bool)
s t}s t

= {bit=r s t ,flip=fun(r , r s t)s t ,read=fun(r , Ids t
Bool)

s t}s t .

So since (−)s t is inflationary, to prove (v1,v2) ∈ T[r], it suffices to show

(true,1) ∈ r

(λx:Bool.not x, λx:Int.0­2*x) ∈ fun(r , r s t)

(λx:Int.x, λx:Int.x >= 0) ∈ fun(r , Ids t
Bool).
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These follow from the definition of r—the first trivially and the second two

once we combine the definition of fun(−,−) with the fact (Lemma 7.6.8)

that closed relations such as r s t and Ids t
Bool respect ciu­equivalence. For ex­

ample, if (v1,v
′
1) ∈ r , then (λx:Bool.not x)v1 and (λx:Int.0­2*x)v′1 are

ciu­equivalent to r ­related values v2 and v′2; then since (v2,v
′
2) ∈ r ⊆ r

s t and

the latter is closed, we have ((λx:Bool.not x)v1,(λx:Int.0­2*x)v
′
1) ∈ r

s t .

As this holds for all (v1,v
′
1) ∈ r , we have (λx:Bool.not x, λx:Int.0­2*x) in

fun(r , r s t). 2

Theorem 7.7.1(5) gives a sufficient condition for contextual equivalence of

package values, but the condition is not necessary: it can be the case that

{* T1, v1} as {∃X, T} is contextually equivalent to {* T2, v2} as {∃X, T}

even though there is no r ∈ TRel(T1,T2) with (v1,v2) ∈ T[r]. The rest of

this section is devoted to giving an example of this unpleasant phenomenon

(based on a suggestion of Ian Stark arising out of our joint work on logical

relations for functions and dynamically allocated names in Pitts and Stark,

1993).

7.7.4 Example: Consider the following types and terms.

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

diverge
def
= (fun f(b:Bool) = f b : Bool)true

G
def
= fun g(f:N→Bool) = diverge : Bool

G′
def
= fun g(f:Bool→Bool) =

(if f true then

if f false then diverge else true

else diverge) : Bool.

Thus N is a type with no values (Exercise 7.7.6); G is a function that diverges

when applied to any value of type N→Bool; and G′ is a function that diverges

when applied to any value of type Bool→Bool except ones (such as the iden­

tity function) that map true to true and false to false, in which case it

returns true. We claim that

(i) there is no r ∈ TRel(N,Bool) for which (G,G′) ∈ P[r] holds,

(ii) but nevertheless ∅ ` {*N,G} as Q =ctx {*Bool,G
′} as Q : Q. 2
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Proof: For (i) note that the definition of N implies that Val(N) = ∅, i.e., there

are no closed values of type N (Exercise 7.7.6). So any r ∈ TRel(N,Bool) satis­

fies r v = ∅. Now

P[r]v
def
= ((X→Bool)→Bool)[r]v

def
= fun((X→Bool)[r], Ids t

Bool)
s t v

= fun((X→Bool)[r], Ids t
Bool) using (7.19)

def
= fun(fun(r v s t , Ids t

Bool)
s t , Ids t

Bool)

= fun(fun(r v s t , Ids t
Bool)

s t v , Ids t
Bool) by definition of fun(−,−)

= fun(fun(r v s t , Ids t
Bool), Id

s t
Bool) using (7.19)

= fun(fun(r , Ids t
Bool), Id

s t
Bool) using (7.20)

= fun(fun(r v , Ids t
Bool), Id

s t
Bool) by definition of fun(−,−).

Since r v = ∅, we have fun(r v , Ids t
Bool) = Val(N→Bool)×Val(Bool→Bool); and

we know by Theorem 7.6.25 that Ids t
Bool is the relation {(t,t′) | ∅ ` t =ctx

t′ : Bool}. Therefore

P[r]v = {(v,v′) | ∅ ` v v1 =ctx v
′ v′1 : Bool

for all v1 ∈ Val(N→Bool) and v′1 ∈ Val(Bool→Bool) }.

However,∅ ` G v1 =ctx G
′ v′1 : Bool does not hold if we take v1 and v′1 to be

the values

v1
def
= fun f(x:N) = diverge : Bool

v′1
def
= fun f(x:Bool) = x : Bool

since evaluation of G v1 does not terminate, whereas evaluation of G′ v′1 does.

Therefore (G,G′) ∉ P[r]v , for any r ∈ TRel(N,Bool).

Turning to the proof of (ii), now we know that it cannot be deduced from

the extensionality principle for package values in Theorem 7.7.1, we have to

prove this contextual equivalence by brute force. The termination relation

defined in Fig. 7­2 provides a possible strategy (if rather a tedious one) for

proving ciu­equivalences and hence contextual equivalences—by what one

might call termination induction. Thus to prove (ii) it suffices to prove that

the two terms are ciu­equivalent:

∀S. 〈S,{*N,G} as Q〉 ↓ a 〈S,{*Bool,G′} as Q〉 ↓.

Attempting to do this by induction on the derivation of terminations 〈−,−〉↓

(for all S simultaneously), one rapidly realizes that a stronger induction hy­

pothesis is needed: prove for all frame stacks S and terms t that
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〈[x, {*N,G} as Q]S, [x, {*N,G} as Q]t〉 ↓

if and only if 〈[x, {*Bool,G′} as Q]S, [x, {*Bool,G′} as Q]t〉 ↓.

It is possible to prove this by induction on the definition of the termination

relation in Fig. 7­2 (for all S and t simultaneously). We omit the details except

to note that the only difficult induction step is for the primitive reduction

(R­UnpackPack) in Fig. 7­3 in the case that t is the form let{*X,g}=x in t′.

For that step, one can first show for all frame stacks S and terms t that

〈[X, N][g , G]S, [X , N][g, G]t〉 ↓

if and only if 〈[X, Bool][g, G′]S, [X , Bool][g, G′]t〉 ↓.

This also is proved by induction on the definition of the termination relation.

Once again we omit the details except to note that now the only difficult in­

duction step is for the primitive reduction (R­AppAbs) in the case that t is of

the form g v for some value v. To prove that step one can use Lemma 7.7.5

below. This lemma lies at the heart of the reason why the contextual equiva­

lence in (ii) is valid: if an argument supplied to G′ is sufficiently polymorphic

(which is guaranteed by the existential abstraction), then when specialized to

Bool it cannot have the functionality (true , true, false , false) needed

to distinguish G′ from the divergent behavior of G. 2

7.7.5 Lemma: For any value v satisfying X, g:P ` v : X→Bool, evaluation of G′([X,

Bool][g , G′]v) does not terminate. 2

Proof: To prove this we can use the logical relation from the previous sec­

tion. Consider the following value­relation in VRel(Bool,Bool):

r
def
= {(true,true), (false,false), (true,false)}.

Note that

(X→Bool)[r]v
def
= fun(rv s t , Ids t

Bool)
s t v

(7.20)
= fun(r, Ids t

Bool)
s t v (7.19)

= fun(r , Ids t
Bool) (7.35)

and hence

P[r]v
def
= fun((X→Bool)[r], Ids t

Bool)
s t v = fun((X→Bool)[r]v , Ids t

Bool)
s t v

(7.35)
= fun(fun(r , Ids t

Bool), Id
s t
Bool)

s t v (7.19)
= fun(fun(r , Ids t

Bool), Id
s t
Bool). (7.36)

If (v1,v
′
1) ∈ fun(r , Ids t

Bool), since (true,true), (false,false) ∈ r and Ids t
Bool

is contextual equivalence (Theorem 7.6.25) we get

∅ ` v1 true =ctx v
′
1 true : Bool

∅ ` v1 false =ctx v
′
1 false : Bool.
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So using Corollary 7.5.8(iii) and the congruence properties of =ctx, we have

G′ v1 =ctx (if v1 true then

if v1 false then diverge else true

else diverge)

=ctx (if v
′
1 true then

if v′1 false then diverge else true

else diverge)

=ctx G
′ v′1

Therefore (G′ v1,G′ v
′
1) ∈ Ids t

Bool whenever (v1,v
′
1) ∈ fun(r , Ids t

Bool); and so

(G′,G′) ∈ P[r]v , by (7.36). Hence using Lemma 7.6.17 we have

([X, Bool][g, G′]v, [X, Bool][g , G′]v) ∈ (X→Bool)[r]v

= fun(r , Ids t
Bool) by (7.35).

So since (true,false) ∈ r , we get

([X, Bool][g, G′]v true, [X, Bool][g, G′]v false) ∈ Ids t
Bool.

Thus ([X , Bool][g , G′]v)true and ([X , Bool][g , G′]v)false are

contextually equivalent closed terms of type Bool. Therefore it cannot be

the case that the first evaluates to true and the second to false (cf. Exer­

cise 7.5.10); but in that case, by definition of G′, it must be that evaluation of

G′([X, Bool][g, G′]v) does not terminate. 2

7.7.6 Exercise [«, 3]: By considering the possible typing derivations from the rules

in Figure 7­1, show that there is no value v satisfying ∅ ` v : ∀X.X. (Note

that the syntactic restriction on values of universally quantified type men­

tioned in Remark 7.4.1 plays a crucial role here.) 2

7.7.7 Remark [The role of non­termination]: Example 7.7.4 shows that the log­

ical relation presented here is incomplete for proving contextual equivalence

of FML values of existential type. The example makes use of the fact that, be­

cause of the presence of recursive function values, evaluation of FML terms

need not terminate. However, it seems that the source of the incompleteness

has more to do with the existence of types with no values (such as∀X.X) than

with non­termination. Eijiro Sumii (private communication) has suggested the



286 7 Typed Operational Reasoning

following, “terminating” version of Example 7.7.4:

P
def
= (X→Bool)→Bool

Q
def
= {∃X,P}

N
def
= ∀X.X

H
def
= λf:N→Bool. false

H′
def
= λf:Bool→Bool.

(if f true then

if f false then false else true

else false) : Bool.

Consider a version of FML with only non­recursive function abstractions (i.e.

with λx:T.t rather than fun f(x:T) = t:T′). Evaluation is terminating in this

version. So to be non­trivial, contextual equivalence should be formulated in

terms of observing convergence to the same ground value in all contexts of

ground type. Making corresponding changes to the definition of the opera­

tions (−)s and (−)t on term­ and stack­relations, one could develop a logical

relation for this terminating version of FML. It seems that properties (i) and (ii)

in Example 7.7.4 are also true of H and H′ in this version (the first by the same

argument we gave, but the second by a different argument that nevertheless

hinges on the observation at the end of the proof of Example 7.7.4). We leave

investigating this as an extended exercise for the reader. 2

The proof of Lemma 7.7.5 exploits “relational parametricity” properties of

polymorphic types in FML. In fact Theorem 7.6.25 tells us far more about the

properties of type abstraction values than just the extensionality property of

Theorem 7.7.1(4).

7.7.8 Theorem [Relational parametricity for ∀­types]: Given X ` v : T and

X ` v′ : T, then ∅ ` λX.v =ctx λX.v′ : ∀X.T if and only if for all closed

types T1,T
′
1 ∈ Typ and all term­relations r ∈ TRel(T1,T

′
1) it is the case that

([X, T1]v, [X, T′1]v
′) ∈ T[r]. 2

Proof: By Theorem 7.6.25, we have that ∅ ` λX.v =ctx λX.v′ : ∀X.T iff

∅ ` λX.v ∆ λX.v′ : ∀X.T, i.e., iff (λX.v, λX.v′) ∈ (∀X.T)[] = (λr .T[r])s t .

Since λX.v and λX.v′ are values, the latter is the case iff (λX.v, λX.v′) ∈

(λr .T[r])s t v , and by Lemma 7.6.12 and Exercise 7.6.14 (λr .T[r])s t v = λr.T[r].

Hence ∅ ` λX.v =ctx λX.v′ : ∀X.T iff (λX.v, λX.v′) ∈ λr.T[r]. By definition

(Figure 7­5), this is the case iff for all for all closed types T1,T
′
1 ∈ Typ and

all term­relations r ∈ TRel(T1,T
′
1), ((λX.v)T1,(λX.v′)T

′
1) ∈ T[r]; and the
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latter holds iff ([X , T1]v, [X , T′1]v
′) ∈ T[r], because (λX.v)T1 =ciu [X ,

T1]v and (λX.v′)T′1 =ciu [X , T′1]v
′ (so that we can use Lemmas 7.6.8 and

7.6.12). 2

The force of Theorem 7.7.1(4) is to give a method for establishing that two

type abstraction values are contextually equivalent. By contrast, the force of

Theorem 7.7.8 is to give us useful properties of families of values parameter­

ized by type variables. Given such a value, X ` v : T, since =ctx is reflexive,

we have ∅ ` λX.v =ctx λX.v : ∀X.T; hence the theorem has the following

corollary.

7.7.9 Corollary: Given a value X ` v : T, for all T1,T
′
1 ∈ Typ and all r ∈

TRel(T1,T
′
1), it is the case that ([X, T1]v, [X, T′1]v) ∈ T[r]. 2

Such “relational parametricity” properties can often be exploited for prov­

ing contextual equivalences: we already saw an example in the proof of Lem­

ma 7.7.5 and other examples can be found in Pitts (2000), Bierman, Pitts, and

Russo (2000), and Johann (2002). However, the strict nature of function ap­

plication and type abstraction in FML means that it does not satisfy all the

parametricity properties one might expect. For example, in Pitts (2000), §7, it

is shown that

{∃X,T} � ∀Y.(∀X.T→Y)→Y

holds in the polymorphic version of PCF (Plotkin, 1977) studied in that pa­

per (where � is “bijection up to contextual equivalence”—see Principle 7.3.4).

However this bijection does not hold in general for FML (Exercise 7.7.10).

7.7.10 Exercise [«««]: Consider the type N
def
= ∀X.X from Example 7.7.4 that you

showed has no closed values in Exercise 7.7.6. Show that there cannot exist

values

i ∈ Val({∃X,N}→∀Y.(∀X.N→Y)→Y)

j ∈ Val((∀Y.(∀X.N→Y)→Y)→{∃X,N})

that are mutually inverse, in the sense that

p:{∃X,N} ` j(i p) =ctx p : {∃X,N}

y:∀Y.(∀X.N→Y)→Y ` i(j y) =ctx y : ∀Y.(∀X.N→Y)→Y. 2

7.7.11 Exercise [«««, 3]: Verify the claim made in Note 7.3.7 that Principle 7.3.4 is

a special case of Principle 7.3.6. To do so, you will first have to give a defini­

tion of the action of FML types on bijections mentioned in Principle 7.3.4. 2
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7.8 Notes

This chapter is a revised and expanded version of Pitts (1998) and also draws

on material from Pitts (2000).

In discussing typed operational reasoning we have focused on reasoning

about contextual equivalence of program phrases. Being by construction a

congruence, contextual equivalence permits us to use the usual forms of

equational reasoning (replacing equals by equals) when deriving equivalences

between phrases. However, its definition does not lend itself to establish­

ing the basic laws that are needed to get such reasoning going. We studied

two characterisations of contextual equivalence in order to get round this

problem: ciu­equivalence (Definition 7.5.5) and a certain kind of operationally

based logical relation (Definition 7.6.10).

contextual equivalence!vs. bisimilarity The informal notion of contextual

equivalence (Definition 7.3.2) has been studied for a wide variety of pro­

gramming languages. If the language’s operational semantics involves non­

determinism—usually because the language supports some form of concur­

rent or interactive computation—then contextual equivalence tends to iden­

tify too many programs and various co­inductive notions of bisimilarity are

used instead (see the textbook by Sangiorgi and David, 2001, for example).

But even if we remain within the realm of languages with deterministic oper­

ational semantics, one may ask to what extent the results of this chapter are

stable with respect to adding further features such as recursive datatypes,

mutable state, and object­oriented features à la Objective Caml.

Ciu­equivalence has the advantage of being quite robust in this respect—

it can provide a characterisation of contextual equivalence in the presence

of such features (Honsell, Mason, Smith, and Talcott, 1995; Talcott, 1998).

However, its usefulness is mainly limited to establishing basic laws such as

the conversions in Corollary 7.5.8; it cannot be used directly to establish ex­

tensionality properties such as those in Theorem 7.7.1 without resorting to

tedious “termination inductions” of the kind we sketched in the proof of Ex­

ample 7.7.4. Ciu­equivalence is quite closely related to some notions of “ap­

plicative bisimilarity” that have been applied to functional and object­based

languages (Gordon, 1995, 1998), in that their congruence properties can both

be established using a clever technique due to Howe (1996). The advantage of

applicative bisimilarity is that it has extensionality built into its definition; so

when it does coincide with contextual equivalence, this provides a method of

establishing some extensionality properties for =ctx (such as (1)–(4) in Theo­

rem 7.7.1, but not, as far as I know, property (5) for package values).

The kind of operationally based logical relation we developed in this chap­

ter provides a very powerful analysis of contextual equivalence. We used it
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to prove not only conversions and simple extensionality principles for FML,

but also quite subtle properties of =ctx such as Theorems 7.7.1(5) and 7.7.8.

Similar logical relations can be used to prove some properties of ML­style

references and of linear types: see Pitts and Stark (1998), Bierman, Pitts, and

Russo (2000), and Pitts (2002). Unfortunately, the characteristic feature of

logical relations—that functions are related iff they map related arguments

to related results—makes it difficult to define them in the presence of “recur­

sive features.” I mean by the latter programming language features which in a

denotational semantics lead one to have to solve domain equations in which

the defined domain occurs both positively (to the left of an even number

of function space constructions) and negatively (to the left of an odd num­

ber of function space constructions). Recursive datatypes involving function

types can lead to such domain equations; as does the use of references to

functions in ML. Suitable logical relations can be defined in the denotational

semantics of languages with such features using techniques such as those in

Pitts (1996), but they tell us properties of denotational equality, which is of­

ten a poor (if safe) approximation to contextual equivalence. For this reason

people have tried to develop syntactical analogs of these denotational logi­

cal relations: see Birkedal and Harper (1999). The unwinding theorem (Theo­

rem 7.4.4) provides the basis for such an approach. However, it seems like a

fresh idea is needed to make further progress. Therefore I set a last exercise,

whose solution is not included.

7.8.1 Exercise [««««. . . , 3]: Extend FML with isorecursive types, µX.T, as in Figure

20­1 of TAPL, Chapter 20. By finding an operationally based logical relation as

in §7.6 or otherwise, try to prove the kind of properties of contextual equiv­

alence for this extended language that we developed for FML in this chapter.

(For the special case of iso­recursive types µX.T for which T contains no neg­

ative occurrences of X, albeit for a non­strict functional language, see Johann

(2002). The generalized ideal model of recursive polymorphic in Vouillon and

Melliès (2004) uses the same kind of Galois connection as we used in §7.6 and

may well shed light on this exercise. Recent work by Sumii and Pierce [2005]

is also relevant.) 2
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Design Considerations for ML­Style

Module Systems

Robert Harper and Benjamin C. Pierce

A programming language for large­scale software development must pro­

vide some means of breaking large programs into parts of manageable size,

commonly known as modules. The division into modules is chosen to re­

flect natural divisions of labor within a program, minimizing redundancy and

maximizing opportunities for re­use (Parnas, 1972).

The literature on modularity is extensive, covering both methodology—

how best to decompose programs into modules with a variety of desirable

engineering characteristics—and mechanisms used to support modular pro­

gramming. In this chapter, we focus on the latter, laying out a set of core

requirements and design issues and developing linguistic mechanisms for ad­

dressing them. The heart of our story is the module system found in present­

day dialects of ML, but the discussion touches on modularity features from a

range of other languages such as C, Modula, and Java.

Our presentation emphasizes type systems for modularity grounded in the

framework of TAPL. To keep the discussion focused on basic concepts and

avoid type­theoretic technicalities, the presentation is informal. However, the

material will be easier to follow for readers with some familiarity with basic

concepts of subtyping (TAPL, Chapter 15), universal polymorphism (TAPL,

Chapter 23), existential polymorphism and abstract types (TAPL, Chapter 24),

and type operators (TAPL, Chapter 29). Some more advanced typing features

are also mentioned in passing, but prior acquaintance with these features

is not assumed; these include recursive types (TAPL, Chapters 20 and 21),

bounded quantification (TAPL, Chapters 26 and 28), dependent types (Chap­

ter 2 of this volume) and singletons (Chapter 9).

The chapter begins in §8.1 to §8.3 with a suite of basic modularity mech­

anisms: modules and signatures, namespace management, separate compi­

lation, inter­module type checking, and principal signatures. §8.4 introduces
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the central concept of the phase distinction and the terminology of first­ and

second­class module systems. §8.5 discusses abstract data types. Abstract

types arise by sealing a module with a signature that selectively suppresses

the definitions of its type components. Data abstraction raises a number of

important technical issues, including representation independence and the

avoidance problem. §8.6 extends the module language with nested hierar­

chies of modules. §8.7 discusses two alternative mechanisms for represent­

ing families of signatures—explicitly parameterized signatures and the less

familiar but more flexible idea of fibered signatures, which allow any submod­

ule in a signature to be considered a posteriori as the “index” of a signature

family. §8.8 extends this discussion to families of modules defined by func­

tors and raises the issue of coherence. We compare two approaches to the

coherence problem—sharing by construction, which is based on parameter­

ized signatures, and sharing by specification, based on fibered signatures—

and explain why the latter scales well while the former does not. We then

discuss the pragmatic motivations for module families in more depth, ex­

ploring several classes of situations in which functors arise naturally. The

section closes with a discussion of generative and applicative functors. §8.9

briefly describes three more advanced topics in module system design: first­

class modules, in which modules can be treated as ordinary values; higher­

order modules, in which functors are treated on the same footing as other

modules; and recursive modules, which permit self­reference. §8.10 relates

the modularity concepts of this chapter to the mechanisms found in several

well­known languages. §8.11 closes the chapter with historical remarks and

additional suggestions for further reading.

8.1 Basic Modularity

Informally, a module (or structure) is a collection of components, which may

include procedure or function definitions, variable declarations, type defini­

tions, and initialization code—specifics will vary from one language to an­

other. A program consists of a collection of bindings of module names to

modules. One module is specified as the root—the main entry point of the

program.

One module in a program may refer to another by using the latter’s name in

an external reference. The occurrences of external references between mod­

ules determine a dependency ordering in which the referring module depends

on the module to which it refers. (We assume for now that cyclic dependen­

cies between modules are not allowed; §8.9 discusses relaxing this restric­

tion.) The job of a linker is to compose a complete program by resolving
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external references, creating module bindings for each of the external refer­

ences in the partial program under construction until no unresolved refer­

ences remain.

To support separate compilation, the dependency of one module on an­

other is mediated by a signature (or interface) that describes the externally

visible components of the latter module. A signature must be sufficiently ex­

pressive as to enable clients of a module to be compiled without reference to

its implementation. This information typically includes type declarations for

procedures and variables and the definitions of type variables.

In practice, most languages support modularity through a mixture of lin­

guistic and extra­linguistic mechanisms. For example, modules are often or­

ganized as files, and module naming conventions are often tied to file system

naming conventions. To avoid such complications, we concentrate on a mod­

ule language that emphasizes the central concepts, relegating its realization

in specific languages and development environments to informal discussions

in §8.10.

Syntax

We employ a notation for modules and signatures that is loosely based on

ML. We consider the module language to be constructed in terms of some

underlying core language, whose details we do not care too much about. The

principal point of contact between the module and core language consists

of references to components of modules from within core language expres­

sions. To account for the type definitions in signatures, it is necessary to

enrich the definition of type equivalence to ensure that type components are

synonymous with their definitions.

The grammar given in Figure 8­1 defines the syntax of a basic module sys­

tem that we enrich as further ideas are developed. We use the metavariables

x and y to range over term variables, s, t, and u to range over terms, X and Y

to range over type variables, S, T, and U to range over types, m and n to range

over module variables, M and N to range over module expressions, and I and

J to range over signatures and signature variables.1

A program consists of a sequence of bindings, each of which is either a

module binding or an signature binding. A module binding binds a module

1. We are departing slightly from TAPL’s metavariable conventions here. In TAPL, lowercase

identifiers were used consistently for term­level expressions and variables, and uppercase

identifiers for type­level expressions and variables. Here, we are using M and N for module­

level expressions and m and n for module­level variables. Also, we use I and J to denote both

signatures and signature variables. No confusion results from this overlap, since in any case

we regard a signature variable as just an abbreviation for its definition.
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P ::= programs:

B1 . . . Bn binding sequence

B ::= bindings:

module m [:I] = M module binding

signature J = I signature binding

M ::= modules:

m module variable

mod {CB1, . . . ,CBn } basic module

I ::= signatures:

J signature variable

sig {CD1, . . . ,CDn } basic signature

CB ::= component bindings:

type X [>X] = T type binding

val x [>x] = t value binding

CD ::= component declarations:

type X [>X] = T type declaration

val x [>x]:T value declaration

T ::= . . . types:

m.X type selection

t ::= . . . terms:

m.x value selection

Γ ::= typing contexts:

∅ empty

Γ , D declaration

D ::= declarations:

m:I module declaration

Figure 8­1: Basic module syntax

variable to a module expression, perhaps with a specified signature. A signa­

ture binding binds a signature variable to a signature. The scope of a binding

in a program is the remainder of the program following that binding. The

final module binding is the root module.

Signature bindings are used to give names to signatures: a bound signature

variable is simply an abbreviation for the right­hand side of its binding.

A basic module consists of a sequence of component bindings, which are

either type bindings or value bindings. A type binding is a binding of a type

variable to a type expression. A value binding binds a run­time entity to a

term variable. These entities may include procedures, classes, objects, muta­

ble reference cells, and other structures from the core language.

Each component binding has both a label, which is underlined, and a vari­

able, which is not. The variable governs references to that binding within the

module; the label governs reference from outside of the module. For this rea­

son the label is sometimes called the external name of the component, and

the variable its internal name. The use of a label from outside of a module to

designate one of its components is called an external reference; the use of a

variable from inside the module to designate a preceding binding is called an

internal reference. If m is a module variable, then m.X is an external reference

to the type component of m labeled X, and m.X is an external reference to the

value component of m labeled x.
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Internal names are bound variables whose scope is the rest of the module

in which they occur. As such, internal names may be chosen (and renamed)

arbitrarily without affecting the meaning of the module, subject only to the

usual requirement that distinct bound variables not be confused in a given

scope. In contrast the external name of a component of a module cannot be

renamed without affecting the entire program in which that module occurs.

This distinction between external and internal names is necessary for both

conceptual and technical reasons (detailed in §8.6). In most cases, however,

it is not important to emphasize the distinction, so we take the liberty of pro­

viding a single name for each component binding with the understanding that

it plays a dual role as both the external and internal name of that component.

A basic signature consists of a sequence of component declarations, either

a type declaration or a value declaration. A type declaration is a labeled type

binding, with the same syntactic form as a type binding in a module. A value

declaration defines the type of a term variable, but does not give its actual

binding. As with bindings, we usually assign a single name to each declaration

with the understanding that it serves as both the internal and external name

of that component.

Examples

Here is a simple module binding:

module m = mod {

type X = Nat

val x = 5

}

The module bound to m includes one type binding and one value binding.

These components are designated, externally, by m.X and m.x. Note that these

are, respectively, core­language type and value expressions: the grammar of

the core language is enriched to include external references to components

of modules.

Here is a more interesting module binding:

module n = mod {

type X = λW:*. W×W

val f = λy:X(Nat). plus y.1 y.2

}

The right­hand side of the type binding X has kind *→* (i.e., this module is

exporting a type operator). The right­hand side of the term binding f uses

the previously bound operator X. This illustrates the impact of the module

language on core­language type checking: in order to check that the core­
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language expression λy:X(Nat). plus y.1 y.2 is well typed, we need to use

the module­level information that X is definitionally equal to λW:*. W× W.

The signature I introduced by the binding

signature I = sig {

type X = Nat

val x : X

}

describes the module m above, in a sense to be made precise shortly. Similarly,

signature J = sig {

type X = λW:*. W×W

val f : X(Nat) → Nat

}

binds J to a signature corresponding to the module n.

8.2 Type Checking and Evaluation of Modules

To avoid getting bogged down in formalities, we describe type checking and

evaluation throughout the chapter in English prose rather than giving precise,

formal definitions. §8.11 offers a number of pointers into the literature for

readers interested in a more technical treatment.

Type Checking

Signatures are used to describe modules. If a signature I accurately describes

a module M, then we say that M implements I. This relation may be defined in

one of two ways. The direct method simply defines a correspondence between

a module and any signature that it may implement. An indirect method is to

associate with each module M a unique (up to suitable equivalences) principal

signature|seesignatures, which is the “most precise” (least in the subtyping

ordering) signature implemented by M. The latter method, though elegant,

applies only in languages where every module actually has a principal sig­

nature. We start by defining the implementation relation directly and later

discuss conditions under which it may be reduced to subtyping.

We say that a basic module M implements a basic signature I if M contains

at least the type and value components specified by I, up to type equiva­

lence. That is, each type component declared in I must be bound in M with

the same kind and an equivalent definition. (A type definition in a signature is

an equational constraint that must be satisfied by any implementation of that

signature.) Moreover, each value component declared in I must be matched

by a value binding in M with a subtype of the type specified in I. The subtyp­

ing relation here is inherited from the core language, enriched to include the
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expansion of definitions introduced by type bindings in modules and signa­

tures.

When a module binding specifies a signature, the type checker ensures

that its right­hand side implements this signature. For example, the following

bindings are well­formed because the module bound to m implements the

signature I:

signature I = sig {

type T = Int

type U = Int×Int

val x : U

}

module m : I = mod {

type T = Int

type U = T×T

val x : T×T = (3,4)

}

Since I provides definitions for the types T and U and declares the value x,

it follows that m.T and m.U are valid type expressions (equal, respectively, to

Int and Int× Int), and m.x is a valid value expression (of type m.T× m.T,

which is equivalent to m.U).

To account for external references during type checking, each module vari­

able is assigned a signature by a typing context . The assignment of a signature

to a module variable amounts to the assumption that it will be bound to a

module implementing that signature. This is enforced during linking, which

is described in more detail in §8.3.

Signature Matching

Since signatures are descriptions of modules, it is natural to consider a sub­

typing relation between signatures, called signature matching and written

I<:J. A signature I may be considered to be a sub­signature of a signature

J only if any module implementing I also implements J (this is the ordinary

subsumption principle from type systems with subtyping). Said differently,

if I is a sub­signature of J, then I expresses stronger requirements on an

implementation than does J. When I<:J we say that I matches J.

There is some room for variation in how the signature matching relation is

defined, subject only to the requirement that it validate subsumption. There

are two well­known styles of signature matching, which we call structural and

nominal. Structural matching is based entirely on the requirements imposed

by the signature, without requiring any declarations. Nominal matching is

based on the explicit declaration of subtyping relationships among signa­
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tures. Such declarations are often tied to a naming mechanism for modules

and signatures, which gives rise to the terminology. (This distinction exactly

mirrors the distinction between structural and nominal subtype relations dis­

cussed in TAPL, §19.3.)

Structural matching affords greater flexibility, since it does not require the

programmer to explicitly specify that one signature subsumes another. How­

ever, structural matching does not preclude unintended matching relation­

ships; this is at once a strength and a weakness. Nominal matching sacrifices

flexibility for simplicity by requiring explicit declaration of matching relation­

ships among signatures. Nominal matching precludes unintended matching

relationships, but requires that any intended ones be explicitly stated. This

rigidity can sometimes lead to significant problems in practice. For example,

in Java, it is impossible to create a new interface J that lies above an existing

class or interface I without modifying the source code of I, which may be

unavailable, for example, if I is part of a commercial library.

The definition of structural matching is guided by purely semantic consid­

erations: it is the largest pre­order on signatures that validates the subsump­

tion principle. That is, I<:J iff every module implementing I also implements

J. This is ensured by the following requirements:

1. Every type declaration in J must be matched by a corresponding type dec­

laration in I. Moreover, their definitions must be equivalent, taking into

account the preceding type declarations in I.

2. Every value declaration in J must be matched by a corresponding value

declaration in I. Moreover, the type declared in I must be a subtype of

that declared in J, taking account of the preceding type bindings in I.

These conditions do not impose any ordering requirements on components

and permit the sub­signature to have components not present in the super­

signature. (In the terminology of record subtyping from TAPL, Chapter 15,

the subtype relation between signatures permits width subtyping, depth sub­

typing, and permutation, with one caveat: in contrast to record subtyping,

permutation must be limited to respect the scoping of internal names for

components. For example, a value specification cannot be permuted to pre­

cede a type specification on which it depends.) For example, according to this

definition the signature

signature I = sig {

type T = Int

type U = T×T

type V = Int

}

matches the signature
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signature J = sig {

type T = Int

type U = Int×T

}.

8.2.1 Exercise [««««]: How much of the development in the rest of the chapter

can be carried out in a nominal setting? 2

Principal Signatures

The principal signature of a module, when it exists, is the most precise signa­

ture that the module implements. If a module M has a principal signature IM ,

then M implements another signature I exactly when IM matches I. Checking

whether a module implements a signature is thus reduced to checking the

subtyping relation between this signature and the module’s principal signa­

ture. Naturally, this reduction is possible only if every module expression has

a principal signature; otherwise there is some module expression M and a sig­

nature I such that M implements I, yet there is no way to express this fact as

a subtyping relationship.

Unfortunately few module languages have principal signatures for all mod­

ule expressions. One reason is that the language of signatures may be too

weak to permit a precise description of the properties of a module. For exam­

ple, if subtyping for signatures is nominal, then the inferred signature for a

module is not, in general, its smallest signature in the declared subtyping hi­

erarchy. A work­around for weak signatures is to draw a distinction between

a signature expression and its internal representation in a type checker. Every

well­formed signature has an internal representation, but some modules may

have an internal representation that is not denotable by a signature of the

language itself. This creates an unnatural separation between what a partic­

ular type checking algorithm knows about a module and what a programmer

may state about it in a signature. An alternative solution is to require that

the programmer specify a signature for every module, which is then deemed

to be the smallest signature for that module, even if it is larger (i.e., weaker)

than necessary. This avoids the need for principal signatures, at the expense

of some verbosity as well as some loss of flexibility when the specified signa­

ture precludes uses of the module that would otherwise be permissible.

Evaluation

Complete programs (those with no free variables) are executed by evaluating

each of the module bindings in the order given. A basic module is evaluated

by evaluating each of its component bindings in turn according to the rules of
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the core language, resulting in a module value. We insist on a “call by value”

binding discipline for module variables: a module variable is bound to the

value of its binding. The motivation for this requirement is explained in §8.5.

The notion of an initializer for a module arises here as a value binding

whose right­hand side has a side­effect (initializing the module’s internal

state) when evaluated. For example, evaluating the right­hand side of the

binding of f in

module p = mod {

val f =

let r = ref 0 in

λx:Nat. r := plus x (!r)

}

allocates a storage cell and then returns a function whose body uses this

cell. This example also illustrates the need to distinguish between module

expressions and module values. Each time the expression mod { val f = ... }

is evaluated, a new cell is allocated and a different module value results.

8.3 Compilation and Linking

The process of evaluating a program may be decomposed into two steps:

compilation and execution. For present purposes, the most important aspect

of compilation is type checking, and the most important aspect of execution

is linking. We shall not concern ourselves with code generation or the execu­

tion of compiled code. A key distinction between compilation and execution

is that the former may be performed on a module­by­module basis, provided

only that we are given the signatures of the free module variables occur­

ring in a module, whereas the latter is performed on a complete program in

which we have at hand the bindings of all of its free module variables. We

follow Cardelli (1997) in modelling linking as a process of binding modules

to module variables.

Compilation

To support code re­use and team development, it is important to compile

modules independently from one another. To compile a module, it is neces­

sary to have an assignment of a signature to each of its free module variables

(external references) provided by the typing context. There are two main

methods of obtaining this context: separate and incremental compilation.2

2. We caution the reader that this terminology is not standard; these and related phrases are

used with a variety of loosely related meanings in the literature.
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The difference is whether the signatures of free module variables are explic­

itly given by the programmer (separate compilation) or are inferred by the

compiler from the source code of the referenced module (incremental compi­

lation). Both separate and incremental compilation may be supported in the

same language. Furthermore, both mechanisms are compatible with cut­off

compilation (Adams, Tichy, and Weinert, 1994): if the source code of a mod­

ule has changed, but its signature has not, then there is no need to recompile

modules that depend on it—recompilation may be “cut off” at that point.

In a separate compilation system, the programmer states signature as­

sumptions for each of the external references in a module. This is typically

achieved by “import” declarations that state such assumptions. The module

is compiled relative to these assumptions, independently of whether the im­

plementation of the externally referenced modules is available. This affords

maximal flexibility in the order of development of the modules in a program

and permits re­use of libraries of previously compiled modules whose source

may not be available at all. Separate compilation places a burden on the

linker to ensure that the binding of a module variable implements the pre­

sumed signature. A subtle point is that two different modules may import

the same module, but with a different assumed signature. The linker must

ensure that each such assumption is satisfied to ensure safety, or else insist

that all imports specify equivalent signatures. Since most conventional link­

ers are incapable of verifying typing constraints, it is usually necessary to

devise language­specific linkers or to introduce post­linking checks (similar

to Java bytecode verification) to ensure type safety.

In an incremental compilation system, it is not necessary to specify the

signatures of externally referenced modules. Instead, the compiler consults

the implementation of a module to determine its signature, which is used for

compiling any module that depends on it. This implies that the implementa­

tion of any externally referenced module must be present in order to compile

the referring module. This impedes independent development, but avoids the

need to ensure that the binding of a module implements the presumed sig­

nature, since it does so by explicit construction. A module system that lacks

principal signatures cannot properly support incremental compilation.

Linking

A linker assembles a complete program from a collection of module bind­

ings, called the linking context .3 This is achieved by tracing the external

3. We are talking here about conventional static linking. Languages that support dynamic link­

ing permit name resolution during execution.
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references occurring in the collection of program fragments (starting with

a specified root module), and building a sequence of module bindings that

is consistent with the occurrences of these references. Whenever an external

reference is encountered, its binding is determined by consulting the link­

ing context, and emitted as part of the resulting fully linked program. The

external reference is thereby said to be resolved. The occurrence of external

references constrains the order of the bindings in the fully linked program,

but it does not completely determine it. Further constraints on the order of

bindings are imposed by initialization code whose side effects constitute an

implicit dependency of one module on another.

This motivates the definition of a dependency relation among a set of mod­

ules, consisting of its reference dependencies together with its initialization

dependencies. Reference dependencies are determined by inspection of the

code of a module. If a module N contains an external reference m to a module

M, then N is said to contain a reference dependency on M. Signatures may also

contain reference dependencies on modules, for if a signature I contains a

reference m to a module M, then I depends on M and hence m must be bound

before I can be used. (At this point such dependencies are inessential, be­

cause they can only arise in type selections of the form m.X, which may be

replaced by their definitions. However, once abstract types are introduced in

§8.5, such references are not in general eliminable in this way.) Initialization

dependencies arise when the evaluation of one module is materially affected

by the evaluation of another, even though no reference dependency need ex­

ist between them. Initialization dependencies cannot always be determined

by inspection; for example, one module may read a file that another writes

without either sharing a common reference. Therefore, initialization depen­

dencies must be explicitly specified (by some means not detailed here) to

ensure that they are respected by the linker.

Ordinarily, the dependency relation among a collection of modules is re­

quired to be acyclic, precluding circular dependencies of a module on itself

(whether via intermediate modules or not). This is enough to ensure that it

is always possible to find a linear ordering of modules consistent with the

dependency relation. It is possible to permit circular dependencies, at the

expense of considerable complications in the general case; see §8.9.

It is worth noticing that, in the simple setting we are describing at the mo­

ment, all the external references to a given module m, everywhere in a given

set of modules, are guaranteed to be resolved to the same module value at

link time—that is, external references are definite. These definite references

are to be contrasted with the indefinite references that arise with parameter­

ized modules and signatures (see §8.8). Indefinite references raise difficulties

related to aliasing, called coherence problems.



8.4 Phase Distinction 305

8.4 Phase Distinction

Most modern programming languages are statically typed, meaning that type

checking may be performed prior to, and independently of, execution. Stat­

ically typed languages maintain a clear separation between the static (type

checking) and dynamic (execution) phases of processing, and are therefore

said to respect the phase distinction.4 This can be made precise by consider­

ing the forms of reasoning required during type checking to test type equiva­

lence. If type checking may be performed without testing equivalence of run­

time expressions, then the phase distinction is respected, and the language is

said to be statically typed. If, however, type checking requires testing equiva­

lence of run­time expressions (sometimes called “symbolic execution”), then

the phase distinction is violated, and the language is said to be dependently

typed.5 Examples of dependently typed programming languages include Rus­

sell (Donahue and Demers, 1985), Pebble (Burstall and Lampson, 1984), and

Cayenne (Augustsson, 1998). See Chapter 2 for further information on depen­

dently typed languages.

Since modules contain bindings for types, testing type equivalence involves

reasoning about the identity of the type components of modules. But since

modules also contain bindings for values, we are at risk of violating the phase

distinction. For example, a type expression of the form m.X appears super­

ficially to be dependent on the entire module m, including its dynamic com­

ponents. Consequently, checking equality of m.X with another type threat­

ens to require comparison of modules for equality, in violation of the phase

distinction. We take it as a fundamental design principle that a module sys­

tem should preserve the phase distinction in the sense that a module system

should be statically typed if the underlying core language is. The type theory

of modularity developed in this chapter is carefully designed to ensure that

the phase distinction is preserved.

The phase distinction is related to the distinction between first­ and second­

class modules. Informally, a first­class module expression is one whose type

4. This terminology was introduced by Cardelli (1988a) in an attempt to relate phases to a

universe distinction in type theory. The present formulation is derived from Harper, Mitchell,

and Moggi’s definition (1990).

5. The natural contrasting phrase is “dynamically typed,” but this conflicts with the term’s

established usage to refer to languages (such as Java or Scheme) with run­time dispatch on

tagged data. Our use of the phase “dependently typed” stresses the core semantic issue, rather

than focusing on purely syntactic features such as the occurrence of terms in types. The mod­

ule language of this chapter will exhibit superficial syntactic dependencies that do not, in fact,

amount to semantic dependencies in the sense used here. Technically this is achieved by re­

stricting type selection to separable modules—those with a fully transparent interface; see

Dreyer, Crary, and Harper (2003) for further details.
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components are not determined until run­time; otherwise it is second­class.

The essential difference between a first­ and a second­class module expres­

sion is whether or not its type components are determined statically (during

type checking) or dynamically (during execution). A rough­and­ready criterion

for a module expression to be first­class is that the bindings of its type com­

ponents depend on the outcome of a run­time test. If so, then the identity of

its type components cannot be determined statically, rendering the module

first­class; if not, it is second­class. (Consequently, a module expression with

no type components is vacuously second­class, even though its evaluation

may involve arbitrary run­time computation.)

All basic module expressions, including module values, are second­class

because they explicitly specify their type components. For example, the fol­

lowing module expression is second­class:

mod {

type X = Nat

val f = λx:X. x

type Y = Bool

}

On the other hand, consider the following module expression, M

if ...moon is full... then m1 else m2

where m1 and m2 are bound by the following declarations:

module m1 = mod {

type X = Int

type Y = X→X

val x = 3

val f = succ

}

module m2 = mod {

type X = Bool

type Y = X→X

val x = false

val f = not

}

The expression M is chosen so that the definitions of its type components X

and Y are dependent on a run­time test whose outcome cannot be predicted

at typechecking time. Consequently, it is first­class.

If, instead, m2 were defined as follows, then the bindings of X and Y would

not be dependent on a run­time condition:
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module m2 = mod {

type X = Bool

type Y = Bool→Bool

val x = true

val f = not

}

In this case M is second­class, despite its syntactic form. The distinction be­

tween first­ and second­class module is a matter of evaluation behavior.

Up to this point, the type system for modules we have developed so far is

too weak to permit any first­class module expressions to be well­typed. For

example, the conditional M given above does not implement any signature

in the language of signatures developed thus far, for the simple reason that

signatures must reveal the definitions of their type components. To assign a

signature to M it is necessary to suppress the identity of its type component,

X. To do so, we require a richer language of signatures.

8.5 Abstract Type Components

So far in our development signatures are transparent—a signature I for a

module M must reveal the definitions of the type components of M. As we

have just mentioned, a first­class module expression cannot implement a

transparent signature. Worse, limiting ourselves to transparent signatures im­

pedes modular programming by creating tight dependencies of one module

on another. A transparent signature for a module M must expose the repre­

sentations of its type components, and modules that makes use of M may be

sensitive to that choice. Consequently, any change to M has a knock­on effect

on all modules that make use of it. In many cases such a close coupling is

unnecessary, and therefore undesirable.

The solution to both of these shortcomings is to permit not only concrete

(or transparent) type declarations in signatures, as we have until now, but

also abstract (or opaque) type declaration revealing the existence, but not the

definition, of a type component. An abstract type declaration is said to “hold

its type abstract,” or to “hide its representation.” Signatures in which type

declarations may be either concrete and abstract are said to be translucent,

because they partially reveal their type components. Transparent signatures,

which reveal all of their type components, and opaque signatures, which hold

all of their type components abstract, are two important limiting cases.

Signatures with abstract type declarations are similar to existential types

(see Mitchell and Plotkin (1988) and TAPL, Chapter 24). Just as with existen­

tial types, translucent signatures permit changing the type definitions within
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CD ::= component declarations:

type X [>X] opaque type

type X [>X] = T transparent type

Figure 8­2: Translucent signature syntax

a module without fear of disrupting the type correctness of any module that

makes use of it. In short, translucency supports representation independence

in much the same manner as do existential types. However, the relationship

to existentials is more analogical than technically accurate. In particular, ex­

istentials do not support dot notation for existential types (i.e., given an exis­

tential package p with an abstract type component X, one cannot just refer

to p.X; instead, p must first be “opened” in some particular lexical scope),

and so do not offer a fully satisfactory foundation for module systems. In

particular, dot notation is required to give adequately expressive types for

hierarchical and parameterized modules, as explained in §8.6 and §8.8. This

point is discussed in detail by Cardelli and Leroy (1990) and Lillibridge (1997).

The passage to translucent signatures has surprisingly far­reaching con­

sequences. Most immediately, translucent signatures support a flexible form

of data abstraction and permit formation of first­class module expressions.

Translucent types are crucial for permitting fine­grained control over the

propagation of type definitions in hierarchical and parameterized modules

while maintaining static typing. Less obviously, they make possible a number

of significant enrichments of the module language with a minimum of addi­

tional machinery. In particular, translucent signatures provide type­indexed

families of signatures “for free” and support a direct and natural way of en­

suring type compatibility among the arguments of a parameterized module.

(See §8.7, §8.6 and §8.8 for further discussion of these points.) It is remark­

able that a single mechanism, translucent signatures, not only affords flex­

ible type abstraction, but also provides all of the supporting apparatus re­

quired for several important extensions to the basic formalism. As might be

expected, this increase in expressiveness goes hand­in­hand with some signif­

icant meta­theoretic challenges. Thus, in terms of both power and cost, the

extension to translucent signatures is the most significant step in the chapter.

Translucent Signatures

To support translucency we extend the syntax of our language to permit two

forms of type declaration—one that reveals the definition, and one that sup­
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presses it, as detailed in Figure 8­2. For example, the signature

signature I = sig {

type X

type Y = X→Nat

val c : X

val f : Y

}

specifies the existence of type components named X and Y, revealing the def­

inition of Y, but hiding the definition of X.

The signature matching relation is generalized to permit “forgetting” of

type definitions: an abstract type declaration type X in a super­signature may

be matched by either an abstract or a concrete type declaration in the sub­

signature. For example, the signature

signature J = sig {

type X = Nat

type Y = X→Nat

val c : X

val f : Y

}

matches the signature I.

As we noted on page 300, the definitions of type components of a signa­

ture are propagated forward when checking whether one signature matches

another. So, for example, the signature

signature K = sig {

type X = Nat

type Y = X→Nat

val c : Nat

val f : Nat→X

}

matches the signature J, and so, perhaps surprisingly, it also matches the

signature I.

8.5.1 Exercise [«, 3]: Check in detail that K matches J and I. 2

A module implements a translucent signature if it provides the type com­

ponents specified in the signature with, where given, bindings equivalent to

the specified definitions. During type checking, the definitions of type com­

ponents of a module are again propagated forward while checking the re­

mainder of the components against the specified signature. For example, the

module M declared by the binding
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module m =

mod {

type X = Nat

type Y = X→Nat

val c = 5

val f = λx:X. succ x

}

implements the translucent signature I given above.

8.5.2 Exercise [«, 3]: Check in detail that M implements I. 2

Sealing

To limit the visibility of the type components of a module M to the degree

specified in the signature I, it is necessary to seal M with I, written M:>I. (Note

the similarity to the term­level ascription operator described in TAPL, Chapter

11.) A sealed module expression M:>I is well­formed only if M implements I;

the sealed module is considered to implement I (and, by subsumption, the

supertypes of I). A sealed module is evaluated by stripping off the seal and

evaluating the underlying module. This reflects the informal idea that data

abstraction is relevant only during type checking and has no significance at

run time.

For example, consider the signature, I, given in the preceding subsection,

and the following module expression, M:

mod {

type X = Nat

type Y = X→Nat

val c = 5

val f = λx:X. succ x

}

It is easy to check that M implements I, so that M:>I is a well­formed module

expression with signature I. Since X is held abstract by I, no use of the sealed

module may rely on its identity.

A “decorated” module binding of the form module m : I = M may be seen as

syntactic sugar for the “bare” binding module m = (M:>I)—that is, the mod­

ule M is implicitly sealed with signature I by the binding. For example, if M

and I are as in the preceding example, then the module binding

module m = M:>I

assigns to m the signature I. Since I holds X abstract, m.X is opaque, whereas

m.Y is equivalent to m.X→Int.
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M,N ::= . . . modules:

M ! I sealing
T,U ::= . . . type:

M.X type selection

t,u ::= . . . term:

M.x value selection

Figure 8­3: Mechanisms for abstraction

The formalization of abstract types considered here differs from conven­

tional existential types (as described in TAPL, Chapter 24) by separating the

imposition of abstraction on a module from any means of binding that mod­

ule or its components to variables. In the existential framework abstraction

is imposed through a binding construct that holds the representation type

of the abstract type abstract within a specified scope, which is a single core

language expression. For this reason existential types are sometimes said to

impose a closed scope abstraction discipline. However, in the presence of

translucent sums, it is also necessary to make direct reference to abstract

types within types, as well as terms. Achieving this using existential types re­

quires that the abstract type binding be “extruded” to encompass essentially

the region of a program in which it is used. In practice this means that the

lowest­level, and most widely used, abstract types must be given the largest

scope, thereby everting the natural structure of the program. In contrast the

present framework is based on an open scope mechanism in which abstrac­

tion is imposed without specifying the scope in which it may be used. This

avoids the complex re­structuring required in the pure existential framework,

and, moreover, scales naturally to support later extensions to the language.

To support open­scope abstraction we extend the grammar of module expres­

sions to permit sealing, remove signatures from module bindings, and permit

type and value selection from an arbitrary module expression. (See Figure 8­3

for the revised grammar.)

One consequence of sealing modules with abstract type components is that

signatures may now contain unavoidable dependencies on modules. For ex­

ample, consider the following bindings:

signature I = sig {

type X

val c : X

val f : X→X

}
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module m : I = mod {

type X = Int

val c = 0

val f = succ

}

signature J = sig {

type Y

val d : m.X

}

module n : J = mod {

type Y = m.X

val d = m.f(m.f(m.c))

}.

Since J contains a reference to m.X, which is opaque, the signature J is only

sensible within the scope of the binding for m. The meaning of the signature

J is tied to the binding of the module variable m. In particular, any module

implementing J must define Y to be equivalent to m.X.

Determinacy and Abstraction

Any adequate abstraction mechanism must ensure representation indepen­

dence, which ensures that the behavior of clients are insulated from the de­

tails of the implementation of an abstraction. We will not attempt to give a

precise definition of independence here (but see work by Reynolds (1974) and

Mitchell (1986)). At a minimum, though, it should ensure that if the modules M

and N implement the interface I, then replacing M:>I by N:>I should not dis­

turb the type correctness of a program. In particular, if the type X is abstract

in I, then the definition of X must not “leak” from M:>I so as to affect the

type correctness of client code. For if it did, then we could choose N to con­

flict with M on the definition of X and violate even this minimum requirement

for abstraction.

This suggests that representation independence is closely tied up with type

equivalence—when is one abstract type equivalent to another? In particular,

when is (M:>I).X equivalent to (N:>I).X? To ensure that type equality is

reflexive (as surely it ought to be), we must ensure that this equivalence hold

whenever M and N are equivalent. But module equivalence is, in general, unde­

cidable and, moreover, conflicts with the phase distinction, both undesirable.

To avoid this, we simply prohibit type selection from sealed modules so that

embarrassing questions such as these never arise.

Another strong reason to limit type selection is to ensure type safety in

the presence of first­class modules. Since type expressions may be compared
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for equality with other types during type checking, it is important to ensure

that every type expression stand for a fixed type at compile time. Surprisingly,

first­class modules violate this seemingly innocent requirement. For example,

if M is the conditional module expression

if ... moon­is­full ...

then mod { type X = Int }

else mod { type X = Bool }

then M.X might turn out to be either Int or Bool, but we cannot tell which at

compile time. Consequently, it makes no sense to compare M.X for equality

with another type. The following exercise shows that permitting such type

expressions is, in fact, unsound.

8.5.3 Exercise [«««]: Devise an expression t involving unrestricted selection from

the first­class module expression M that incurs a type error at run time. 2

Now a first­class module expression such as this can only be well­formed

if we seal it with an interface that hides the identity of the type compo­

nent X. This establishes a close connection between first­class modules and

sealing that provides further support for the prohibition of type selection

from sealed modules. More generally, since a sealed module may, in fact, be

first­class, its abstract type components may or may not be statically well­

determined. Consequently, we must “assume the worst” of it, and prohibit

type selection.

At the present stage of development, only sealing poses any problems for

type selection, but, as we enrich the language, further constructs (such as ap­

plication of a generative functor) raise similar concerns. It is therefore useful

to isolate a subset of module expressions, the determinate ones, whose type

components are statically known and can be selected without fear of violating

safety or representation independence. The remaining module expressions

are said to be indeterminate; they do not permit type selection.

Basic module expressions, including module values, are determinate be­

cause they provide explicit definitions for their type components. For exam­

ple, the module expression (call it M)

mod {

type X = Bool

type Y = X→X

val x = false

val f = not

}

is determinate because we can see immediately that M.X is equivalent to Bool

and M.Y is equivalent to Bool→Bool.
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By forcing evaluation of its right­hand side, a module binding resolves any

indeterminacy before the module variable is bound to the resulting value.

Consequently, module variables are also determinate. For example, consider

the following module binding:

module m = if ... moon­is­full ...

then mod { type X = Int }

else mod { type X = Bool }

Even though the conditional is indeterminate, the variable m is determinate. In

fact, the only way (so far) to make use of an indeterminate module expression

is to bind it to a variable and refer to that variable to access its components.

This sheds light on the informal idea that abstract types are “new” in the

sense of being distinct from all other types in a program, regardless of any

coincidences of representation. By α­conversion the name of a bound variable

is automatically changed so as to avoid clashes with any other module vari­

able in scope at that point in the program, thereby ensuring that its abstract

type components are “new.”

8.5.4 Exercise [«]: What would go wrong if we changed the evaluation of module

bindings to call­by­name? 2

For the time being, module values and variables are the only determinate

module expressions. Sealed modules are indeterminate, for the reasons out­

lined above.

8.5.5 Exercise [«]: Show that if sealed modules were determinate, then represen­

tation independence could be violated. That is, find a well­typed term t whose

type correctness is destroyed by replacing one implementation of an abstract

type with another. 2

8.5.6 Exercise [«]: Why would it be bad for two copies of M:>I to induce inter­

changeable abstract type components? 2

This same observation also accounts for the informal idea that data ab­

straction ties a type to a particular set of operations that interpret it: any

non­trivial computation with a value of that type must be through these op­

erations. This greatly facilitates maintaining a representation invariant on the

data structure, since those, and only those, operations may potentially violate

it. Moreover, by insisting that sealed modules are indeterminate, we ensure

that the operations from two different abstract types are not interchangeable,

even if the underlying representations of values of those types are the same.
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8.5.7 Exercise [Recommended, ««]: Devise an example of two implementations

of an abstract signature that share a common representation type but differ

in the operations used to interpret it. Assuming that these two implementa­

tions give rise to the same (but hidden) abstract type, give a program (using

sealing as a determinate construct) that incurs an error that would otherwise

be avoided. 2

An important special case of this arises when the implementation of an

abstraction involves private state. In that case two instances of the abstract

type must be kept distinct, even though both the representation type and

the code of the associated operations are identical! The following exercise

explores one example of what can go wrong.

8.5.8 Exercise [Recommended, ««]: Devise an implementation of a hash table in­

volving state, and show that, if two instances of the hash table were to deter­

mine equivalent abstract types, then errors could arise that would otherwise

be avoided. 2

The Avoidance Problem

Consider a local module binding construct of the form

let module m = M in M’.

This expression implements the signature I′ provided that (1) M implements

some signature I, and (2) M′ implements some signature I′ under the assump­

tion that m implements I.

At first glance, it would seem reasonable to say that the principal signature

for a let expression would simply be the principal signature (I′) of its body.

But what if the principal signature of the body involves an abstract type com­

ponent from M? For example, consider the following the module expression:

let

module m = M :> I

in

mod { val z = m.y }

where I is the signature

sig {

type X

val y : X

}.



316 8 Design Considerations for ML­Style Module Systems

Clearly, the principal signature of the body of the let is sig { val z : m.X }.

But this signature cannot be the type of N, because it involves an essential

reference to the locally bound module variable m. (An analogous observation

for the unpack form for existential types motivates the scoping restrictions

discussed in TAPL, §28.7.)

It is tempting to consider N to be ill­formed, since it attempts to export

the type m.X outside of its scope. But this neglects the possibility that N has

some signature that does not involve m.X. For example, if the core language

subtype relation has a maximal type Top, then another possible signature for

the body of the let is sig { val z : Top }. Indeed, this may even be the prin­

cipal signature for N. In general, the principal signature of a let expression

of the form let module m = M in M′ is the least signature for M′ that does not

involve the bound module variable m.

The problem of finding such a signature is called the avoidance problem.

First reported by Ghelli and Pierce (1992) in the context of System F≤, the

avoidance problem is a central design issue for module systems that support

data abstraction. Unfortunately, it does not appear to admit a completely sat­

isfactory solution. In some languages (including ML), there exists a signature

I involving a module variable m with more than one minimal super­signature

avoiding m, none of which is least. In such cases the occurrence of m cannot

be avoided without losing valuable type information.

8.5.9 Exercise [«««]: Consider a signature I

sig {

type X = λW:*. m.Z

type Y = m.Z

}

containing a free module variable m whose signature has an abstract type

component Z. Show that I has infinitely many super­signatures that avoid m,

but none that is a sub­signature of all the others Assume, for this exercise,

that the core language is just Fω, with no subtyping between core­language

types. (For substantial extra credit, find a similar example where the core

language is full F≤.) 2

What to do? A fallback position is to admit as well formed those let ex­

pressions for which there is a principal signature avoiding the bound mod­

ule variable, and to reject all others. The trouble is that there is no simple

characterization of which modules admit principal signatures and which do

not. Reliance on a particular algorithm for detecting cases for which a prin­

cipal signature exists ruins the declarative nature of the type system. An al­
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CB ::= . . . component bindings:

module m [>m] = M module binding

CD ::= . . . component declarations:

module m [>m]:I module declaration

M ::= . . . modules:

M.m module selection

Figure 8­4: Mechanisms for hierarchy

ternative is to require the programmer to specify the signatures of all let

expressions. Rather than solving the problem, this approach simply shifts

the burden to the programmer. Another possibility is to prohibit leaving the

scope of a module variable whose signature has an abstract type component.

This means that all abstract types must be global, rather than local. To soften

the blow we may rename locally declared abstract types with special names

that indicate that they are “hidden,” relying on a programming convention

to avoid using types with such names. Such a convention may be systemati­

cally imposed by “name mangling” during elaboration of the source language

program into internal form. Using this approach, hiding abstract types can

be handled in much the same manner as type inference, pattern compilation,

and overloading resolution (Dreyer, Crary, and Harper, 2003).

8.6 Module Hierarchies

To avoid name clashes, it is useful to organize a collection of module bindings

into “clusters” of closely related bindings with more limited cross­cluster de­

pendencies. This may be achieved by permitting module bindings to occur as

components of other modules (with the usual distinction between its internal

and external names). Correspondingly, we introduce a new form of module

expression, the selection of a module component from another module. The

additional syntax to support module hierarchies is given in Figure 8­4.

A module that is bound within another is called a submodule of the sur­

rounding module. Most of the properties and relations associated with mod­

ules are extended recursively to sub­modules. For example, if all of the sub­

modules of a module are determinate, then so is the module itself. Equiv­

alently, if any sub­module is indeterminate (in particular, if it is sealed),

then the module itself is indeterminate. The implementation relation between

modules and signatures is extended recursively to submodules so that the

module
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module q = mod {

module m = mod {

val x = 5

val y = 6

}

module n = mod {

val z = 7

}

}

implements this signature:

signature Q = sig {

module m : sig { val x:Nat val y:Nat }

module n : sig { val z:Nat }

}

The signature matching relation is extended covariantly to submodules. For

example, the signature Q above matches the signature

signature Q’ = sig {

module m : sig { val y:Nat }

}

(among others).

Besides simple namespace management, hierarchical modularity is also

useful in representing compound abstractions. A familiar example is the dic­

tionary abstraction, which builds on the concept of a linearly ordered type

of keys. The layering of dictionaries atop keys is naturally expressed using a

module hierarchy.

signature Ordered = sig {

type X

val leq : X × X → Bool

}

signature Dict = sig {

module key : Ordered

type Dict : *→*

val new : ∀V. Dict V

val add : ∀V. Dict V → key.X → V → Dict V

val member : ∀V. Dict V → key.X → Bool

val lookup : ∀V. Dict V → key.X → V

}

The Ordered signature specifies a type equipped with a binary operation that

is intended to be a total ordering of that type. The Dict signature specifies a

sub­module key implementing an ordered type.
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The types of the operations declared in the signature Dict make reference

to the type key.X, the type of keys. This illustrates the dependence of the

“rest” of a signature on (the type components of) a preceding sub­module

declaration. Strictly speaking, the type selections key.X occurring within the

signature Dict refer to the internal name of the sub­module key, whereas any

selections from a module implementing Dict refer to the external name, or

label, of that sub­module. To distinguish these two aspects of the sub­module

declaration we may write the Dict signature as follows:

signature Dict = sig {

module key > k : Ordered

type Dict : *→*

val new : ∀V. Dict V

val add : ∀V. Dict V → k.X → V → Dict V

val member : ∀V. Dict V → k.X → Bool

val lookup : ∀V. Dict V → k.X → V

}

In most cases it is not necessary to make explicit the distinction between the

internal and external name of a sub­module, and we rarely do. However, there

are situations in which the distinction is critical, as in the following example.

Consider the following module expression (call it M):

mod {

type X = Int

module m = mod {

type X = Bool

val f = λa:X. 3

}

}

We wish to assign a signature to M that specifies M.m.f to be a function of

type M.m.X→M.X. Without distinguishing internal from external names, there

is no way to write such a signature while holding M.m.X and M.X abstract. The

only possible attempt

sig {

type X

module m : sig { type X val f : X → X }

},

fails because of shadowing of the outer declaration of X by the inner one.

However, by distinguishing the internal from the external name, we may write

the desired signature as follows:
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sig {

type X > X’

module m : sig { type X > X” val f : X” → X’ }

}.

Since the internal name is a bound variable, it may be renamed at will, thereby

avoiding problems of shadowing.

Returning to the Dict signature, the declaration of the sub­module key

indicates that any module implementing Dict comes equipped with its own

ordered type of keys. At first glance this may seem unnatural, since we do

not ordinarily expect a dictionary abstraction to provide an ordered type of

keys, but rather to require one. The distinction is largely a matter of perspec­

tive. Even though the key sub­module is a component of an implementation

of Dict, it would ordinarily be obtained “off the shelf” by reference to an­

other module such as the type of integers ordered by magnitude, or the type

of strings ordered lexicographically. However, nothing precludes defining the

key module “in place,” for example in the case that there is precisely one dic­

tionary in use in an entire program. Conversely, we would ordinarily expect

the type constructor Dict to be constructed as part of the implementation of

Dict, but this need not be the case. We might, in fact, copy this type from an­

other module, say a generic implementation of balanced binary search trees.

Or we may choose to construct a suitable data structure “on the spot.” Thus,

the components of a module may sometimes play the role of an “argument”

to that module, yet at other times play the role of a “result.” This flexibil­

ity is of particular importance when considering families of signatures and

modules, to which we now turn.

8.7 Signature Families

To support code re­use, it is important to isolate repeated patterns in both

modules and signatures so that we may consolidate what is common to many

instances, allowing only the essential differences to vary. This is achieved by

introducing families of signatures and modules that isolate the pattern and

that may be specialized to recover a specific instance of the pattern. In this

section we consider families of signatures; families of modules are discussed

in §8.8.

A good example of the need for signature families is provided by the Dict

abstraction in the preceding section. An implementation of the Dict signa­

ture for an ordered type of keys takes the following form:
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module dict1 = mod {

module key = key1

type Dict = λX:* . ...

...

}

Here key1 is some module implementing the signature Ordered. The princi­

pal signature for dict1 specifies the type of keys:

signature Dict1 = sig {

module key : sig {

type X = key1.X

val leq : X × X → Bool

}

type Dict : *→*

...

}

We may seal the module dict1 with the signature Dict1 to ensure that the

type constructor Dict is held abstract. Note that it would not make sense to

seal dict1 with the signature Dict.

8.7.1 Exercise [«]: Why? 2

Now suppose that we wish to implement a second dictionary whose keys

are drawn from the module key2. As matters stand, we have no choice but to

replicate the same text, replacing key1 by key2 wherever it occurs.

signature Dict2 = sig {

module key : sig {

type X = key2.X

val leq : X × X → Bool

}

type Dict : *→*

...

}

module dict2 :> Dict2 = mod {

module key = key2

type Dict : *→* = ...

...

}

Doing this makes the code unnecessarily difficult to modify—any change to

the signature Dict must be replicated for dict1 and dict2.
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Clearly, what is needed is some means of isolating the common pattern as

a family of modules implementing a corresponding family of signatures, both

indexed by the type of keys. That way we may obtain each dictionary signa­

ture and module as an instance of the family for the corresponding ordered

type of keys. We turn first to the representation of families of signatures;

families of modules are considered in the next section.

Representing Families

There are two main ways of representing families, parameterization and fi­

bration.6 Using parameterization, we explicitly abstract the type of keys from

the Dict signature using a form of λ­abstraction.

signature DictP = λY:*.

sig {

module key : sig {

type X = Y

val leq : X×X → Bool

}

type Dict : *→*

...

}

Instances are obtained by application, writing

signature Dict1 = DictP(key1.X)

signature Dict2 = DictP(key2.X)

to obtain the signatures Dict1 and Dict2 that we wrote out explicitly above.

Using fibration, on the other hand, we simply specify the type of keys by

“patching” the generic Dict signature using a “where clause” as follows:

signature Dict1 = Dict where key.X = key1.X

signature Dict2 = Dict where key.X = key2.X

As with parameterization, the result of these declarations is the same as the

explicit definitions of Dict1 and Dict2 given earlier. Observe that Dict1 and

Dict2 both match Dict.7

6. This terminology is borrowed from category theory, which considers two methods for rep­

resenting families of categories F indexed by a category I. An indexed category is a functor

IndF : Iop → Cat mapping I into the “category of categories”—roughly, a function from I to

categories. A fibration is a functor (satisfying some conditions) FibF : F → I assigning to each

family in F its index in I. Our use of this terminology is analogical, not technically precise.

7. These where clauses can be thought of as a form of “signature inheritance,” analogous to

the “code inheritance” found in object­oriented languages. The fact that where clauses give

rise to subtypes is a natural corollary.
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In both representations, the family of signatures is indexed by a type. While

theoretically sufficient, it is pragmatically unfortunate that, in both repre­

sentations, the indexing type is separated from its interpretation in terms

of operations. For example, since a type can be ordered in several differ­

ent ways—for example, strings might be ordered lexicographically or by the

prefix ordering—it is preferable to maintain the association of a type with

its ordering operation. This may be achieved by generalizing type­indexed

families to module­indexed families. In the present case this would amount

to parameterization or fibration over a module implementing the signature

Ordered. In parameterized form this would be written

signature DictP’ = λkey : Ordered.

sig {

module key = key

type Dict = ...

...

}

with instances

signature Dict1 = DictP’(key1)

signature Dict2 = DictP’(key2).

In fibered form we would write

signature Dict1 = Dict where key = key1

signature Dict2 = Dict where key = key2.

In either case, instantiation of a signature family by a module may be viewed

as a convenient form of type indexing, since it is only the type components

of the instantiating module that affect the result. This is particularly useful

in situations where the indexing module contains several type components,

possibly nested within sub­modules.

8.7.2 Exercise [«««]: Give a formal definition of the operation I where m = M, mak­

ing explicit any restrictions that must be made for this operation to be sensi­

ble. 2

Parameterization vs. Fibration

The chief advantage of parameterization over fibration is familiarity. It is

natural (especially for functional programmers) to consider a family of sig­

natures indexed over implementations of a signature I as a “function” map­

ping implementations of I to signatures. Representing signature families by
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parameterization requires a modest enrichment of the syntax to permit λ­

abstractions and applications of signatures, an extension of signature equiv­

alence to account for instantiation by substitution, and an extension of the

type system to classify parameterized signatures as a kind of function. Fiber­

ing, on the other hand, avoids the need for a new form of signature family by

exploiting submodule declarations, which are useful for other reasons.

A more important difference is that the parameterized approach requires

the programmer to anticipate the patterns of abstraction and instantiation

that may arise in any future use of a given signature. When several (type

or module) components are involved, it can be difficult to anticipate which

are to be thought of as parameters and which are to be thought of as con­

structed components of the module. Indeed, the context may dictate one

choice in one situation, and another in another. The fibered approach avoids

the need to anticipate the future, because it affords a kind of “after the fact”

parameterization—any module or abstract type component may be consid­

ered to be the “argument” in a given situation without prior arrangement.

Taken in isolation, one may argue the advantages and disadvantages of ei­

ther representation as compared to the other, with neither coming out a clear

winner. However, when examined in the larger context of modular program­

ming, a distinct advantage for fibration over parameterization emerges. To

explain why this is the case, we must first consider families of modules.

8.8 Module Families

Needless to say, the justifications for introducing families of signatures apply

just as well to implementations. Continuing with the example from §8.7, we

might well require, in the same program, several different dictionary mod­

ules, differing only in the choice of key type. We would then like to abstract

the common pattern by forming a family of modules indexed by modules

satisfying a particular signature (Ordered).

A natural representation of a family of modules is as a λ­abstraction of a

module expression over a module variable of a specified signature. Such an

abstraction is called a parameterized module, or functor.8 Instances of the

family are obtained by functor application.9

The syntax required to support functors is given in Figure 8­5. (This gram­

mar permits higher­order functors, but for now we concentrate on the first­

8. Rod Burstall once remarked that if we do not call the factorial function a “parameterized

integer,” then we should not call a functor a “parameterized module”!

9. We adopt here an indexed approach to module families, but it is worth noticing that a

fibered approach also makes sense and has been explored under the name mixin modules; we

discuss these briefly on page 343 below.
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M,F ::= . . . modules:

λ(m:I)N functor

F(M) application

I ::= . . . signatures:

Π (m:I1)I2 functor signature

λm:I1.I2 parameterized signature

I1 I2 application

I where X=T where signature

Figure 8­5: Mechanisms for functors

order case, in which only basic modules may be provided as functor argu­

ments. See §8.9 for a discussion of the higher­order case.) The metavariables

F and G range over functors.

In §8.7 we noted that it would be useful to define a family of dictionary

modules indexed by the type of keys. Using the notation of Figure 8­5, a

dictionary functor might be written

module dictFun = λkey:Ordered. mod { ... }

where ... represents some implementation of the dictionary type and op­

erations. The dictionary module dict1 (with signature Dict1, defined on

page 320) would then be obtained by applying dictFun to the key module

key1:

module dict1 = dictFun(key1)

If a functor is a kind of function, then its signature should be like a function

type—for example, the signature of the dictFun functor should be something

like this:

signature DictFun =

Ordered →

sig {

type Dict : *→*

val new : ∀V. Dict V

val add : ∀V. Dict V → key.X → V → Dict V

val member : ∀V. Dict V → key.X → Bool

val lookup : ∀V. Dict V → key.X → V

}

However, the arrow notation does not quite give us what we need because it

does not express the dependency between the argument and the result of the

dictionary functor—i.e., the fact that the module key appearing in the result

signature is precisely the functor’s argument. To capture this dependency,

we need an additional form of signature, called a functor signature, of the
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form Πm:I.J. Such a signature binds the module variable m in the signature

J, permitting the dependency of the result signature on the argument to be

expressed. The signature I is the called the domain, and J is called the range.

(The signature Πm:I.J is a form of dependent function type; see Chapter 2

for background.) The type of the dictionary functor given above may now be

written as follows:

signature DictFun =

Πkey:Ordered.

sig {

type Dict : *→*

val new : ∀V. Dict V

val add : ∀V. Dict V → key.X → V → Dict V

val member : ∀V. Dict V → key.X → Bool

val lookup : ∀V. Dict V → key.X → V

}

Instantiating DictFun by a module M implementing the domain signature

Ordered yields a module whose type is the instance of the range signature

obtained by replacing key by M throughout.

8.8.1 Exercise [«]: One might guess that a family of modules would have a family

of signatures, but, instead of this, we introduced a new notion of functor

signatures. Why? 2

8.8.2 Exercise [«]: Note that DictFun can be written more concisely in terms of

the parameterized signature family DictP, as Πkey:Ordered. DictP(key).

Can DictFun also be expressed using the fibered signature family Dict? 2

Functor arguments are required to be determinate because the range sig­

nature may involve type selections from the domain parameter (as in the

example above). Substitution of the argument for the parameter results in a

specialization of the range signature. Rather than use substitution, we may

also formulate the typing rule for functor application using subsumption.

Just as for ordinary function types, functor signatures are contravariant in

the domain and covariant in the range. This implies that we may weaken a

functor signature by strengthening its domain type. In particular, if F is a

functor with signature Πm:I.J, and M is a determinate module with transpar­

ent signature I′<:I, then F also implements the signature Πm:I′.J. Since I′

is transparent, any type selection of the form m.X in J may be replaced by its

definition in I′, thereby eliminating the dependence of the range signature

on the functor argument. This results in a signature of the form I′→J′, where

J′<:J. By covariance F implements I′→J′, and hence F(M) implements J′. In
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effect we’ve performed the substitution of M for m in J using the types of F

and M alone, rather than by inspecting M itself.

8.8.3 Exercise [«, 3]: Work out the type checking of the application dictFun(M),

where M is a determinate implementation of the key signature Ordered of

your choosing, using the rules just described. 2

Coherence

Since families of modules are just functions from modules to modules, one

might guess that the language design issues they raise would be just the ones

familiar from higher­order functional programming languages. However, a

closer look reveals a significant difficulty, called the coherence problem, that

must be overcome in any practical language with module families.

Suppose we have defined modules ab and bc, each providing a function f

that maps between some input type In and some output type Out. For ab, the

input and output types are A and B; for bc they are B and C:

module ab = mod {

type In = A

type Out = B

val f : In → Out = /* ... some function from A to B */

}

module bc = mod {

type In = B

type Out = C

val f : In → Out = /* ... some function from B to C */

}

Since the output type of ab is the same as the input type of bc, we can write

a third module of the same form that uses the f functions of ab and bc to

construct its own f mapping from A to C.

module ac = mod {

type In = A

type Out = C

val f = λx:In. bc.f (ab.f x)

}

The point to notice here is that the well­typedness of ac.f depends on the

fact that the result type of ab.f is the same as the argument type of bc.f.

Now, suppose that we have a lot of modules of the same form as ab and

bc, and we want to write many modules like ac that “compose” the transfor­



328 8 Design Considerations for ML­Style Module Systems

mations provided by a pair of existing modules.10 We would like to write a

composition functor that encapsulates, once and for all, the boilerplate in­

volved in building these composite modules. To do this, we first define a

generic signature for “transformers”; this is the type of the inputs and the

output of the composition functor.

signature Tr =

sig {

type In

type Out

val f : In → Out

}

Both ab and bc implement Tr.

A naive first attempt at writing the composition functor itself would be

this:

module compose =

λm:Tr. λn:Tr.

mod {

type In = m.In

type Out = n.Out

val f = λx:In. n.f (m.f x)

}

However, this is not well typed: the type expected by n.f is n.In, while the

type returned by m.f is m.Out, and we have no reason to believe that these

are the same. That is, we have failed to express the fact that, for composition

to make sense, the argument modules m and n must be coherent in the sense

that they share this type.

There are two well­known techniques for ensuring coherence, called shar­

ing by construction (also sharing by parameterization or Pebble­style sharing)

and sharing by specification (or ML­style sharing). Sharing by construction

was invented by Burstall and Lampson (1984) in their Pebble language and

has been explored by many people, famously Jones (1996). Sharing by spec­

ification was originated by MacQueen (1984) and is used in the ML module

system.

10. One real­world domain where this sort of situation arises is in networking protocol toolkits

such as FoxNet (Biagioni, Haines, Harper, Lee, Milnes, and Moss, 1994) and Ensemble (van Re­

nesse, Birman, Hayden, Vaysburd, and Karr, 1998): the modules ab and bc in the example

correspond to individual protocol layers or “micro protocols,” the functions f correspond to

the processing performed by each protocol layer, and the input and output types correspond

to different packet or message formats. Composite modules like ac correspond to protocol

stacks such as TCP/IP.
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Sharing by specification relies on the technique of fibered signature fami­

lies introduced in §8.7: the required coherence between the module param­

eters m and n is expressed by refining the signature of n so that the only

modules to which compose can legally be applied are those whose Out com­

ponent coincides with the In component of m:

module compose =

λm:Tr. λn:(Tr where In = m.Out).

mod {

type In = m.In

type Out = n.Out

val f = λx:In. n.f (m.f x)

}

The type of this functor is

Π(m:Tr) Π(n:Tr where In = m.Out)

Tr where In=m.In and Out=m.Out

(writing and as a more readable synonym for where).

Before we go on, a short digression on notation is in order. The defini­

tion of compose that we have just given is a little hard to read: since we

have defined functors to take just one parameter at a time and used currying

to write multiple­argument functors, the inherently symmetric sharing rela­

tion between m.Out and n.In has to be de­symmetrized. We can recover the

symmetry in two steps. We begin by un­currying compose—i.e., we rewrite

compose into a one­argument functor whose parameter is a module with two

sub­modules m and n:

signature TrPair = sig {

module m : Tr

module n : Tr where In = m.Out

}

module compose =

λp:TrPair.

mod {

type In = p.m.In

type Out = p.n.Out

val f = λx:In. p.n.f (p.m.f x)

}

Second, we rewrite the signature TrPair in a symmetric way using a new

keyword sharing:
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signature TrPair = sig {

module m : Tr

module n : Tr

sharing n.In = m.Out

}

The signature of compose now becomes:

Π(p:TrPair) Tr where In=p.m.In where Out=p.m.Out

Fortunately, sharing declarations add no foundational complexity to the lan­

guage: they are simple syntactic sugar. The sharing form just desugars into

the primitive where form—i.e., the compiler can straightforwardly expand the

second definition of TrPair into the first. This syntax clarifies the essential

intuition that the argument to compose is not simply a pair of transformer

modules, but a coherent pair of modules.11

The sharing­by­construction style expresses the coherence required by the

compose functor in a different way: by “factoring out” the shared type as

another parameter to compose. To achieve this, we first replace the signature

Tr by a signature family, indexed by the types In and Out:

signature Tr = λIn:*. λOut:*.

sig {

val f : In → Out

}

module ab = mod { val f : A → B = ... }

: Tr A B

module cb = mod { val f : B → C = ... }

: Tr B C

Similarly, the signature of composable pairs, TrPair is parameterized on

three types:

signature TrPair = λIn:*. λMid:*. λOut:*.

sig {

module m : Tr In Mid

module n : Tr Mid Out

}

The coherence between m and n is expressed here by the fact that their signa­

tures both mention the same type Mid. Now we can write a compose functor

11. That is, in category­theoretic terms, not just a product but a pullback.
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module compose =

λIn:*. λMid:*. λOut:*.

λp : TrPair In Mid Out.

mod {

val f = λx:In. p.n.f (p.m.f x)

}

of type:

ΠIn:*. ΠMid:*. ΠOut:*.

Πp:(TrPair In Mid Out).

Tr In Out

We are using a little syntactic sugar here to make the example easier to read:

compose takes three types and a module as parameters, whereas, strictly

speaking, functors can only take modules as parameters. What we’ve written

can be regarded as an abbreviation for a heavier notation where each “bare

type” parameter is wrapped in a little module.

Sharing by construction has an appealing directness, especially for pro­

grammers trained in the mental habits of higher­order functional languages.

Moreover, since it relies only on abstraction and application for defining

signature families, it can be carried out even in rudimentary module sys­

tems lacking the translucency required to express fibered signatures. Unfor­

tunately, it suffers from a defect that makes it difficult to use in practice: it

does not scale to deep hierarchies of functors.

To see why, note how the parameterized form of the compose functor has

to take the “middle type” Mid as an explicit parameter. This is not so bad

in the present example, where the hierarchy is shallow. But suppose that,

for some reason, we want to write a functor that composes together four

transformations.

In the fibered style, we can write another signature that packages together

two TrPairs with an appropriate sharing declaration relating the final out­

put of the first with the initial input of the second:

signature TrQuad = sig {

module xy : TrPair

module zw : TrPair

sharing zw.m.In = xy.n.Out

}

Note how the coherence between the first and second transformations and

between the third and fourth is expressed by the two uses of the TrPair

signature—all that needs to be stated explicitly in TrQuad is the coherence

of the second and third. The compose4 functor is equally straightforward to

write, using three applications of the original compose:
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module compose4 =

λq:TrQuad.

let xtheny = compose q.xy in

let zthenw = compose q.zw in

let p = mod { module m = xtheny, module n = zthenw } in

compose p

In the parameterized style, on the other hand, the TrQuad signature is

much more awkward:

signature TrQuad = λT1:*. λT2:*. λT3:*. λT4:*. λT5:*.

sig {

module xy : TrPair T1 T2 T3

module zw : TrPair T3 T4 T5

}

Note how the “internal” coherence constraints on xy and zw have “come to

the outside” as parameters to TrQuad. Now compose4 looks like this:

module compose4 =

λT1:*. λT2:*. λT3:*. λT4:*. λT5:*.

λq : TrQuad T1 T2 T3 T4 T5.

let xtheny = compose T1 T2 T3 q.xy in

let zthenw = compose T3 T4 T5 q.zw in

let p = mod { module m = xtheny, module n = zthenw } in

compose T1 T3 T5 p

The type parameters to compose4 are nuisance parameters: they are present

solely to express the required type sharing relationships among the “real”

arguments to the functor.

8.8.4 Exercise [«]: Suppose we extended this pattern to write compose8 (using

two applications of compose4 and one of compose). How many type param­

eters would compose8 need to take in the parameterized style? What about

compose16? 2

This example shows how sharing by parameterization forces the “plumb­

ing” required to ensure coherence of a functor low in the dependency hier­

archy to be recapitulated by every higher­level functor that uses it, by yet

higher level functors that use these, etc. Setting up this plumbing (and worse,

maintaining it as the program evolves), quickly becomes impractical except

for shallow hierarchies. This failure of scalability was observed early on by

MacQueen (1984), but has not been widely recognized.

It is important to emphasize that the representation of signature families

bears strongly on the method of expressing sharing relationships. If signature
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families are represented in parameterized form, then sharing by construction

is the only available method of ensuring coherence. We must instantiate two

families by application to the common types or modules to ensure compat­

ibility. On the other hand, if signature families are represented in fibered

form, then either method of ensuring coherence is available, since we may

either specialize two or more signatures with the common component using

the where construct, or we may specify that they cohere on the common com­

ponents using sharing. The crucial reason for this is that a fibered signature

is a signature—it can be instantiated, or not, as a given situation demands.

This allows decisions about parameterization and sharing to be performed in

a natural “post­hoc” manner. Since each module internally recapitulates the

whole module dependency graph, coherence requirements can be satisfied

simply by adding a few equations tying together subgraphs as appropriate.

The Pragmatics of Functors

Since relatively few present­day languages support families of modules, it is

worth surveying the practical motivations for including them in a module

system. These fall into several categories:

1. Many abstractions are naturally parametric in a type and its associated op­

erations. For example, we illustrated in §8.8 that a dictionary abstraction is

naturally parametric in both the type of its keys and the interpretation of

that type as pre­ordered. Thus, functors arise naturally in shared libraries.

2. Many programs are naturally functorial in nature. For example, the archi­

tecture of the FoxNet implementation of TCP/IP (Biagioni et al., 1994) and

related networking protocols is based on treating each “layer” of a protocol

stack as a functor that is parametric in the layers that occur “above” and

“below” it in the protocol hierarchy. To take another example, the SML/NJ

compiler for Standard ML implements cross­compilation by defining the

central code generation module to be parametric in the target architecture

module, so that several code generators can be simultaneously active and

share the bulk of the code. Thus, some program architectures are naturally

functorial.

3. A variety of link­time techniques—based on mechanisms such as “path

hacking,” class loaders, and various tools provided by the programming

environment—are commonly used to achieve effects similar to those ex­

pressible using functors. For example, partial linking of several object files

into a single, further­linkable object file (using ld ­r in Unix, for example)

is nothing but a means of defining a functor whose parameters are the



334 8 Design Considerations for ML­Style Module Systems

unresolved modules and whose result is the partially linked module con­

structed by the linker. Because such devices are extra­linguistic in nature,

they can be unsafe because the external tools are not aware of typing re­

strictions. In particular, when used for languages with abstract types, such

devices may violate coherence constraints, leading to unsafe code. Thus,

functors codify and formalize certain extra­linguistic programming prac­

tices.

Some of the problems addressed by functors are also amenable to treat­

ment by more primitive modularity mechanisms. (This helps explain why the

software industry has not yet ground to a halt due to the lack of functors

in mainstream languages!) These mechanisms are often more convenient for

specific purposes, even if they may be subsumed or explained by the more

general mechanism of functors.

For example, Haskell encourages the use of type classes to define inter­

pretations of types by operations. One may, for instance, introduce a class of

ordered types as those that come equipped with a binary relation on them. In­

stances of this class are introduced by specifying the (sole) interpretation of

a type by a given binary relation. Instances are often conditional on other

instance requirements. For example, one may declare the type Int to be

pre­ordered by the standard magnitude comparison function, and one may

declare the product type (A,B) to be pre­ordered lexicographically (say), pro­

vided that A and B are also ordered. In the terminology of this chapter, type

classes are simply signatures and instance declarations are functors mapping

zero or more instances of some classes to an instance of a designated class.

(This use of functors is limited in that a given type may implement the class

of ordered types in at most one way, whereas in general a type may admit

many orderings. A benefit of this limitation is that the “functor applications”

required to calculate appropriate instances of classes may be performed au­

tomatically by the compiler.)

Another case where a more primitive mechanism may suffice concerns a

parameterized abstraction, such as dictionaries (parameterized on keys), pro­

vided by a library. If we happen to know that any given program using this

abstraction instantiates it just once, then the abstraction itself need not be

functorized. Instead, the dictionary library can simply be a module contain­

ing an unresolved external reference to a key module that must be resolved

in the linking context of each program that uses it. Specifying the instance is

generally achieved by extra­linguistic mechanisms such as modifying a search

path or installing a special­purpose loader, but such mechanisms could also

be internalized as a part of the module language.
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Another important special case is found in object­oriented languages. The

nearest analogs of modules in these languages are classes and objects. Ob­

jects may be viewed as first­class modules with one abstract type, which

specifies the types of the instance variables of the object. (This correspon­

dence between objects and modules is explored in depth in TAPL, Chapter

24.) While sufficient to capture some common cases, this idiom makes it awk­

ward to manage a collection of inter­related abstract types. (One example is

the mathematical notion of a vector space, which involves an abstract type

of vectors together with a related type of scalars, each with its own set of

associated operations.) Another issue is that these languages offer no analog

of sharing (by parameterization or specification) of representations, which

is the core issue underlying the well­known difficulties with binary methods

(Bruce et al., 1996).

Classes provide a limited form of modularity by serving as the locus of code

sharing for all instances of the class. But inheritance is, by its very nature,

anti­modular in that it couples the code of a sub­class to the code of its

super­class. In particular, there is no notion of signature for a class, nor—in

most object­oriented languages12—any means of inheriting from an unknown

(abstract) super­class. Moreover, if a sub­class determines a subtype of the

super­class type, it is impossible to determine anything about the behavior

of an instance of a class from its type alone. For knowing that o is an object

of a (non­final) class C means only that o is an instance of some sub­class

of C, whose behavior may be totally unrelated to instances of C itself. For

these reasons classes provide only a weak form of modularity, and cannot be

considered to replace it. Fisher and Reppy have examined these issues in the

design of the Moby language (1999).

An often­repeated argument for functors is that they may be used as a

replacement for a linking mechanism. The idea is that all inter­module refer­

ences are to be mediated by a functor—the so­called fully functorized style

of programming—so as to improve program readability by making explicit all

cross­module references. But adopting a fully functorized style amounts to

replacing each definite reference in a module by an indefinite reference—the

free module variable is λ­abstracted in the functor. A central “linking module”

then applies these functors in dependency order to construct the complete

system; i.e., the behavior of the linker itself is internalized and made explicit

as a module­level program. Experience has shown this to be a bad idea: all

this parameterization—most of it unnecessary—gives rise to spurious coher­

ence issues, which must be dealt with by explicitly (and tediously) decorating

12. Languages with mixin modules are, in this respect, closer to the module systems we are

discussing.
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I ::= . . . signatures:

ΠG (m:I1):I2 generative functor

ΠA (m:I1):I2 applicative functor

Figure 8­6: Mechanisms for applicative and generative functors

module code with numerous sharing declarations, resulting in a net decrease

in clarity and readability for most programs.

Functors and Determinacy

When is a functor application determinate? There are two possibilities, de­

pending on whether we take the functor to be generative or applicative. If

generative, each instance of a functor that yields an abstract type “generates”

a new abstract type at the point of instantiation. If applicative, there is one

abstract type covering all instances of the functor with equivalent arguments.

The difference between these two forms of functor is that the application of

a generative functor is indeterminate, whereas the application of an applica­

tive functor is determinate. To model both forms of functor we introduce two

forms of functor signature, as described in Figure 8­6.

Needless to say, the classification of functors into applicative and genera­

tive is not arbitrary. If the body of a functor is indeterminate, then the functor

can only be regarded as generative. Otherwise, an application of such a func­

tor would be determinate, even though it is essentially a substitution instance

of its indeterminate body. Thus a functor may be deemed applicative only if

its body is determinate, but we may regard any functor as generative, by ne­

glecting the possible determinacy of its body. Therefore, it is natural to posit

that the applicative functor type is a subtype of the corresponding generative

functor type.

8.8.5 Exercise [«««]: Show that it is unsound to consider the generative functor

type to match the applicative. (Hint: Adapt the solution to Exercise 8.5.6.) 2

Assuming we have both applicative and generative functors at our disposal,

when is it appropriate to use one or the other? Let us consider several exam­

ples.

If a functor implements an abstract type using per­instance state, it should

be generative. For example, consider the implementation of a type of sym­

bols using a hash table. (Here and elsewhere, we omit the result signature on

functors for the sake of brevity.)
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signature ST = sig {

type Symbol

val str2sym : String → Symbol

val sym2str : Symbol → String

val eq : Symbol × Symbol → Bool

}

module stFun :> ΠG m:(sig{}).ST =

λG m:(sig{}). mod {

type Symbol = Int

val table : string array = Array.new (100, NONE)

val str2sym = λs:String. ...

val sym2str = λs:Symbol.

case Array.sub (table, n) of

SOME x ⇒ x | NONE ⇒ ...

val eq = λ(n1,n2) = (n1 = n2)

}

module stOne = stFun (mod{})

module stTwo = stFun (mod{})

The two instances, stOne and stTwo, of stFun generate distinct abstract

Symbol types, and stOne.Symbol is distinct from stTwo.Symbol. Were these

types confused, symbols from one table could be intermixed with symbols

from another, leading to incorrect results and run­time exceptions that could

be avoided by keeping them apart. In particular, the NONE clause in the body

of stFun can safely be omitted if the functor is generative, but must be in­

cluded (or we run the risk of a match failure) if it is applicative.

A natural example of an applicative functor is one whose argument consists

solely of types and whose result does not involve any effects. For in such a

case there is no reason to distinguish abstract types in different instances

of the functor. For example, consider a functor setFun that takes a type of

elements as argument and yields an abstract type of sets of these elements.

signature setFunInt =

ΠA m:(sig { type X }).

sig {

type Set

val insert : m.X × Set → Set

... }

module setFun :> setFunInt =

λA m : sig { type X }.

mod {

type Set = ...

val insert = ... }
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Notice that the functor itself is sealed with an applicative functor type to

ensure that the Set type in the result is abstract.

One consequence of restricting an applicative functor to have a determi­

nate body is that neither its body nor any of its sub­modules may be sealed.

(Were we to do so, the body would be indeterminate, forcing the functor to

be generative.) This explains why we sealed the setFun functor itself, rather

than writing it in the form

module setFun =

λm:sig { type X }.

(mod {

type Set = ...

val insert = ...

} :>

sig {

type Set

val insert : m.X * Set → Set

...

}).

While sealing the functor itself can be used to impose abstraction on its

instances, it cannot be used to impose abstraction within the body of the

functor. One way to remedy this deficiency is to distinguish two forms of

sealing, static sealing and dynamic sealing, and two associated forms of in­

determinacy, static indeterminacy and dynamic indeterminacy. The dynamic

forms of sealing and indeterminacy are just those considered up to now. The

static forms are added solely to enrich the class of applicative functors. A

statically sealed module is statically indeterminate, which ensures represen­

tation independence. An applicative functor body is permitted to be statically

indeterminate, but not dynamically indeterminate (which would force gen­

erativity). The terminology stems from considering that, for an applicative

functor, abstraction is imposed once when the functor is type­checked, rather

than each time the functor is applied; the abstraction effect is “static,” rather

than “dynamic.”

8.9 Advanced Topics

First­Class Modules

The framework developed here is compatible with treating modules as first­

class values, by which we mean that we may readily enrich the language to

permit modules to be manipulated as ordinary values in the core language.

For example, we may store a module in a data structure, then retrieve it and
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reconstitute it as a module­level expression, without violating representation

independence or type safety. We need only ensure that any means of creating

a module from a core language computation is considered indeterminate so

as to preserve safety and representation independence.

Why not just do away with the distinction between the core and module

languages entirely? While this would seem to simplify matters by collaps­

ing a distinction, it complicates the type theory significantly, requiring that

the core language be enriched with the mechanisms required to support

modularity. These include types for submodules and functors, a subtyping

relation, and the means to ensure static type checking in their presence.

These complications are not insurmountable. One such formalism was devel­

oped by Harper and Lillibridge (1994), who also showed that the type check­

ing problem for this language is undecidable, due to complex interactions

between subtyping, impredicative polymorphism, and type sharing specifi­

cations. Dreyer, Crary, and Harper’s formalism (Dreyer, Crary, and Harper,

2003), on the other hand, achieves adequate expressiveness, including sup­

port for first­class modules, without incurring undecidability.

Finally, even if we were to attempt to consolidate the module and core lev­

els, we would find ourselves facing the same questions at a higher level. For,

as the development of this chapter makes clear, once we introduce separate

compilation (as surely we must), we once again face the same questions of

modularity, at the level of compilation units. Module arise even when you try

to avoid them!

Higher­Order Modules

Higher­order modules—i.e., functors taking functors as parameters—present

some interesting further difficulties. The classic (if somewhat contrived) mo­

tivating example is the apply functor, defined as follows:

module apply =

λf:(Πi:I.J).

λi:I.

f(i)

module m :> I = ...

module f :> Πi:I.J = ...

module n = f(m)

module p = apply(f)(m)

One might expect that n and p are equivalent, since both apply f to m. But this

need not be so, at least if we wish to give a single type for apply that governs

all of its uses. For then we must specify whether the argument, f, to apply
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is applicative or generative. If it is required to be applicative, we may ascribe

the following type to apply:

ΠA f:(ΠA i:I.J). ΠA i:I. (J where X=f(i).X).

This expresses the dependence of the result type X on the two arguments

consistent with the definition of apply. Indeed, apply(f)(a).X is equivalent

to f(a).X, as desired.

On the other hand the functor argument to apply might be taken to be

generative, in which case the best typing for apply is

ΠG f:(ΠG i:I.J). ΠG i:I. J

Since f is taken to be generative, we lose type sharing information in the

result, because the application f(a) is indeterminate, and hence the “type”

f(a).X is ill­formed. Consequently, the abstract type X in n and p are not

known by the type checker to be the same.

It has been suggested that there should only be one apply functor that

covers both cases illustrated above. To do so requires that we employ a

form of intersection type (at the level of signatures) that captures the two

forms of behavior just described. An alternative, suggested by MacQueen and

Tofte (1994), is to refrain from assigning types to functors, in effect re­type­

checking the body on each use. This means that the code, and not just the

type, of the functor must be available to all clients, which precludes separate

compilation.

Static and Dynamic Equivalence

There are two main choices for module equivalence: static equivalence and

dynamic equivalence. Static equivalence deems two modules to be equivalent

whenever their static parts are equivalent. This is the coarsest equivalence be­

tween modules that conservatively extends core language type equivalence,

and is therefore the most permissive choice. The alternative, dynamic equiv­

alence, considers both the static and dynamic parts of modules in the defini­

tion of equivalence. Dynamic equivalence is, in general, undecidable, so some

conservative approximation must be used in practice.

However, dynamic equivalence makes it possible to distinguish two differ­

ent interpretations of the same type without generativity. For example, if f is

a module variable of functor type, and M and N are determinate modules of its

domain type, then f(M).X is equivalent to f(N).X iff M and N are equivalent

modules. Static equivalence ignores the dynamic part of these two modules,

whereas dynamic equivalence would distinguish these types if M and N differ

only in their dynamic components.
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Recursive Modules

The model of linking discussed in §8.1 requires that the dependency relation

among modules be acyclic—that there be a linear ordering of the modules

consistent with their dependencies. It is natural to consider whether this re­

striction might be lifted to permit a more general form of “cross­linking”

of modules. Since cyclic dependencies amount to (direct or indirect) self­

reference, one approach to modelling such a generalization is via recursive

modules (Crary, Harper, and Puri, 1999; Russo, 2001). Another approach is

to devise a linking formalism that permits cyclic dependencies (Ancona and

Zucca, 1998; Hirschowitz and Leroy, 2002; Flatt and Felleisen, 1998).

Cyclic dependencies raise some significant problems that must be addressed

in any satisfactory solution. Most importantly, permitting recursive modules

should not disrupt the semantics of the underlying language. Without restric­

tion, cyclic dependencies among modules can introduce a type A satisfying

the equation A = A → Int, or a value v of type Int satisfying the equation

v=v+1. In most languages such equations have no solution, and should not be

permitted. Another issue is the interaction with effects. Permitting cyclic de­

pendencies conflicts with the need for a linear initialization order consistent

with dependencies. Care must be taken to ensure that values are not refer­

enced before they are defined (or, at a minimum, that such references are

caught at run time). Finally, for maximum flexibility, mutually recursive mod­

ules should be separately compilable. This requires some form of “forward”

declaration to cut cycles in the dependency graph. It also requires a linking

formalism that can support mutually cross­referencing modules, even in the

presence of type declarations.

8.10 Relation to Some Existing Languages

The design issues discussed in this chapter are largely motivated by the ML

module system. There are two closely related realizations of the ML module

system, the Standard ML module system and the Objective Caml module sys­

tem. Basic modules are called structures, signatures are called signatures, and

functors are so­called in both cases. Both designs provide for hierarchy and

parameterization using essential the same mechanisms as described here,

and both adopt the approach to sharing by specification described in §8.8.

The designs differ significantly in their treatment of separate compilation,

the avoidance problem, and higher­order modularity. The two languages are

based on rather different foundations. Standard ML is defined by an elabora­

tion relation that constitutes an algorithmic specification of the well­formed

programs. Objective Caml lacks a formal definition, but the design follows

quite closely a type theory of the general kind considered here.
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Standard ML, as officially defined (Milner, Tofte, Harper, and MacQueen,

1997), permits only first­order, generative functors, provides no support for

separate or incremental compilation, and handles the avoidance problem by a

technical device that sacrifices principality. To amplify the last point first, the

elaboration relation that defines the static semantics of Standard ML relies on

an internal notion of “type names” that are generated during elaboration. Hid­

den abstract types are represented by type names that cannot be designated

by any Standard ML type expression, and hence internal “signatures” are not

expressible by any signature in the language. Consequently, the Standard ML

module system does not in general admit principal (source language) signa­

tures. As to separate compilation, the formal definition of Standard ML does

not address it, so each implementation provides its own mechanisms. The

most widely used implementation, Standard ML of New Jersey (SML/NJ), has

a well­developed compilation manager (Blume and Appel, 1999; Blume, 2002)

that supports incremental and cut­off compilation. SML/NJ also provides ex­

tensions to permit higher­order modularity that rely on elaborate internal

representations of functors that cannot be written in any source language sig­

nature, and is therefore incompatible with separate compilation. Moscow/ML

(Sestoft, 2003; Russo, 1998) is an implementation of Standard ML based on a

type­theoretic interpretation of the language. It provides recursive and first­

class structures, and both applicative and generative functors.

Objective Caml permits higher­order, applicative functors, supports sepa­

rate and incremental compilation, and handles the avoidance problem by sac­

rificing principality. Again taking the last point first, Objective Caml rejects

certain well­formed programs (in the sense of the underlying type theory of

the language) when the implementation does not succeed in weakening a sig­

nature to avoid the occurrence of an abstract type (Dreyer, Crary, and Harper,

2003). The commitment to applicative functors stems from a desire to permit

type selections of the form f(m).X in sharing specifications.

The Haskell (Peyton Jones, 2003) module system is rather weak, providing

only rudimentary namespace management. This deficiency is ameliorated by

type classes. Viewed in terms of the framework of this chapter, the Haskell

type class system amounts to a stylized use of modules. Polymorphic abstrac­

tion is generalized to functor abstraction—expressions take not only types,

but associated operations, as arguments. The functor arguments are gener­

ated automatically during type inference based on a significant methodolog­

ical restriction: no type may admit more than one interpretation by a given

set of operations. (For example, in conjunction with type classes no type may

be partially ordered in more than one way in a given program.) These inter­

pretations are specified by type class declarations that amount to functor

definitions. The type checker implicitly instantiates these functors (through
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a process of backchaining) to determine the required implicit arguments. Ex­

perimental designs for richer modularity mechanisms have been proposed

in the literature. For example, Jones (1996) regards modules as polymorphic

records, which forces the programmer to manage explicitly the separation of

the static from the dynamic parts of a module.

Flatt and Felleisen’s units (1998) provide a form of modularity for Scheme

programs (and other languages) that emphasizes separate compilation and

recursive linking. Their language does not consider type abstraction or the

associated problems of type sharing. In their realization, units are first­class

values, amounting to records in the underlying language. In other formu­

lations, units are used to structure existing C code to provide namespace

management and a flexible linking formalism (Reid et al., 2000).

Ancona and Zucca’s mixin modules (1998; 2002) isolate a variety of com­

binators for combining modules into programs. As suggested by Bracha and

Cook (1990), mixins provide a basis for modelling inheritance, as well as sup­

porting cyclic dependency relationships among modules. Mixins may be seen

as fibered representations of families of modules in which instantiation is

represented by “mixing in” one module with another.

8.10.1 Exercise [«««]: The C language lacks an internal notion of module, prefer­

ring instead to exploit the ambient file system to provide most of the requisite

mechanisms. Discuss. 2

8.10.2 Exercise [«««]: The Java language also lacks direct analogs of most of the

mechanisms we have introduced. However, Java does offer a rich collection

of program structuring mechanisms, some of which can be used to achieve

effects similar to the ones illustrated here. Discuss. 2

8.11 History and Further Reading

The development of the linguistic and methodological foundations of data

abstraction and modularity dates back to the earliest days of academic com­

puter science (Parnas, 1972). Seminal work by Wirth (1973) and Hoare (1972)

(among many others) was influential on the development of languages in the

Algol family such as Pascal (Jensen and Wirth, 1975), Modula­2 (Wirth, 1983),

CLU (Liskov, 1993), and Modula­3 (Cardelli, Donahue, Jordan, Kalsow, and

Nelson, 1989). The Lisp family of languages (Steele, 1990) influenced the de­

sign of ML (Gordon, Milner, and Wadsworth, 1979), which introduced type

inference, polymorphism, and abstract types. This sparked the development

of several languages, such as Hope (Burstall, MacQueen, and Sannella, 1980),

Standard ML (Milner, Tofte, Harper, and MacQueen, 1997), Objective Caml



344 8 Design Considerations for ML­Style Module Systems

(Leroy, 2000), and Haskell (Peyton Jones, 2003), founded on these ideas. The

ML module system, originally proposed by MacQueen (1984), further devel­

oped in the design of Standard ML and Objective Caml, forms the conceptual

basis for much of the material presented in this chapter.

The theoretical framework employed in this chapter (and in TAPL) is the

typed λ­calculus. One important topic was to develop type systems to support

data abstraction. A fundamental first step was taken by Mitchell and Plotkin

(1988) who related abstract types to second­order existential quantification,

extending the connection between type polymorphism and second­order uni­

versal quantification discovered by Girard (1972) and Reynolds (1974). Mac­

Queen (1986) pointed out that existential types are not adequate for express­

ing modular structure, suggesting instead a formalism based on dependent

types. These initial steps provided the impetus for further research into type

systems for modularity with the overall goal of providing the abstraction

guarantees afforded by existential types and the flexible modular program­

ming mechanisms afforded by dependent types.

One strand of research focused on enriching the existential framework to

support controlled propagation of type sharing information in a program.

Three important developments were Harper and Lillibridge’s translucent sum

types (1994; Lillibridge, 1997), Cardelli and Leroy’s “dot notation” (1990) and

Leroy’s manifest types (1994; 1996), and Stone and Harper’s singleton kinds

(2000; Stone, 2000). These type systems support hierarchy and parameteri­

zation with control over the propagation of type sharing relationships, even

in the presence of first­class modules.

Another strand focused on developing the mechanisms of dependent types

to support higher­order modules. Building on MacQueen’s suggestions, Harper

and Mitchell proposed a calculus of dependent types suitable for modelling

many aspects of the ML module system (1993). This framework was further

refined by Harper, Mitchell, and Moggi (1990) to ensure respect for the phase

distinction in a fully expressive higher­order module system. Further work

by Russo (1999) further underscored the point that the apparent dependen­

cies are not really dependencies at all, by performing a “manual” form of

phase­splitting during elaboration in the setting of a type­theoretic semantics

for Standard ML. This formalism also provided the foundation for compil­

ing modules into typed intermediate languages (Shao, League, and Monnier,

1998). Shao (1999) considered a type system that ensures the existence of

principal signatures, at the expense of ruling out some programs that are

expressible in ML.

The abstract­type formalisms provided only weak support for higher­order

modules, and the dependent­type formalisms provided no support for ab­

straction. Leroy introduced applicative functors (1995) in an effort to enrich
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the abstract type formalism with richer higher­order constructs, but in the

process sacrificed generative type abstraction. A fully comprehensive formal­

ism was introduced by Dreyer, Crary, and Harper (2003), based on interpret­

ing type abstraction as a pro forma computational effect.

A rather different approach to the semantics of modularity is the elabo­

ration framework of The Definition of Standard ML (Milner, Tofte, Harper,

and MacQueen, 1997). The type checking rules for modular programming

are given by an algorithm (expressed in inference rule format) for comput­

ing an internal representation of the signature of a module. A weakness of

this approach is that it lacks any connection with the typed λ­calculus for­

malisms that form the foundation for the semantics and implementation of

programming languages. This deficiency was addressed by Russo (1998), who

re­formulated The Definition using constructs from type theory. Harper and

Stone (2000) provided an alternative definition for Standard ML based on a

separation between elaboration, which included type inference, overloading

resolution, pattern compilation, and semantics, which was based on a foun­

dational type theory for modularity.

Garcia et al. (2003) make an interesting comparison of the modularity mech­

anisms found in several popular languages, from the point of view of support­

ing a particular style of “generic programming.”





9 Type Definitions

Christopher A. Stone

Practical uses of interesting type systems often involve large and complex

types, and it is useful to have methods for abbreviating these types. The

simplest idea is to treat these definitions purely as meta­level constructs (de­

rived forms), an approach with few theoretical complications. For example, in

a language with recursive and variant types (e.g., λµ in TAPL, Chapter 20), we

could define

Nat
def
= µY.<zero:Unit, succ:Y>

NatList
def
= µX. <nil:Unit, cons:Nat×X>

after which the cons function for lists could be described as having the type

Nat → NatList → NatList rather than the much larger type

(µY. <zero:Unit, succ:Y>) →

(µX. <nil:Unit, cons:(µY.<zero:Unit, succ:Y>)×X>) →

(µX. <nil:Unit, cons:(µY.<zero:Unit, succ:Y>)×X>).

As long as these definitions are non­circular, they are convenient but inessen­

tial syntactic sugar. In principle the symbolic names can all be replaced by

their definitions, and so we can ignore them when reasoning about the lan­

guage itself: we may write types such as Nat → NatList → NatList infor­

mally, but “officially” we always mean the corresponding expanded type.

It is not always possible or practical, however, to omit type definitions from

the language being studied. In some instances type definitions are explicitly

part of the language itself. For example, the ML language permits type defini­

tions by the user using the type keyword. C and C++ allow similar definitions

with the typedef keyword.

Alternatively, a language implementation might preserve definitions rather

than substituting them away; expanding all definitions can lead to signifi­
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cantly larger types. Techniques such as DAG representations and hash con­

sing (Shao, League, and Monnier, 1998) can ameliorate this problem but the

results can be significantly less readable: if a type is originally written using

abbreviations, it is often desirable to retain them for displaying the type (e.g.,

when reporting errors during type checking, as discussed in TAPL, §11.4).

If type definitions are included in the language or its implementation, we

would still like to know that properties such as type safety continue to hold,

and that our algorithms (e.g., for type checking or code transformations) are

correct. However, the addition of definitional mechanisms can change the

properties of type systems in ways that are not immediately obvious. For

example, suppose X is an operator mapping types to types. In Fω, the type

equivalence X T1 ≡ X T2 holds if and only if T1 ≡ T2. But if X is defined as the

constant operator λY::*.Int, then suddenly X T1 ≡ X T2 holds for arbitrary

T1 and T2.

As definitional mechanisms become more sophisticated, ensuring a proper

implementation can be more difficult. For example, after the module defini­

tion (using roughly the syntax of Chapter 8)

module n = mod

type t = Nat

val x : t = 3

end

we can use n.t as a synonym for Nat. In this case we have a definition not for

the simple name t, but for the entire projection n.t. Moreover, module com­

ponents can be referenced indirectly; we cannot eliminate the type definition

just by replacing n.t by Nat. For example, the further definitions

module n’ = n

module diag = λ(p : sig

type t

val x : t

end).

mod

type u = p.t × p.t

val y : u = {p.x, p.x}

end

module nn = diag(n’)

nowhere mention the projection n.t, yet a correct type checker must nev­

ertheless conclude both that n′.t is a synonym for int (by definition the

components of n′ are the same as the components of n) and that nn.u is



349

equal to the type int×int (guaranteed by the definition of diag). Addition­

ally, the definition for u in the functor’s result, which depends on the specific

functor argument, must be retained in order to type check further uses of

diag.

It is therefore useful to study type definitions as primitive concepts. The

focus here is definitions for types because these have the most significant

effect on type equivalence and type checking and hence on language prop­

erties such as safety. Very similar approaches are used, however, to study

term­level definitions and their effects upon term equivalence.

We look at three approaches to adding type definitions to a language. Sec­

tion 9.1 defines the language λlet, which adds primitive definitions of type

variables to the typing context. The context can record X::K if X is an un­

known type variable of kind K, and can record X::K=T if X is known to be

equal to the type T of kind K. This mechanism directly allows definitions

analogous to NatList above.

Section 9.2 formalizes parts of Chapter 8 by considering a calculus λL M of

second­class modules based on translucent sums. Again we have the choice

between specifying either just a kind or both a kind and a definition, but now

here all type definitions appear in module interfaces. This requires specifying

a language of modules and interfaces, and also introduces a limited form of

dependent type (since modules, which contain terms, can appear in types).

Finally, Section 9.3 defines λS, a generalization of λlet that incorporates

definitions into the kind system itself. The kind * classifies all ordinary types,

while the new, more­precise singleton kind S(T) classifies only those ordinary

types equivalent to T. This allows definitions at any point where a kind is

specified. We then relate λL M to λS by showing that modules can be translated

away using a phase­splitting transformation.

All three systems are described as variants of Fω×η, the higher­order poly­

morphic lambda calculus extended with product types and with extensional­

ity (eta). The types and kinds of this base language are shown in Figure 9­1,

and the terms are shown in Figure 9­2. Although not formally part of the

system, many examples will assume the existence of familiar base types (e.g.,

Nat or Bool) and terms (e.g., numeric constants and addition).

The least usual aspect of the formulation of Fω×η is the use of the judgment

Γ ` �, which formalizes the notion of Γ being a well­formed context (see

TAPL, 30.3.18). A typing context is well­formed if all bound variables are dis­

tinct, and if each type within the context is well­formed with respect to the

preceding portion of the context. For convenience in working with the sys­

tem, all judgments are designed to require (directly or indirectly) that their

typing context be well­formed.

The evaluation rules for terms are standard and have been omitted.

9 Type Definitions
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Fω×η

T ::= types:

X type variable

T→T type of functions

T× T type of pairs

∀X::K.T universal type

λX::K.T type operator abstraction

T T type operator application

K ::= kinds:

* kind of proper types

K⇒K kind of type operators

Context Validity Γ ` �

· ` � (CTX­Empty)

Γ ` T :: * x 6∈ dom(Γ)

Γ , x:T ` �
(CTX­Type)

Γ ` � X 6∈ dom(Γ)

Γ , X::K ` �
(CTX­Kind)

Kinding Γ ` T :: K

X::K ∈ Γ Γ ` �

Γ ` X :: K
(K­Var)

Γ , X::K1 ` T2 :: K2

Γ ` λX::K1.T2 :: K1⇒K2

(K­Abs)

Γ ` T1 :: K11⇒K12 Γ ` T2 :: K11

Γ ` T1 T2 :: K12

(K­App)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(K­Arrow)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1×T2 :: *
(K­Times)

Γ , X::K1 ` T2 :: *

Γ ` ∀X::K1.T2 :: *
(K­All)

Type Equivalence Γ ` S ≡ T :: K

Γ ` T :: K

Γ ` T ≡ T :: K
(Q­Refl)

Γ ` T ≡ S :: K

Γ ` S ≡ T :: K
(Q­Sym)

Γ ` S ≡ U :: K Γ ` U ≡ T :: K

Γ ` S ≡ T :: K
(Q­Trans)

Γ ` S1 ≡ T1 :: * Γ ` S2 ≡ T2 :: *

Γ ` S1 → S2 ≡ T1 → T2 :: *
(Q­Arrow)

Γ ` S1 ≡ T1 :: * Γ ` S2 ≡ T2 :: *

Γ ` S1 × S2 ≡ T1 × T2 :: *
(Q­Times)

Γ , X::K1 ` S2 ≡ T2 :: *

Γ ` ∀X::K1.S2 ≡ ∀X::K1.T2 :: *
(Q­All)

Γ , X::K1 ` S2 ≡ T2 :: K2

Γ ` λX::K1.S2 ≡ λX::K1.T2 :: K1⇒K2

(Q­Abs)

Γ ` S1 ≡ T1 :: K11⇒K12

Γ ` S2 ≡ T2 :: K11

Γ ` S1 S2 ≡ T1 T2 :: K12

(Q­App)

Γ ,X::K11 ` S12 ≡ T12 :: K12

Γ ` S2 ≡ T2 :: K11

Γ ` (λX::K11.S12)S2 ≡ [X, T2]T12 :: K12

(Q­Beta)

Γ , X::K1 ` S X ≡ T X : K2

Γ ` S ≡ T : K1→K2

(Q­Ext)

Figure 9­1: Types and kinds of Fω×η
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t ::= terms:

x variable

λx:T.t abstraction

t t application

λX::K.t type abstraction

t [T] type application

{t,t} pair

t.1 first projection

t.2 second projection

Typing Γ ` t : T

x:T ∈ Γ Γ ` �

Γ ` x : T
(T­Var)

Γ , x:T1 ` t2 :: T2

Γ ` λx:T1.t2 :: T1→T2

(T­Abs)

Γ ` t1 : T11⇒T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

(T­App)

Γ , X::K1 ` t2 : T2

Γ ` λX::K1.t2 : ∀X::K1.T2

(T­TAbs)

Γ ` t1 : ∀X::K11.T12 Γ ` T2 :: K11

Γ ` t1 [T2] : [X, T2]K12

(T­TApp)

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1×T2

(T­Pair)

Γ ` t1 : T11×T12

Γ ` t1.1 : T11

(T­Proj1)

Γ ` t1 : T11×T12

Γ ` t1.2 : T12

(T­Proj2)

Γ ` t : S Γ ` S ≡ T :: *

Γ ` t : T
(T­Eq)

Figure 9­2: Terms of Fω×η

9.1 Definitions in the Typing Context

In a language with eager evaluation, side­effects prevent us from eliminat­

ing term­level definitions by replacing variables by their definitions. As an

alternative, therefore, closed­scope term­level definitions are often treated as

derived forms involving applications, namely

let x=t1 in t2
def
= (λx:T1.t2) t1

where T1 is the type of t1. In languages with type operators a similar approach

can be used at the level of types, putting

let X=T1 in T2
def
= (λX::K1.T2) T1

where K1 is the kind of the type T1.

However, a type definition used within a term does not correspond to an

instantiation of a polymorphic abstraction as one might expect. Although

let X=Nat in (λx:X.x+1)(4)

is semantically reasonable, the polymorphic instantiation
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λlet Extends Fω×η

New syntactic forms

Γ ::= . . . contexts:

Γ ,X::K=T open­scope definition

t ::= . . . terms:

let X = T in t closed­scope definition

Type Equivalence Γ ` S ≡ T :: K

X::K=T ∈ Γ Γ ` �

Γ ` X ≡ T :: K
(Q­Def)

Context Validity Γ ` �

Γ ` T :: K X 6∈ dom(Γ)

Γ , X::K=T ` �
(CTX­Def)

Kinding Γ ` T :: K

X::K=T ∈ Γ Γ ` �

Γ ` X :: K
(K­Def)

Typing Rules Γ ` t : T

Γ ` T1 :: K1 Γ ` T2 :: *

Γ , X::K1=T1 ` t2 : T2

Γ ` let X=T1 in t2 : T2

(T­TLet)

Evaluation rules t -→ t′

let X=T in t -→ [X, T]t (E­TLet)

Figure 9­3: Adding definitions to the context

(λX::*. (λx:X.x+1)(4))[Nat]

is ill­typed because its sub­term λX::*. (λx:X.x+1)(4) is ill­typed.

We therefore extend Fω×η by making definitions of type variables into a

primitive notion, resulting in the language λlet shown in Figure 9­3. The syn­

tax of contexts is broadened to permit defined type variables, and the new

rule Q­Def equates type variables with their definitions. Equivalence of well­

formed types therefore depends upon definitions in the typing context. In

λlet we can prove

X::*=Int ` Int→X ≡ X→Int :: *

but not

X::*=Bool ` Int→X ≡ X→Int :: *

or

X::* ` Int→X ≡ X→Int :: *.

This is an immediate difference from ordinary Fω×η, where type equivalence

can be determined by looking only at the two types involved (in this case,

Int→X and X→Int, which are never equal in Fω×η).

Context validity is extended by the rule CTX­Def, which requires that def­

initions make sense in the preceding context. Consequently, type definitions
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` �

` Nat :: *

...

Γ , x:X ` x : X

...

Γ , x:X ` X ≡ Nat

Γ , x:X ` x : Nat

...

Γ , x:X ` 1 : Nat

Γ , x:X ` x+1 : Nat

Γ ` λx:X. x+1 : X→Nat

...

Γ ` 4 : Nat

...

Γ ` X ≡ Nat

Γ ` Nat ≡ X

Γ ` 4 : X

Γ ` (λx:X. x+1)(4) : Nat

` (let X=Nat in (λx:X. x+1)(4)) : Nat

Figure 9­4: Typing of let X=Nat in (λx:X.x+1)(4), using Γ
def
= X::*=Nat

in well­formed contexts are never circular, which will ensure that all defini­

tions can in principle be substituted away.1

The new kinding rule K­Def looks up the kind of a defined type variable,

paralleling the Fω×η rule K­Var for type variables without definitions.

Definitions in the context are open­scope; they can be considered ambient

and usable anywhere. We can also use this mechanism to describe the typ­

ing of primitive closed­scope (local) type definitions; the type checking rule

T­TLet puts the definition into the context for use while type checking a spe­

cific term. Thus, for example, the code let X=Nat in (λx:X.x+1)(4) would

be well­typed in the presence of natural numbers and addition; a proof ap­

pears in Figure 9­4, where the omitted leaf proofs are uninteresting context­

validity checks.

The following propositions collect a number of useful properties of λlet.

They are all provable via induction on derivations.

9.1.1 Proposition [Weakening]:

1. If Γ1, Γ3 ` T :: K and Γ1, Γ2, Γ3 ` � then Γ1, Γ2, Γ3 ` T :: K.

2. If Γ1, Γ3 ` S ≡ T :: K and Γ1, Γ2, Γ3 ` � then Γ1, Γ2, Γ2 ` S ≡ T :: K. 2

1. The non­circularity requirement for context validity would not prevent T itself from being a

recursive type, as in the Nat and NatList examples, assuming recursive types were added to

the language.
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9.1.2 Proposition [Validity]:

1. If Γ ` J for any judgment form J then Γ ` �.

2. If Γ1, Γ2 ` � then Γ1 ` � and dom(Γ1)∩ dom(Γ2) = ∅.

3. If Γ ` T :: K then FV(T) ⊆ dom(Γ).

4. If Γ ` S ≡ T :: K then Γ ` S :: K and Γ ` T :: K. 2

9.1.3 Proposition [Substitution]:

1. If Γ1,X::K, Γ2 ` J for any judgment form J and Γ1 ` T :: K then Γ1, [X ,

T]Γ2 ` [X, T]J .

2. If Γ1,X::K=S, Γ2 ` J for any judgment form J and Γ1 ` S ≡ T :: K then

Γ1, [X, T]Γ2 ` [X, T]J .

3. If Γ1,X::K, Γ2 ` S :: L and Γ1 ` T ≡ T′ :: K then Γ1, [X , T]Γ2 ` [X , T]S ≡

[X, T′]S :: L. 2

9.1.4 Exercise [««, Recommended]: Explain why the type system would be un­

sound if the premise Γ ` T2 :: * were omitted from T­TLet. 2

9.1.5 Exercise [««, Recommended]: Suppose we wanted to add primitive type def­

initions to the simply­typed calculus λ→. What changes to that language would

be appropriate? 2

Deciding Equivalence

The hardest part of type checking in λlet, as in Fω, is deciding type equiva­

lence. There are multiple ways to approach this. For example, we could define

a notion of reduction (and/or parallel reduction) that allows beta­reduction

and allows a variable to be replaced by its definition, a step known as delta­

reduction.2 Such notions of reduction can be shown to be confluent and

normalizing (Severi and Poll, 1994), which provides a method for determin­

ing type equivalence: compute normal forms and check for equality up to

bound variables.

2. Some authors (e.g., Barendregt, 1984) instead use the name delta­reduction to refer to the

slightly different process of executing built­in primitive operators, e.g., replacing 3+4 by 7 in a

language where addition and integer constants are taken as primitive.
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If explicit definitions are being used to keep the representation small, how­

ever, then computing normal forms can be an expensive way to determine

type equivalence. For example, if we had definitions such as

Pair
def
= λY::*.(Y× Y)

List
def
= λY::*. (µX. <nil:Unit, cons:{Nat,X}>)

we would like to be able to determine that List(List(Pair(Nat))) and

List(List(Nat×Nat)) are equivalent without expanding them to their com­

mon (but noticeably larger) normal form. Although for arbitrary types we

might not be able to do any better, in practice code reuses the same defined

names and so simple short­circuiting heuristics can help.

One approach to avoiding explicit construction of normal forms involves

simultaneous reduction and comparison of the types using weak head reduc­

tion, as discussed in Chapter 6. Instead of fully normalizing the types, only

the “outermost” applications or definitions are reduced. If the resulting types

turn out to have the same shape, then corresponding sub­components of the

types can be recursively compared. Conversely, if the two types are weak

head normalized but fail to have the same structure then the types are not

equivalent and the algorithm can short­circuit and report inequivalence.

Figure 9­5 presents an algorithmic version of equivalence in this fashion.

The weak head normalization relation Γ ` T1 ⇓ Tn specifies that there is

a finite sequence of types T1, . . . ,Tn with n ≥ 1 such that each weak head

reduces to the next, and such that Tn is weak head normal. Given Γ and S

there is at most one T such that Γ ` S ⇓ T.

The algorithmic type equivalence judgment Γ ` S a T :: K holds if the

weak head normal forms of T1 and T2 are structurally equivalent; this is the

algorithmic equivalent to type equivalence for well­formed types. As in Chap­

ter 6, extensional equivalence is implemented here for types with arrow kinds

by applying both sides to a fresh variable and checking for equivalent results.

Finally, the structural equivalence judgment Γ ` T1 ↔ T2 ↑ K implements

equivalence for weak head­normal types only; T1 and T2 must have the same

shape and their subcomponents must be algorithmically equivalent. Then K

will be the common kind of T1 and T2. Given Γ , S, and T, there is at most one

rule that can apply.

Conveniently, the correctness of this comparison algorithm can be shown

using the same logical relations proof as in Chapter 6 with only minor modi­

fications. We here are interested in equivalence of types that are classified by

kinds, but this corresponds exactly to the problem considered in Chapter 6

of equivalence of terms classified by types. In particular, the kind * here cor­

responds to the base type b from Chapter 6. Rewriting the logical equivalence
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Weak Head Reduction Γ ñ̀ T ; T′

Γ ñ̀ (λX::K11.T12)T2 ; [X, T2]T12

X::K=T ∈ Γ

Γ ñ̀ X ; T

Γ ñ̀ T1 ; T′1

Γ ñ̀ T1 T2 ; T′1 T2

Weak head normalization Γ ñ̀ T ⇓ T′

Γ ñ̀ T ; S Γ ñ̀ S ⇓ T′

Γ ñ̀ T ⇓ T′

Γ ñ̀ T 6;

Γ ñ̀ T ⇓ T

Algorithmic type equivalence Γ ñ̀ Sa T :: K

Γ ñ̀ S ⇓ S′ Γ ñ̀ T ⇓ T′

Γ ñ̀ S′ ↔ T′ ↑ *

Γ ñ̀ Sa T :: *

Γ , X::K1 ñ̀ S Xa T X :: K2 X 6∈ dom(Γ)

Γ ñ̀ Sa T :: K1⇒K2

Structural type equivalence Γ ñ̀ S↔ T ↑ K

X::K ∈ Γ

Γ ñ̀ X↔ X ↑ K

Γ ñ̀ S1 a T1 ↑ * Γ ñ̀ S2 a T2 ↑ *

Γ ñ̀ S1→S2 ↔ T1→T2 ↑ *

Γ ñ̀ S1 a T1 ↑ * Γ ñ̀ S2 a T2 ↑ *

Γ ñ̀ S1×S2 ↔ T1×T2 ↑ *

Γ , X::K1 ñ̀ S2 a T2 ↑ * X 6∈ dom(Γ)

Γ ñ̀ ∀X::K1.S2 ↔ ∀X::K1.T2 ↑ *

Γ ñ̀ S1 ↔ T1 ↑ K1⇒K2

Γ ñ̀ S2 a T2 :: K1

Γ ñ̀ S1 S2 ↔ T1 T2 ↑ K2

Figure 9­5: Algorithmic equivalence with definitions

relation to refer to types and kinds (and simplifying it a bit, as we have no

“unit kind”) yields:

9.1.6 Definition [Logical Equivalence]: Logical equivalence is defined as fol­

lows:

Γ ` S is T :: K if and only if either:

K=* and Γ ` Sa T :: *,

or K=K1⇒K2 and for all S′, T′, and for all Γ ′ ⊇ Γ ,

if Γ ′ ` S′ is T′ :: K1

then Γ ′ ` S S′ is T T′ :: K2. 2

Similarly, γ or δ will now represent a substitutions mapping type variables

to types. Recall that γ[X , T] is the substitution that agrees with γ except

that it maps X to the type T.

The biggest difference from Chapter 6 is that we must be more careful

about substitutions. The proof of the Fundamental Theorem of Logical Rela­
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tions will not go through if we allow substitutions that replace a defined type

variable by an unrelated type. (Specifically, the Q­Def case would fail.) The

following definition builds in this restriction, while still being easy to show

symmetric and transitive:

9.1.7 Definition: Γ ′ ` γ is δ :: Γ if and only if

• For every X::K ∈ Γ we have Γ ′ ` γ(X) is δ(X) :: K.

• For every X::K=T ∈ Γ we have Γ ′ ` γ(X) is δ(X) :: K, Γ ′ ` γ(X) is

δ(T) :: K, and Γ ′ ` γ(T) is δ(X) :: K. 2

9.1.8 Exercise [«««, Recommended]: Show how to adapt the methods of Chap­

ter 6 to prove that if Γ ` S :: K and Γ ` T :: K then it is decidable whether

Γ ` S ≡ T :: K in λlet. 2

A major advantage of this variant algorithm is that it allows further refine­

ments. For example, an implementation might check for alpha­equivalence

of corresponding components before reducing. Thus, a request to compare

List(T1) with List(T2) could directly check whether T1 and T2 are equiva­

lent without expanding the definition of List.

One must be careful in trying to optimize, though, since the addition of

definitions alters usual properties of type equivalence. In Fω×η the equivalence

X T1 ≡ X T2 holds if and only if T1 ≡ T2. In a λlet­style language, however, we

can prove

X::(*⇒*)=(λY::*.Nat) ` X Nat ≡ X Bool

even though Nat and Bool are not equivalent—both applications are prov­

ably equal to Nat. Therefore, although comparing X T1 with X T2 by showing

that T1 and T2 are equivalent may often be faster than expanding out a def­

inition for X, if the arguments are inequivalent we may need to consider the

expansion anyway.3

One might think to special­case variables like X above whose definitions

completely ignore their arguments, but similar behavior can arise more gen­

erally.

9.1.9 Exercise [Recommended, ««]: Find a typing context and pairwise inequiva­

lent T1, T2, and T3 such that X T1 ≡ X T2 but X T2 6≡ X T3 (and so X cannot

completely ignore its argument). 2

3. The presence of definitions has consequences for unification as well (e.g., in implementa­

tions of ML type inference): the most general substitution making X T1 and X T2 equal might

not make T1 and T2 unify.
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If the simultaneous comparison process finds no short­cuts, it will do work

equivalent to entirely normalizing and comparing the two types. It may still

be more memory­efficient, however, than separate normalizations. Full nor­

mal forms are not explicitly computed and stored; when two subcomponents

of the types are found to be equal their reduced forms can be immediately

discarded, freeing up memory for the rest of the comparison.

9.1.10 Exercise [«««, 3]: Extend the fullomega checker to include definitions, and

make type equivalence checking as efficient as possible. 2

9.2 Definitions in Module Interfaces

In the presence of modules, type definitions are often permitted to appear

within interfaces. The most interesting aspect of the theory of ML­style mod­

ule systems involves tracking information about the types involved, given

that type components in modules may have definitions that are not syntacti­

cally apparent.

One line of research in formalizing the type theory of ML­like module sys­

tems (as discussed in Chapter 8) led to the calculi known as translucent sums

(Harper and Lillibridge, 1994) and manifest types (Leroy, 1994). These similar

systems largely correspond to the module systems of Revised Standard ML

(Milner, Tofte, Harper, and MacQueen, 1997) and (with some extensions—see

Leroy [1995]) of Objective Caml.

The Language λL M

Figure 9­6 defines a minimalist language λL M with second­class modules, based

on the calculus of Lillibridge (1997). Modules are not first­class values able

to be passed to term­level functions, and similarly interfaces are not types.

Though simpler than any module system usable in practice, λL M is still com­

plex enough to demonstrate many issues discussed in Chapter 8.

In ML, modules can contain any combination of named value, type, and

sub­module components in any order. λL M instead builds up modules starting

with two primitives: modules that contain a single unnamed term, written

LtM, and modules that contain a single unnamed type, written LT::KM. The

contents of primitive modules can be extracted by using the ! operator.

For each sort of module, there are corresponding interfaces. The interface

LTM classifies primitive modules containing a value of type T, while the opaque

interface LKM classifies modules containing a type of kind K. Modules contain­

ing types may also have a transparent interface LK=TM if they contain just the

type T (or a provably equivalent type) of kind K.
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λL M extends Fω×η

Syntax

Γ ::= . . . contexts:

m:I module variable

W ::= determinate modules:

m variable

LvM term module

LT::KM type module

LW,WM pairing

W.1 first projection

W.2 second projection

λm:I.M functor

Wv ::= module values:

LvM term module

LT::KM type module

LWv,WvM pairing

λm:I.M functor

M ::= modules:

W determinates

LtM term module

LM,MM pairing

M.1 first projection

M.2 second projection

M M application

M :> I generative sealing

I ::= interfaces:

LTM term interface

LKM opaque interface

LK=TM transparent interface

Σm:I.I pair interface

Πm:I.I functor interface

t ::= . . . terms:

!M module projection

T ::= . . . types:

!W module projection

Derived Forms

I1 × I2
def
= Σm:I1.I2 (m 6∈ FV(I2))

I1 → I2
def
= Πm:I1.I2 (m 6∈ FV(I2))

Context Validity Γ ` �

Γ ` I m 6∈ dom(Γ)

Γ , m:I ` �
(CTX­Mod)

Well­Formed Interface Γ ` I

Γ ` T :: *

Γ ` LTM
(I­Term)

Γ ` �

Γ ` LKM
(I­Opaque)

Γ ` T :: K

Γ ` LK=TM
(I­Transp)

Γ , m:I1 ` I2

Γ ` Σm:I1.I2

(I­Sigma)

Γ , m:I1 ` I2

Γ ` Πm:I1.I2

(I­Pi)

Subinterface Γ ` I <: I′

Γ ` T ≡ T′ :: *

Γ ` LTM <: LT′M
(SI­Term)

Γ ` LKM <: LKM (SI­Opaque)

Γ ` T ≡ T′ :: K

Γ ` LK=TM <: LK=T′M
(SI­Transp)

Γ ` T :: K

Γ ` LK=TM <: LKM
(SI­Forget)

Figure 9­6: Syntax, typing, and semantics for λL M
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Subinterface (continued) Γ ` I <: I′

Γ ` Πm:I11.I12

Γ ` I21 ≡ I11 Γ ,m:I21 ` I12 <: I22

Γ ` Πm:I11.I12 <: Πm:I21.I22

(SI­Pi)

Γ ` Σm:I21.I22

Γ ` I11 <: I21 Γ ,m:I11 ` I12 <: I22

Γ ` Σm:I11.I12 <: Σm:I21.I22

(SI­Sigma)

Interface Equivalence Γ ` I <: I′

Γ ` I <: I′ Γ ` I′ <: I

Γ ` I ≡ I′
(QI­Eqv)

Kinding Γ ` T :: K

Γ ` W : LKM

Γ ` !W :: K
(K­MProj)

Type Equivalence Γ ` S ≡ T :: K

Γ ` T :: K Γ ` W : LK=TM

Γ ` !W ≡ T :: K
(Q­MProj)

Well­Formed Modules Γ ` M : I

Γ ` t : T

Γ ` LtM : LTM
(M­Term)

Γ ` T :: K

Γ ` LT::KM : LK=TM
(M­Type)

Γ ` M : I′ Γ ` I′ <: I

Γ ` M : I
(M­Sub)

Γ ` � m:I ∈ Γ

Γ ` m : I
(M­Var)

Γ , m:I1 ` M2 : I2

Γ ` λm:I1.M2 : Πm:I1.I2

(M­Abs)

Γ ` M1 : I1 Γ ` M2 : I2

Γ ` LM1,M2M : I1×I2

(M­Pair)

Γ ` M : Σm:I1.I2

Γ ` M.1 : I1

(M­Fst)

Γ ` M : I1×I2

Γ ` M.2 : I2

(M­Snd)

Γ ` M1 : I1→I2 Γ ` M2 : I1

Γ ` M1 M2 : I2

(M­Apply)

Γ ` W : LKM

Γ ` W : LK=!WM
(M­Self)

Γ ` Σm:I1.I2

Γ ` W : Σm:I′1.I2 Γ ` W.1 : II

Γ ` W : Σm:I1.I2

(M­Self1)

Γ ` W : Σm:I1.I
′
2 Γ ` W.2 : I2

Γ ` W : I1×I2

(M­Self2)

Γ ` M : I

Γ ` (M :> I) : I
(M­Seal)

Typing Γ ` t : T

Γ ` M : LTM

Γ ` !M : T
(T­Mod­Proj)

Figure 9­6: Syntax, typing, and semantics for λL M, continued
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Module Evaluation M -→ M′

t -→ t′

LtM -→ Lt′M
(EM­Term)

M1 -→ M1
′

LM1,M2M -→ LM′1,M2M
(EM­Pair1)

M2 -→ M2
′

LWv1,M2M -→ LWv1,M2M
(EM­Pair2)

M1 -→ M1
′

M1.1 -→ M′1.1
(EM­Proj1)

M1 -→ M1
′

M1.2 -→ M′1.2
(EM­Proj2)

LWv1,Wv2M.1 -→ Wv1 (EM­PairBeta1)

LWv1,Wv2M.2 -→ Wv2 (EM­PairBeta2)

M1 :> I2 -→ M1 (EM­Seal)

M1 -→ M′1

M1 M2 -→ M′1 M2

(EM­App1)

M2 -→ M′2

Wv M2 -→ Wv M
′
2

(EM­App2)

(λm:I11.M12)Wv2 -→ [s, Wv2]M12

(EM­AppAbs)

Term Evaluation t -→ t′

M -→ M′

!M -→ !M′
(E­MProj)

!LvM -→ v (E­MProjV)

Figure 9­6: Syntax, typing, and semantics for λL M, continued

More complex modules can be created by using the module­level pairing

operator L · , · M. The projection operators .1 and .2 then access the sub­

modules within such a pair.

Interfaces of module­pairs are given by specifying the interfaces of the

two submodules. However, in order to permit specifications such as “a mod­

ule containing an abstract type and a term of that type,” these interfaces

are allowed to be dependent. The interface Σm:I1.I2 classifies module pairs

whose first component satisfies the interface I1 and whose second compo­

nent satisfies I2, where the latter interface may refer to the contents of the

first component by the name m. (In the vocabulary of Chapter 8, m is an in­

ternal name for the first component of the module pair, while the external

names of the two components are always 1 and 2.)

For example, consider again the module n, defined by

module n = mod

type t = Nat

val x : t = 3

end

This is in essence a module containing a single type and a single term, and

hence can be encoded into λL M as

L LNat::*M, L3M M.
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This module satisfies the very precise interface

Σm:L*=NatM. LNatM,

which describes it as containing the type Nat and a natural number. This

interface is completely equivalent to

Σm:L*=NatM. L!mM,

which is an interface satisfied by modules containing the type Nat and a value

of that same type.

The encoding of n further matches the strictly more abstract (less informa­

tive) interface

Σm:L*M. L!mM

specifying only that the module contains some type and a value of that type.

Parameterized modules, or functors, are simply module­level functions.

Thus, for example, the diag functor defined above can be encoded as

λm:(Σm’:L*M. L!m’M).

L L!m.1×!m.1::*M, L{!m.2,!m.2}M M

The argument of this functor is required to be a module pair containing a

type and a value of that type (in sub­modules); it then returns a module pair

containing a pair type and a pair value (in sub­modules). By convention, first

and second projections bind most tightly, followed by applications, !, and

finally the binary operators such as × . Thus the type being returned by this

functor is (!(m.1))× (!(m.1)).

Interfaces for functors are also dependent, because the types in the func­

tor’s result may depend upon the types contained in the functor’s argument

value. The interface Πm:I1.I2 classifies functors that require an argument

satisfying I1 and which return a result satisfying I2, where I2 can involve the

argument value m. Thus, one possible most­precise interface describing the

encoded diag functor would be

Πm:(Σm’:L*M. L!m’M).

(Σm”:L*=!m.1×!m.1M. L!m”M).

In both Σm:I1.I2 and Πm:I1.I2 the variable m is bound in I2. In those

cases where m does not appear in I2 we can omit mention of the dependent

variable, writing non­dependent pair interfaces as I1×I2, and non­dependent

functor interfaces as I1→I2.

The remaining module expression is the sealing operation M :> I. This is

the generative sealing operation of Chapter 8, taking a module M and hiding
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all information about that module except what is explicitly mentioned in the

interface I. This is used for information­hiding purposes, in order to create

abstract (opaque) types.

The syntax separates out a syntactic set of modules which are determinate

(have type components that are predictable at compile­time) in the termi­

nology of Chapter 8. Only determinate modules are allowed in types. Some

non­values (e.g., L LNat::*M, LBool::*M M.1) are syntactically determinate and

so can appear within types. This design results from the fact that we must

allow module projections such as !m.1 within types, yet it is desirable for the

syntax of types to be closed under replacements of variables by values (e.g.,

replacing m by L LNat::*M, LBool::*M M).4

Typing and Evaluation Rules

The static semantics of λL M appears in Figure 9­6. The judgment Γ ` I defines

the well­formedness of interfaces, which requires all types in the interface

to be well­formed. More interesting is the subinterface relation Γ ` I <: I′,

which is nontrivial even though λL M has no subtyping relation. The key rule

here is SI­Forget, which specifies that a module with a transparent interface

can be used as if it had the corresponding opaque interface; type definitions

in interfaces may be neglected when not relevant. Subtyping for other base

interfaces coincides with equivalence. For simplicity SI­Pi specifies that inter­

faces for functors are invariant in their domain (contravariance would be a

reasonable alternative), but otherwise the dependent interfaces are covariant.

9.2.1 Exercise [«]: Find a syntactically different (but equivalent) precise interface

for the diag functor above, and a strictly less­precise interface also satisfied

by diag. 2

9.2.2 Exercise [«, Recommended]: The language λL M has a sub­interface relation,

but no subtyping. Suppose we added this, e.g., with Nat <: Top. How should

the interfaces LNatM and LTopM be related? How about L*=NatM and L*=TopM? 2

Interface equivalence could be defined directly, but it is shorter as in rule

QI­Eqv to define equivalent interfaces as being mutual subinterfaces.

λL M adds the single kinding rule K­MProj, stating that we can project from

a syntactically determinate module W to obtain a type as long as W is a module

whose interface guarantees that it contains a type. In this rule we need only

4. An alternative is to redefine substitution so that it reduces any new projections­from­pair­

values introduced (Lillibridge, 1997).
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check that W has an opaque interface of the form LKM because by subsumption

and SI­Forget, any module with a transparent interface also has an opaque

interface.

Type equivalence is extended as in λlet, but the new rule Q­MProj looks

for type definitions that occur in transparent interfaces rather than for type

definitions directly in the context.

The rules M­Term and M­Type give precise interfaces to the two sorts of

primitive modules; transparent interfaces can be weakened by subsumption

as specified in M­Sub.

The rules M­Var through M­Apply are similar to those in other systems

with dependent types. The only surprise might be the requirement of non­

dependent interfaces in the rules M­Snd and M­Apply. In many systems appli­

cations of (or projections from) items whose classifier has dependencies can

be handled using substitution, but substitution of general modules may lead

to ill­formed types, as only syntactically determinate modules may appear in

types.

The rule M­Self is justified by the following observation: assume a determi­

nate module W satisfies the interface LKM. Now consider the interface LK=!WM;

this is the interface of a module containing a single type, specifically the type

contained in W. Clearly W itself satisfies this description and hence ought to

have this latter interface. M­Self ensures that this is always provable. The

rules M­Self1 and M­Self2 are similar, and allow the M­Self rule to be ap­

plied to submodules of a larger module. For example, by using all three rules

we can conclude

m : L*M× L*M ` m : L*=!m.1M × L*=!m.2M,

i.e., that if m is a module containing two types, then it satisfies an interface

requiring a pair containing the two types in m.

In the presence of the Self rules, the more usual dependent typing rules

are admissible for determinate modules (Lillibridge, 1997):

Γ ` W : Σm:I1.I2

Γ ` W.2 : [m, W.1]I2

(M­SndW)

Γ ` M1 : Πm:I1.I2 Γ ` W2 : I1

Γ ` M1 W2 : [m, W2]I2

(M­ApplyW)

For example, suppose that we had M1 : Πm:L*M. L*=!m× !mM and W2 : L*M.

The interface of if M1 is dependent so we cannot directly use M­Apply to

type check the application M1 W2, but we can show, using SI­Pi, SI­Forget,

SI­Opaque, and M­Sub, that M1 satisfies the strictly less precise interface
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Πm:L*=!W2M. L*=!m×!mM and hence that M1 satisfies the equivalent interface

Πm:L*=!W2M. L*=!W2×!W2M, i.e., we have that M1 : L*=!W2M → L*=!W2×!W2M.

Now by M­Self we have W2 : L*=!W2M, so the premises of M­Apply are satisfied

and we obtain M1 W2 : L*=!W2×!W2M, exactly as the admissible rule M­ApplyW

predicts.

Finally, the M­Seal rule is an explicit form of subsumption hiding all infor­

mation not mentioned in the specified interface. The module

LLNat::*M,L3MM

has the very precise interface L*=NatM× LNatM, allowing the contents of its

second projection to be used as a natural number. In contrast, the sealed

module

LLNat::*M,L3MM :> Σm′:L*M.L!m′M

must be checked as having only the more abstract interface Σm′:L*M.L!m′M.

This enforces abstraction; we know that we could change this line to

LLBool::*M,LtrueMM :> Σm′:L*M.L!m′M

and any code using the module would continue to type check.

The evaluation relation for modules looks very much like the evaluation

relation for any lambda calculus with pairs. The one completely new rule

is EM­Seal. This sealing operation is generative and affects type checking

by mimicking the creation of a fresh abstract type whenever the sealing op­

eration is performed, but once we have checked that abstraction is being

respected we can ignore the sealing; when the program begins running it has

no observable effect.

Type Equivalence and Type Checking

The translucent sums calculus suffers from the avoidance problem discussed

in Chapter 8, and hence fails to have most­specific interfaces.

9.2.3 Exercise [«««]: Find a λL M module that (even up to equivalence) does not

have a most­precise interface. 2

This makes type checking difficult, though in practice programs can often be

restricted to subsets guaranteed to have principal interfaces. Leroy (1996),

for example, considers modules restricted to named form where every subex­

pression has a name. Thus, instead of writing

(λm::L*M. m) ( LLNat::*M, LBool::*MM.2 )
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Natural interface Γ ñ̀ W ↑ I

m:I ∈ Γ

Γ ñ̀ m ↑ I

Γ ñ̀ LT::KM ↑ LK=TM

Γ ñ̀ W1 ↑ Σm:I1.I2

Γ ñ̀ W1.1 ↑ I1

Γ ñ̀ W1 ↑ Σm:I1.I2

Γ ñ̀ W1.2 ↑ [m, W1.1]I1

Weak head reduction Γ ñ̀ T ; T′

Γ ñ̀ !W ↑ LK=TM

Γ ñ̀ !W ; T

Γ ñ̀ !(LW1,W2M.1) ; !W1

Γ ñ̀ !(LW1,W2M.2) ; !W2

Γ ñ̀ (λX::K11.T12)T2 ; [X, T2]T12

Γ ñ̀ T1 ; T′1

Γ ñ̀ T1 T2 ; T′1 T2

Figure 9­7: Algorithmic equivalence for λL M

we must assign names to all intermediate module computations, e.g.:

let m1 = λm::L*M. m

in let m2 = LNat::*M

in let m3 = LBool::*M

in let m4 = Lm2, m3M

in let m5 = m4.2

in let m = m1 m5

in ...

Given these restrictions, every module has a most­specific interface.

Even in the absence of most­specific interface, however, type equivalence

remains decidable. A similar comparison algorithm to that for λlet will work,

except that now it is module projections of the form !W that may have defini­

tions. For example, if m : L*M × L*=NatM then !m.2 is known to be equivalent

to Nat.

When does !W have a definition? A necessary, though not sufficient, con­

dition is that W have a transparent interface. For example, starting from the

bare assumptions that m1 : L*M and m2 : L*=!m1M (which would be the case

if m1 were a module containing an abstract type, and m2 were defined as be­

ing m1), then intuitively !m2 has as its definition the abstract type !m1, while

!m1 itself has no definition. Using M­Self, though, we can further show that

m1 : L*=!m1M. For the purposes of an algorithm, it is not useful to say that !m1

has itself as a definition.

In general, the M­Self rule allows more equations to be added to the inter­

faces of determinate modules, but never introduces any “new” information.

It therefore is irrelevant when trying to detect definitions, and this leads to

the notion of the natural interface of a module. The natural interface is the
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most­precise interface that can be computed without using the rule M­Self.

We say that the type !W has the definition T if its natural interface is a trans­

parent interface LK=TM. Figure 9­7 defines an algorithmic judgment Γ ñ̀ W ↑ I

for computing the natural interface I given Γ and W. Figure 9­7 then extends

weak head reduction to reduce type projections from determinate modules.

Algorithmic and structural type equivalence are not shown, as they are

very similar to the definition for λlet; the only difference would be that struc­

tural type equivalence must be extended to equate !W (where !W is weak head

normal) with itself.

9.2.4 Exercise [«, 3]: Verify that according to the definition of weak head reduc­

tion shown in Figure 9­7 we have m : (Σm′:L*M.L*=!m′M) ñ̀ !m.2 ⇓ !m.1. 2

Proofs of properties of module languages such as λL M can quickly become

difficult, however, because the type equivalence relation now is defined in

terms of all the other judgments of the static semantics, including well­

formedness of modules (via Q­MProj) and hence on well­formedness of terms.

However, soundness and decidability results have been shown for systems

closely related to λL M(Lillibridge, 1997; Dreyer, Crary, and Harper, 2003).

9.3 Singleton Kinds

In λlet, definitions were recorded with a new sort of context entry. Instead

of just listing the kinds of type variables, contexts could additionally specify

definitions. Definitions in λL M were similar, but the choice between kind and

kind­with­definition was in module interfaces.

In general, wherever a language normally requires a kind, we could allow

either the kind or the kind and a specific type. For example, we could extend

Fω×η with a new sort of polymorphic abstraction, written, λX::K1=T1.t2, that

is allowed to be instantiated only with the argument T1 (or an equivalent

type).

With this mechanism, we could now express type definitions in terms of

polymorphic instantiation. The derived form becomes

let X=T1 in t2
def
= (λX::K1=T1.t2) [T1]

where K1 is the kind of T1. The constraint on the function argument—namely

that the value passed in for X will be T1—is enough to type check the function

body. This definition repeats the type T1, but the result still can be signifi­

cantly smaller than [X, T1]t2.

Minamide, Morrisett, and Harper (1996) used this idea for the purposes of

polymorphic closure conversion. The goal was to turn both free term vari­

ables and free type variables of functions into arguments; this was useful in
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the context of a type­passing interpretation of polymorphism (Tarditi et al.,

1996) where types are computed and analyzed at run time. By using restricted

polymorphic abstractions, they were able to preserve well­formedness when

pulling types out of function bodies.

The cases where this sort of construct is genuinely useful are probably rare,

but rather than trying to predict exactly where definitions will and will not

be needed, the more general approach is to permit definitions at all points

where type variables appear. One natural formulation of this idea augments

the kinds themselves to include definitions.

The singleton kind S(T::K) classifies exactly those types of kind K provably

equivalent to T. For example, the kind S(int×int :: *) classifies all types

that are provably equivalent to the type of pairs of integers; up to equiva­

lence there is exactly one such type. Then instead of choosing between a kind

specification Y::* or a kind­and­definition specification Y::*=Nat, we specify

either Y::* or Y::S(Nat :: *).

Figure 9­8 defines λS, an alternate variant of Fω×η including singleton kinds.

Because the changes are pervasive, the type and kind judgments are shown

in full rather than just listing additions to Fω×η.

The built­in singleton kinds in λS are of the form S(T) where T is restricted

to be an ordinary type of kind *. We will show later, however, that more

general singleton kinds of the form S(T::K) are nevertheless expressible.

The types of λS include ordinary types, type operators, and (to permit ex­

pressiveness similar to that of λL M) pairs of types. The addition of singletons

allows kinds to refer to types, and thus it is natural to permit the kinds clas­

sifying type operators or pairs of types to be dependent. The kind ΣX::K1.K2

classifies pairs whose first component has kind K1 and second component

has kind K2, where K2 can use the type variable X to refer to the value of the

first component. In the case where K2 does not mention X, we can abbrevi­

ate this to K1×K2. Thus, for example, we give the pair of types (a collection

of two types, not the single type for a pair of values) {Nat,Nat} the kind

* × * stating simply that it is a pair of types, or give it the very precise kind

S(Nat) × S(Nat), i.e., that we have a pair of types whose components are

both equal to Nat, or an in­between kind such as ΣX::*. S(X), i.e., that we

have a pair of types whose first component has kind *, and whose second

component is the same as the first, or S(Nat) × *, i.e., that the first type is

Nat and the second is some proper type, and so on.

Similarly, the kind ΠX::K1.K2 classifies type operators that take an argu­

ment X of kind K1 and return a result of kind K2, where K2 can depend on the

argument X. If K2 does not mention X then the kind can be written K1⇒K2.

Thus, possible kinds for the identity function λX::*.X on types will include

the familiar *⇒* as well as the very precise kind ΠX::*. S(X), stating that,
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λS extends Fω×η

Syntax

K ::= kinds:

* kind of proper types

S(T) singleton kind

ΠX::K.K kind of type operators

ΣX::K.K kind of pairs of types

T ::= types:

X type variable

T→T type of functions

T×T type of pairs of terms

∀X::K.T universal type

λX::K.T type operator abstraction

T T type operator application

{T,T} pair of types

π1 T first projection

π2 T second projection

Derived Forms

K1 × K2
def
= ΣX::K1.K2 (X 6∈ FV(K2))

K1 ⇒ K2
def
= ΠX::K1.K2 (X 6∈ FV(K2))

Kind validity Γ ` K

Γ ` �

Γ ` *
(WK­*)

Γ ` T :: *

Γ ` S(T)
(WK­Sing)

Γ , X::K1 ` K2

Γ ` ΠX::K1.K2

(WK­Pi)

Γ , X::K1 ` K2

Γ ` ΣX::K1.K2

(WK­Sigma)

Subkinding Γ ` K <: L

Γ ` �

Γ ` * <: *
(SK­*)

Γ ` S ≡ T :: *

Γ ` S(S) <: S(T)
(SK­Sing)

Γ ` T :: *

Γ ` S(T) <: *
(SK­Forget)

Γ ` L1 <: K1

Γ , X::L1 ` K2 <: L2

Γ ` ΠX::K1.K2

Γ ` ΠX::K1.K2 <: ΠX::L1.L2

(SK­Pi)

Γ ` K1 <: L1

Γ , X::K1 ` K2 <: L2

Γ ` ΣX::L1.L2

Γ ` ΣX::K1.K2 <: ΣX::L1.L2

(SK­Sigma)

Kind Equivalence Γ ` K ≡ L

Γ ` K <: L Γ ` L <: K

Γ ` K ≡ L
(QK­Eqv)

Kinding rules Γ ` T :: K

X::K ∈ Γ Γ ` �

Γ ` X :: K
(K­Var)

Γ ` T :: *

Γ ` T :: S(T)
(K­SIntro)

Γ , X::K1 ` T2 :: K2

Γ ` λX::K1.T2 :: ΠX::K1.K2

(K­Abs)

Γ ` T1 :: ΠX::K1.K2 Γ ` T2 :: K1

Γ ` T1 T2 :: [X, T2]K2

(K­App)

Figure 9­8: Singleton kinds
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Kinding rules (continued) Γ ` T :: K

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1→T2 :: *
(K­Arrow)

Γ ` T1 :: * Γ ` T2 :: *

Γ ` T1×T2 :: *
(K­Times)

Γ , X::K1 ` T2 :: *

Γ ` ∀X::K1.T2 :: *
(K­All)

Γ ` ΣX::K1.K2

Γ ` T1 :: K1 Γ ` T2 :: [X, T1]K2

Γ ` {T1,T2} :: ΣX::K1.K2

(K­Pair)

Γ ` T :: ΣX::K1.K2

Γ ` π1 T :: K1

(K­Fst)

Γ ` T :: ΣX::K1.K2

Γ ` π2 T :: [X, π1 T]K2

(K­Snd)

Γ ` T :: ΠX::K1.L

Γ , X :: K1 ` T(X) :: K2 X 6∈ FV(T)

Γ ` T :: ΠX::K1.K2

(K­AbsSelf)

Γ ` T :: ΣX::K′1.K2 Γ ` π1 T :: K1

Γ ` T :: ΣX::K1.K2

(K­Self1)

Γ ` T :: ΣX::K1.K
′
2 Γ ` π2 T :: K2

Γ ` T :: K1×K2

(K­Self2)

Γ ` T :: K1 Γ ` K1 <: K2

Γ ` T :: K2

(K­Sub)

Equivalence rules Γ ` S ≡ T :: K

Γ ` T :: K

Γ ` T ≡ T :: K
(Q­Refl)

Γ ` T ≡ S :: K

Γ ` S ≡ T :: K
(Q­Sym)

Γ ` S ≡ U :: K Γ ` U ≡ T :: K

Γ ` S ≡ T :: K
(Q­Trans)

Γ ` S1 ≡ T1 :: ΠX::K1.K2

Γ ` S2 ≡ T2 :: K1

Γ ` S1 S2 ≡ T1 T2 :: [X, S1]K2

(Q­App)

Γ ` S ≡ T :: ΣX::K1.K2

Γ ` π1 S ≡ π1 T :: K1

(Q­Fst)

Γ ` S ≡ T :: ΣX::K1.K2

Γ ` π2 S ≡ π2 T :: [X, π1 S]K2

(Q­Snd)

Γ ` ΣX::K1.K2

Γ ` S1 ≡ T1 :: K1

Γ ` S2 ≡ T2 :: [X, S1]K2

Γ ` {S1,S2} ≡ {T1,T2} :: ΣX::K1.K2

(Q­Pair)

Γ ` K1 ≡ K2 Γ , X :: K1 ` S2 ≡ T2 :: K2

Γ ` λX::K1.S2 ≡ λX::K2.T2 :: ΠX::K1.K2

(Q­Abs)

Γ ` K1 ≡ K2 Γ , X :: K1 ` T1 ≡ T2 :: *

Γ ` ∀X::K1.T1 ≡ ∀X::K2.T2 :: *

(Q­All)

Γ ` S :: S(T)

Γ ` S ≡ T :: S(S)
(Q­SElim)

Γ ` ΣX::K1.K2

Γ ` π1S ≡ π1T :: K1

Γ ` π2S ≡ π2T :: [X, π1 S]K2

Γ ` S ≡ T :: ΣX::K1.K2

(Q­Pair­Ext)

Γ ` S :: ΠX::K1.L1 Γ ` T :: ΠX::K1.L2

Γ , X :: K1 ` S X ≡ T X :: K2

Γ ` S ≡ T :: ΠX::K1.K2

(Q­Ext)

Γ ` S ≡ T :: L Γ ` L <: K

Γ ` S ≡ T :: K
(Q­Sub)

Figure 9­8: Singleton kinds, continued
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given any type X of kind *, the function returns a result equal to X. There are

infinitely many other possibilities as well, including S(Nat)⇒S(Nat), which

states that the function can be applied to the type Nat and will return the

same type Nat.

Every type of kind S(T) is, by the definition of λS, also a proper type of

kind *. This induces a subkinding relation with S(T) <: * for any type T. Sub­

kinding between singleton kinds coincides with equivalence, and subkinding

is lifted to the kinds of functions and of pairs in the normal way; e.g., function

kinds are contravariant in their argument and covariant in their result.

9.3.1 Exercise [«]: The language λS has subkinding but not subtyping. If subtyp­

ing were added, with Nat <: Top, then how should the kinds S(Nat) and

S(Top) be related? 2

The well­formedness rules for types are mostly the familiar rules for a

dependently­typed (or, in this case, dependently­kinded) lambda calculus with

functions and pairs. Five rules stand out for special consideration, however.

Rule K­Sub is a subsumption rule that makes use of the subkinding rule; a

type with a more­precise kind can also be used as a type with a less­precise

kind. Rule K­SIntro is the introduction rule for singleton kinds. This rule al­

lows a well­formed type T of kind * to be given the more precise singleton

kind S(T).

Rules K­Self1 and K­Self2 serve the same purpose as M­Self1 and M­Self2

in the translucent sum calculus, while K­AbsSelf serves a similar purpose

for kinds of type operator abstractions. In most type systems all three rules

would be admissible, but here they allow more precise typings. For exam­

ple, suppose Y is a pair of types, that is, Y::*×*. Now consider the kind

S(π1 Y)×S(π2 Y), i.e., the kind of pairs of types whose first component is

equal to the first component of Y, and whose second component is equal

to the second component of Y. Regardless of whether the language includes

eta­equivalence for types (λS does), Y itself should satisfy this latter kind.

Rules K­Self1 and K­SIntro allow us to conclude that Y : S(π1 Y)×*, and

then K­Self2 and K­SIntro allow us to further prove Y : S(π1 Y)×S(π2 Y).

Similarly, assume Z :: *⇒*. The kind ΠX::*. S(Z X) classifies all type op­

erators that, when given a type argument X, yield the same result as Z does

when given X. Again, Z itself has this property and rule K­AbsSelf is used to

prove it.

Collectively, the three Self rules ensure that types have every kind that

their eta­expansions do.

Rules Q­Refl through Q­All are standard for a lambda calculus with de­

pendencies; they insure that definitional equivalence is a congruence on well­

formed types. Rule Q­SElim is the elimination rule for singleton kinds, letting
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us make use of the fact that a type has a singleton kind. Rules Q­Pair­Ext

and Q­Ext yield extensionality: componentwise­equivalent pairs are equiv­

alent and pointwise­equivalent functions are equivalent. Finally, we have a

subsumption rule for equivalence, Q­Sub, corresponding to the subsumption

rule for typing.

The addition of singleton kinds has more consequences for equivalence

than might appear at first. An attentive reader may have noticed that the

definition of type equivalence omits the beta­reduction rule for function ap­

plications and the two standard rules for reducing projections from pairs. A

surprising fact about languages with singletons, noticed by Aspinall (1994),

is that other elimination rules can become admissible (i.e., if the premises are

provable using the above rules then so is the conclusion):

Γ ` T1 :: K1 Γ ` T2 :: K2

Γ ` π1 {T1,T2} ≡ T1 :: K1

(Q­Beta­Fst)

Γ ` T1 :: K1 Γ ` T2 :: K2

Γ ` π2 {T1,T2} ≡ T2 :: K2

(Q­Beta­Snd)

Γ , X::K1 ` T12 :: K12 Γ ` T2 :: K12

Γ ` (λX::K11.T12)T2 ≡ [X, T2]T12 :: [X, T2]K12

(Q­AppAbs)

More importantly (since we would have added beta­equivalence had it not

been admissible), the kind at which two types are compared can determine

whether or not they are equivalent. Types do not have unique kinds, and a

pair of types can be equivalent at one kind but not another.

For example, consider the identity function on types, λX::*.X, and the

constant function λX::*.Nat. There is no way to prove the judgment

(λX::*.X) ≡ (λX::*.Nat) :: (*⇒*).

However, by subsumption both functions also have the kind S(Nat)⇒*, and

at this kind we can prove

` (λX::*.X) ≡ (λX::*.Nat) :: (S(Nat)⇒*).

Viewed as functions that will only be applied to the argument Nat, the two

functions do return the same result Nat. By extensionality, then, the two func­

tions are equivalent at kind S(Nat)⇒*.

Using this result and Rule Q­App we can further show that

Y :: (S(Nat)⇒*)⇒* ` Y(λX::*.X) ≡ Y(λX::*.Nat) :: *.

In this equivalence judgment, both sides are normal with respect to beta and

eta­reduction. Y itself has no obvious definition that can be expanded away.

Nevertheless, equivalence remains decidable; one algorithm appears below.
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S(T :: *)
def
= S(T)

S(T :: S(T′))
def
= S(T)

S(T :: ΠX::K1.K2)
def
= ΠX::K1.S(T X :: K2) where X 6∈ FV(T)

S(T :: ΣX::K1.K2)
def
= S(π1 T :: K1) × S(π2 T :: [X, π1 T]K2)

Figure 9­9: Labeled singleton kinds

Singletons at Higher Kinds

In λlet the context could contain definitions for type operators, for example

Y :: (*⇒*) = (λX::*.X→X). We cannot directly represent this definition as

Y :: S(λX::*.X→X) because the kind S(T) is well­formed only for types T of

kind *.

Using extensionality, however, more general singletons are definable. For

example, one can show that the kind

ΠX::*.S(X→X)

classifies all type operators that are equivalent to λX::*.X→X at kind *⇒*.

More generally, whenever T :: K holds we can define the kind of types

equivalent to T at kind K as a derived form, written S(T :: K). Again the kind

classifier is crucial, since the function λX::*.X should have kind

S((λX::*.Nat) :: S(Nat)⇒*)

but not kind

S((λX::*.Nat) :: *⇒*).

Figure 9­9 defines labeled singleton kinds S(T::K) by induction on the size

of the classifying kind K. The sizes of kinds are defined as follows:

size(*)
def
= 1

size(S(T))
def
= 2

size(ΣX::K1.K2)
def
= 1+ size(K1)+ size(K2)

size(ΠX::K1.K2)
def
= 1+ size(K1)+ size(K2)

An easy inductive proof shows that substitutions have no effect on the size

of kinds, and hence the labeled singleton kinds in Figure 9­9 are well­defined.

These labeled singletons behave exactly as one would expect. To show this,

we start with some basic facts about λS.
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9.3.2 Proposition [Weakening]: 1. If Γ1, Γ3 ` J for any λS judgment form J and

Γ1, Γ2, Γ3 ` � then Γ1, Γ2, Γ3 ` J .

2. If Γ1, X::K, Γ2 ` J and Γ1 ` L <: K then Γ1, X::L, Γ2 ` J . 2

9.3.3 Proposition [Substitution]:

1. If Γ1,X::K, Γ2 ` J for any judgment form J and Γ1 ` T :: K then Γ1, [X ,

T]Γ2 ` [X, T]J .

2. If Γ1,X::K, Γ2 ` S :: L and Γ1 ` T ≡ T′ :: K then Γ1, [X , T]Γ2 ` [X , T]S ≡

[X, T′]S :: [X, T]L. 2

9.3.4 Proposition [Validity]:

1. If Γ ` T :: K then FV(T)∪ FV(K) ⊆ dom(Γ).

2. If Γ1, Γ2 ` � then Γ1 ` � and dom(Γ1)∩ dom(Γ2) = ∅.

3. If Γ ` K then Γ ` �.

4. If Γ ` T :: K then Γ ` K.

5. If Γ ` S ≡ T :: K then Γ ` S :: K and Γ ` T :: K. 2

At this point we can consider properties of the labeled singletons them­

selves.

9.3.5 Proposition: [X, S](S(T :: K)) = S([X, S]T :: [X, S]K). 2

Proof: By induction on the size of K. 2

9.3.6 Proposition [Labeled Singletons]: 1. If Γ ` T :: K then Γ ` T :: S(T::K).

2. If Γ ` S :: S(T :: K) and Γ ` T :: K then Γ ` S ≡ T :: K.

3. If Γ ` S ≡ T :: K and Γ ` K <: L then Γ ` S(S::K) <: S(T::L).

4. If Γ ` T :: K then Γ ` S(T::K) <: S(T::S(T::K)). 2

Proof: We show the proof of just the first part, which follows by induction

on the size of K. Assume Γ ` T :: K.

Case: K = *, so S(T::K) = S(T).

Then Γ ` S :: S(T) by Rule K­SIntro.
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Case: K = S(S), so S(T::K) = S(T).

By Proposition 9.3.4(5) we have Γ ` S(S), so by inversion of Rule WK­Sing we

have Γ ` S :: *. Therefore Γ ` S(S) <: *, and so by K­Sub we have Γ ` T :: *

and hence Γ ` T :: S(T) by K­SIntro.

Case: K = ΠX::K1.K2, so S(T::K) = ΠX::K1.S(T X :: K2).

By Proposition 9.3.4(5) and inversion we have Γ , X::K1 ` �, so by Proposi­

tion 9.3.2(1) and K­App, Γ , X::K1 ` T X :: K2. By the inductive hypothesis,

Γ , X::K1 ` T X :: S(T X :: K2). Thus by Rule K­AbsSelf we have Γ ` T ::

ΠX::K1.S(T X :: K2) as desired.

Case: K = ΣX::K1.K2, so S(T::K) = S(π1 T :: K1)×S(π2 T :: [X, π1 T]K2)

By K­Fst and K­Snd and the inductive hypothesis, we have Γ ` π1 T ::

S(π1 T :: K1) and Γ ` π2 T :: S(π2 T :: [X , π1 T]K2). Therefore, by

Rules K­Self1 and K­Self2 the desired result follows. 2

9.3.7 Exercise [««]: Prove Part 2 of Proposition 9.3.6. Why do we need the extra

assumption Γ ` T :: K ? 2

At this point, it is not too hard to show that the Beta rules are admissible,

as there is a natural proof involving labeled singletons.

9.3.8 Exercise [««, Recommended]: Prove that rules Q­Beta­Fst, Q­Beta­Snd, and

Q­AppAbs are admissible. 2

Aspinall (1994) took a slightly different approach to formalizing a lan­

guage with singletons. His language λ≤{} included only a very restricted form

of extensionality. The encoding of labeled singletons used here was thus

unavailable, and labeled singletons were therefore made primitive language

constructs.5 The properties of Proposition 9.3.6 are then axioms describ­

ing the behavior of these primitive singletons. In this formulation, Proposi­

tion 9.3.6(4) is necessary to have principal kinds; otherwise

* :> S(Nat::*)

:> S(Nat::S(Nat::*))

:> S(Nat::S(Nat::S(Nat::*)))

:> · · ·

would be an infinite sequence of increasingly more­precise kinds for Nat.

An interesting consequence of making labeled singletons primitive is that

Aspinall was able to define the equivalence judgment Γ ` S ≡ T :: K as

syntactic sugar for the judgment Γ ` S :: S(T :: K); there was not a separate

collection of rules defining the equivalence judgment.

5. More precisely, Aspinall studied term equivalence in a language with singleton types, but

the ideas apply just as well for type equivalence with singleton kinds.



376 9 Type Definitions

A disadvantage of making labeled singletons primitive rather than relying

on extensionality is that most­precise classifiers can be large. For example, in

an Aspinall­style system the most­precise kind of λX::*.λY::*.X would be

S((λX::*.λY::*.X) ::

ΠX::*.S((λY::*.X) :: (ΠY::*.S(X :: *))))

rather than

ΠX::*. ΠY::*. S(X)

as in λS. The advantages are not entirely one­sided; S(Z :: *⇒*⇒*) seems

simpler than the λS kind ΠY1::*.ΠY2::*.S(Z Y1 Y2).

Algorithmic Type Equivalence

Figure 9­10 shows an algorithmic version of equivalence for well­kinded λS

types. The general framework is very similar to that for λlet and λL M.

First of all, there is a judgment for computing “natural kinds” in analogy

with the natural interfaces for modules in Figure 9­7. These are the most­

precise kind available without using singleton introduction rules, and a type

has a definition T if its natural kind is a singleton S(T).

The algorithmic equivalence relation is defined by induction on the clas­

sifying kind: type operators are compared by applying both sides to a fresh

variable (to determine if they are pointwise equivalent), while pairs of types

are compared componentwise. Types of kind * are head­normalized and com­

pared structurally very much as before. Finally, types with singleton kinds are

easy to compare because of the precondition that the two types actually have

the kind at which they are being compared; any two types of kind S(T) are

equivalent to T and hence equivalent to each other.

Viewed as an algorithm with inputs Γ , S, and T, the structural equivalence

judgment both compares S and T and determines the natural kind of S. This

kind is used only to determine the kind at which to compare arguments of

two irreducible applications.

Finally, there is a kind equivalence algorithm, necessary since kinds can

contain types, and hence can be equivalent without being identical.

9.3.9 Exercise [««, Recommended]: Show that

Y::(S(Nat)⇒*)⇒* ñ̀ Y(λX::*.X)a Y(λX::*.Nat) :: *

is provable, but

Y::(*⇒*)⇒* ñ̀ Y(λX::*.X)a Y(λX::*.Nat) :: *

is not. 2
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Natural kind Γ ñ̀ T ↑ K

X::K ∈ Γ

Γ ñ̀ X ↑ K

Γ ñ̀ T1 ↑ ΠX::K1.K2

Γ ñ̀ T1 T2 ↑ [X, T2]K2

Γ ñ̀ T1 ↑ ΣX::K1.K2

Γ ñ̀ π1 T1 ↑ K1

Γ ñ̀ T1 ↑ ΣX::K1.K2

Γ ñ̀ π2 T2 ↑ [X, π1 T1]K2

Weak head reduction Γ ñ̀ T ; T′

Γ ñ̀ T ↑ S(T′)

Γ ñ̀ T ; T′

Γ ñ̀ (λX::K11.T12)T2 ; [X, T2]T12

Γ ñ̀ π1 {T1,T2} ; T1

Γ ñ̀ π2 {T1,T2} ; T2

Γ ñ̀ T1 ; T′1

Γ ñ̀ T1 T2 ; T′1 T2

Γ ñ̀ T1 ; T′1

Γ ñ̀ π1 T1 ; π1 T
′
1

Γ ñ̀ T1 ; T′1

Γ ñ̀ π2 T1 ; π2 T
′
1

Head Normalization Γ ñ̀ S ⇓ T

Γ ñ̀ S ; S′ Γ ñ̀ S′ ⇓ T

Γ ñ̀ S ⇓ T

Γ ñ̀ S 6;

Γ ñ̀ S ⇓ S

Type Equivalence Γ ñ̀ S↔ T :: K

Γ ñ̀ S ⇓ S′ Γ ñ̀ T ⇓ T′

Γ ñ̀ S′ ↔ T′ ↑ *

Γ ñ̀ Sa T :: *

Γ ñ̀ Sa T :: S(T′)

X 6∈ dom(Γ)

Γ ,X::K1 ñ̀ S Xa T X :: K2

Γ ñ̀ Sa T :: ΠX::K1.K2

Γ ñ̀ π1 Sa π1 T :: K1

Γ ñ̀ π2 Sa π2 T :: [X, π1 S]K2

Γ ñ̀ Sa T :: ΣX::K1.K2

Structural Type Equivalence Γ ñ̀ S↔ T ↑ K

X::K ∈ Γ

Γ ñ̀ X↔ X ↑ K

Γ ñ̀ S1 a T1 :: * Γ ñ̀ S2 a T2 :: *

Γ ñ̀ S1→S2 ↔ T1→T2 ↑ *

Γ ñ̀ S1 a T1 :: * Γ ñ̀ S2 a T2 :: *

Γ ñ̀ S1×S2 ↔ T1×T2 ↑ *

Γ ñ̀ K1 a L1 X 6∈ dom(Γ)

Γ , X::K1 ñ̀ S2 a T2 :: *

Γ ñ̀ ∀X::K1.S2 ↔ ∀X::L1.T2 ↑ *

Γ ñ̀ S1 ↔ T1 ↑ ΠX::K1.K2

Γ ñ̀ S2 a T2 :: K1

Γ ñ̀ S1 S2 ↔ T1 T2 ↑ [X, S2]K2

Γ ñ̀ S1 ↔ T1 ↑ ΣX::K1.K2

Γ ñ̀ π1 S1 ↔ π1 T1 ↑ K1

Γ ñ̀ S1 ↔ T1 ↑ ΣX::K1.K2

Γ ñ̀ π2 S1 ↔ π2 T1 ↑ [X, π1 S1]K2

Kind Equivalence Γ ñ̀ Ka L

Γ ñ̀ *a *

Γ ñ̀ Sa T :: *

Γ ñ̀ S(S)a S(T)

Γ ñ̀ K1 a K2 X 6∈ dom(Γ)

Γ ,X::K1 ñ̀ K2 a L2

Γ ñ̀ ΠX::K1.K2 a ΠX::L1.L2

Γ ñ̀ K1 a K2 X 6∈ dom(Γ)

Γ ,X::K1 ñ̀ K2 a L2

Γ ñ̀ ΣX::K1.K2 a ΣX::L1.L2

Figure 9­10: Algorithmic equivalence for λS
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The equivalence algorithm is correct and terminating for well­formed types:

9.3.10 Fact: Assume Γ ` S :: K and Γ ` T :: K. Then Γ ñ̀ Sa T :: K if and only if

Γ ` S ≡ T :: K. Furthermore, the judgment Γ ñ̀ Sa T :: K is always decidable

(i.e, proof search will terminate whether or not S and T are equivalent). 2

The correctness of this equivalence algorithm is nontrivial. The approach

suggested in Chapter 6 does not directly apply because there is no a priori

reason to believe that algorithmic equivalence is symmetric and transitive.

The problem is in the “asymmetry” of the rules. The structural equivalence

judgment Γ ñ̀ S ↔ T ↑ K computes the natural kind K of S as it goes along,

but might have just as well computed the natural kind of T instead. Although

we the two natural kinds turn out to be provably equivalent, this does not

guarantee that the algorithm is unaffected—kinds in the classifier end up in

the context, which can affect how later weak head normalizations proceed,

which could a priori result in a different answer or affect termination.

If the algorithm cannot be shown directly to be symmetric or transitive,

then a logical equivalence relation defined as for λlet cannot directly be

shown to be symmetric or transitive. Stone and Harper (2000; 2005) showed,

however, that variants of Kripke logical relations can be used to prove the

correctness of closely­related algorithms, from which the correctness of the

above algorithm can be derived.

Phase­Splitting

λL M added second­class modules to a language and in so doing increased

the number of sorts of entities in the language: modules and interfaces, in

addition to the pre­existing terms, types, and kinds. Interestingly, modules

and interfaces can sometimes be decomposed into uses of terms, types, and

kinds. Some compilers for Standard ML (Petersen, Cheng, Harper, and Stone,

2000; Shao, 1997, 1998) even implement modules using this technique.

The translation is possible if the module system has a phase distinction, as

discussed in Chapter 8: types in modules must depend only on other types.

λL M appears to violate this requirement, as the type !W may involve term

values. Similarly, a functor application M1 M2 can yield a module containing

types, and the result syntactically appears to depend on all of M2, which can

contain terms.

As observed by Harper, Mitchell, and Moggi (1990), however, the depen­

dency of types on the terms in modules is illusory. References to modules in

types really involve only the type components of that module; all else is irrel­

evant. Similarly, in a functor application M1 M2 the types returned to depend

only on types defined in M1 and types defined in M2; there is no way that the

terms in these modules can affect the resulting types.
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It is therefore possible to split every module into a type part and a term

part, referred to here as the static and dynamic parts of the module; the

former can be represented as a type (perhaps of a higher kind), and the latter

as a term (potentially polymorphic).

A module containing many types and many values would split into a col­

lection of types (not to be confused with the type of a tuple of terms) and

a collection of values. In parallel, a functor application can be split into an

application of types (the type part of the functor applied to the type part of

the argument) and an application of a polymorphic term (the term part of the

functor applied to both the type part of the argument and the term part of

the argument). For example, the functor

module diag = λ(p : sig

type t

val x : t

end).

mod

type u = p.t × p.t

val y : u = {p.x, p.x}

end

which we encoded in λL M as

λm:(Σm’:L*M. L!m’M). L L!m.1×!m.1M, L{!m.2,!m.2}M M

could have its behavior with respect to producing types modeled by the

type operator λX::*. X× X, since diag takes a type in its argument and

returns a corresponding pair type in its result. Similarly, the behavior of

diag in producing terms can be modeled as the polymorphic abstraction

λX::*. λx:X. {x,x}, representing that it takes a type and a term of that

type in the argument, and that it returns a pair value.

Interfaces can be split correspondingly into a kind classifying the static

portion of the module, and a type classifying the dynamic portion of the

module. For example, a specification

diag : (Πm:(Σm’:L*M. L!m’M). (Σm”:L*=!m.1×!m.1M. L!m”M))

could be split into two specifications for the static and dynamic parts of diag:

diags :: ΠX::*. S(X×X)

and

diagd : ∀X::*. X → diags(X).

Equations in λL M interfaces become singleton kinds after phase­splitting.

Figure 9­11 specifies a formal translation from λL M into λS. For simplicity,

the translation maintains the invariant that every module and every interface
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Modules

|m|s := Xm |m|d := xm

|LtM|s := S0 |LtM|d := v

|LT::KM|s := |T| |LT::KM|d := t0

|LM1,M2M|s := { |M1|s, |M2|s } |LM1,M2M|d := { |M1|d, |M2|d }

|M.1|s := π1(|M|s) |M.1|d := π1(|M|d)

|M.2|s := π2(|M|s) |M.2|d := π2(|M|d)

|λm:I.M|s := λXm:|I|s.|M|s |λm:I.M|d := λXm:|I|s.

λxm:|I|d(Xm).

|M|d

|M1 M2|s := |M1|s |M2|s |M1 M2|d := (|M1|d [|M2|s]) |M2|d

|M :> I|s := |M|s |M :> I|d := |M|d

Interfaces

|LTM|s := K0 |LTM|d(Ts) := |T|

|LKM|s := K |LKM|d(Ts) := T0

|LK=TM|s := S(|T| :: K) |LK=TM|d(Ts) := T0

|Πm:I1.I2|s := ΠXm::|I1|s. |Πm:I1.I2|d(Ts) := ∀Xm::|I1|s.

|I2|s [if Xm 6∈ FV(Ts)] |I1|d(Xm) →

(|I2|d(Ts Xm))

|Σm:I1.I2|s := ΣXm::|I1|s. |Σm:I1.I2|d(Ts) := |I1|d(π1 Ts) ×

|I2|s ([Xm , π1 Ts]|I2|d(π2 Ts))

Types and Contexts

|X| := X |·| := ·

|T1→T2| := |T1| → |T2| |Γ , X::K| := |Γ|, X::K

|T1×T2| := |T1| × |T2| |Γ , x:T| := |Γ|, x:|T|

|∀X::K1.T2| := ∀X::K1.|T2| |Γ , m:I| := |Γ|, Xm::|I|s ,

|λX::K1.T2| := λX::K1.|T2| xm:|I|d(Xm)

|T1 T2| := |T1| |T2|

|!W| := |W|s

Terms

|x| := x |{t1,t2}| := { |t1|, |t2| }

|λx:T.t| := λx:|T|.|t| |t.1| := |t|.1

|t1 [t2]| := |t1| [ |t2| ] |t.2| := |t|.2

|λX::K.t| := λX::K.|t| |!M| := |M|d

|t1 T2| := |t1| |T2|

Figure 9­11: Phase­splitting translation
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has static and dynamic parts. Since λL M contains primitive modules that con­

tain only terms or only types, the translation uses an arbitrary term t0 of

some type T0 to represent the dynamic part of a module containing only a

type (an obvious choice for t0 would be the value of type Unit), and uses an

arbitrary type S0 of kind K0 representing the static part of a module contain­

ing only a term.

Also, for every module variable m we assume there exists a type variable Xm

and a term variable xm. These will be bound to the static and dynamic parts

respectively of whatever m would have been bound to in the original code.

Figure 9­11 begins by defining |M|s , which is a type expression contain­

ing all the types in the module M. In most cases this is straightforward. The

static part of a module variable m is the corresponding type variable Xm; the

static part of a module containing the type T is T itself, or more precisely, the

translation of T, which eliminates occurrences of modules (see below). The

static part of the first or second projection from a module pair is the first or

second projection the pair’s static part. The static part of an application is

the application of its static parts.

The static part of a sealed module is defined to be the static part of the

underlying module; generative sealing is the one construct in λL M with no

direct equivalent in λS. The λS language has no abstraction mechanism, and

there is no easy way to add a generative construct to its equational theory

of types. However, since sealing has no dynamic effect it is possible to take a

well­formed λL M term and erase all occurrence of sealing, yielding a well­typed

and behaviorally­equivalent term. Implementations of λL M based on phase­

splitting typically first do type checking in λL M to ensure that abstraction is

being respected, and then erase the sealing as they perform phase­splitting.

The definition |M|d of the dynamic part of a module M is similar. The dy­

namic part of a functor is parameterized both by the static part of the argu­

ment and the dynamic part, since values returned by a functor can depend

both on the types in the argument and the values in the argument. Mod­

ule applications then turn into the corresponding polymorphic instantiation

followed by an application.

The static part |I|s of a module interface I is a kind describing the types

in any module satisfying I. Singleton kinds are used to describe equations

found in transparent interfaces.

The dynamic part of a module interface is more interesting. The values

in a module may be describable only in terms of the types in the module.

For example, after phase­splitting the dynamic part of a module of interface

Σm:L*M.L!mM (a module containing an abstract type and a value of that type)

can only be described as containing a value whose type is contained in the

static part of that same module. The definition of the dynamic part of an in­
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terface, |I|d(Ts), is therefore defined in terms of both the interface I and

the static part Ts of a module satisfying I. Such a static part is available wher­

ever the dynamic part of an interface is needed. For example, the definition of

the dynamic part of a functor module with argument interface I is a polymor­

phic function requiring in succession both Xm (the static part of the functor’s

argument) and a valid dynamic part for a module with that static part, i.e., a

value of type |I|d(Xm).

Recall that the static part of a module application is the application of

the static parts. Therefore, when computing the dynamic part of an interface

Πm:I1.I2, we know that the module being returned satisfies the interface I2

and that the static part of the module being returned is the static part of this

functor applied to the static part of the functor argument. Thus, the type of

the value returned by the dynamic part is |I2|d(Ts Xm), where Ts is the static

part of the functor as a whole.

Similarly, if we have a module pair with interface Σm:I1.I2 having static

part Ts , then the static parts of the components are π1 Ts and π2 Ts respec­

tively. Further, since I2 may contain free­occurrences of m, its dynamic part

may refer to Xm. Xm stands for the static part of (i.e., the types in) in the

module’s first component, so we can replace it by π1 Ts , the static part of

the module’s first component. No similar substitution is needed for xm; the

dynamic part of I2 is still a type and cannot contain term variables.

The translation of |T| of a type is very simple. Phase­splitting is possi­

ble because references to modules in types just involve the types in these

modules. We can therefore replace all module projections of the form !W by

the static part |W|s of W. Similarly, the translation of a term goes through

and translates all types, and replaces every projection !M of a value from a

module by the dynamic part of M.

The translation of a context translates types, leaves kinds alone (since λL M

kinds do not contain types, terms, or variables), and replaces every assump­

tion of a module variable m with assumptions for the two corresponding vari­

ables Xm and xm.

9.3.11 Exercise [««, Recommended]: Compute the static and dynamic parts for

the λL M definition of the diag functor. How do these differ from the intuitive

translations given above? 2

We can show that this transformation turns well­formed λL M code into well­

formed λS code. We distinguish proofs in the two languages λL M and λS by

writing `LM and `S respectively.

9.3.12 Lemma: If Y 6∈ FV(I) then |I|d(Ts) = [Y, Ts]|Id|(Y). 2
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9.3.13 Theorem [Phase­Splitting]:

1. If Γ `LM � then |Γ| `S �.

2. If Γ `LM T :: K then |Γ| `S |T| :: K.

3. If Γ `LM S ≡ T :: K then |Γ| `S |S| ≡ |T| :: K.

4. If Γ `LM t : T then |Γ| `S |t| : |T|.

5. If Γ `LM I then |Γ| `S |I|s , and if further Y 6∈ dom(Γ) and Y 6= Xm for every

m then |Γ|,Y::|I|s `S |I|d(Y) :: *.

6. If Γ `LM I1 <: I2 then |Γ| `S |I1|s <: |I2|s and if further Y 6∈ dom(Γ) and

Y 6= Xm for every m then |Γ|,Y::|I1|s `S |I1|d(Y) ≡ |I2|d(Y) :: *.

7. If Γ `LM I1 ≡ I2 then |Γ| `S |I1|s <: |I2|s and if further Y 6∈ dom(Γ) and

Y 6= Xm for every m then |Γ|,Y::|I1|s `S |I1|d(Y) ≡ |I2|d(Y) :: *.

8. If Γ `LM M : I then |Γ| `S |M|s :: |I|s and |Γ| `S |M|d : |I|d(|M|s). 2

Proof: By induction on derivations and cases on the last rule used. Two rep­

resentative cases are sketched here.

Case I­Sigma: Γ `LM
Σm:I1.I2 because Γ , m:I1 `LM I2.

By the inductive hypothesis, |Γ|,Xm::|I1|s ,xm:|I1|d(Xm) `S |I2|s . Inspec­

tion of λS shows that terms variables have no effect on the well­formedness of

kinds, so we have |Γ|,Xm::|I1|s `S |I2|s and hence

|Γ| `S ΣXm::|I1|s.|I2|s . That is, |Γ| `S |Σm:I1.I2|.

Also by the inductive hypothesis|Γ|,Xm::|I1|s,xm:|I1|d(Xm),Y2:|I2|s `S

|I2|d(Y2) :: * where Y2 is fresh. By Proposition 9.3.2(1) and the observa­

tion that term variables have no effect on the well­formedness of types, we

have |Γ|,Y::(ΣXm::|I1|s.|I2|s),Xm::|I1|s ,Y2:|I2|s `S |I2|d(Y2) :: *.

By Proposition 9.3.3(1), |Γ|,Y::(ΣXm::|I1|s.|I2|s),Y2:[Xm , π1 Y]|I2|s `S

[Xm , π1 Y]|I2|d(Y2) :: *. By Lemma 9.3.12 and Proposition 9.3.3(1),

|Γ|,Y::(ΣXm::|I1|s.|I2|s) `S [Xm , π1 Y]|I2|d(π2 Y) :: *. That is,

|Γ|,Y::(ΣXm::|I1|s.|I2|s) `S |Σm:I1.I2|d(Y) :: *.

Case M­Self2: Γ `LM W : I1×I2 because Γ `LM W : Σm:I1.I
′
2 and Γ `LM W.2 :

I2.

By the inductive hypothesis, |Γ| `S |W|s :: ΣXm::|I1|s.|I
′
2|s and |Γ| `S

π2 |W|s :: |I2|s . By Rule K­Self2, then, |Γ| `S |W|s :: |I1|s ×|I2|s . That

is, |Γ| `S |W|s :: |I1×I2|s . Similarly, by the inductive hypothesis we have

|Γ| `S |W|d : |I1|d(π1 |W|s)× . . . and |Γ| `S π2 |W|d : |I2|d(π2 |W|s).

Since λS has no subtyping and terms can be shown to have unique types up to

equivalence, it follows that |Γ| `S |W|d : |I1|d(π1 |W|s)×|I2|d(π2 |W|s).

That is, |Γ| `S |W|d : |I1×I2|d(|W|s). 2
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Many variations on the phase­splitting transformation are possible. Also,

instead of relying on singleton kinds, type definitions can be eliminated dur­

ing phase­splitting. This approach is taken by the FLINT compiler for Stan­

dard ML (Shao, 1998).

If the source language λL Mis modified to make Π interfaces contravariant in

their domains, then to type check the result we either need to add a limited

form of subtyping in λS (in addition to the subkinding that already exists),

or to insert explicit type coercions (Breazu­Tannen, Coquand, Gunter, and

Scedrov, 1991) This last approach is taken by the TILT compiler for Standard

ML (Petersen, Cheng, Harper, and Stone, 2000).

9.3.14 Exercise [««, Recommended]:

1. Suppose we add terms of the form let m=M in t to λL M, allowing modules

to be defined locally within terms. Can the phase­splitting algorithm be

extended to handle such terms?

2. Suppose we added a conditional expression at the module level to λL M,

if t then M else M′. Can the phase­splitting algorithm be extended to han­

dle these modules? 2

9.3.15 Exercise [««««,3]: Formally specify a method for obtaining more optimized

λS code corresponding to λL M inputs. For example, the diag functor encoded

in λL M might split into λX::*. X× X and λX::*. λx:X. {x,x} as originally

suggested. Verify that your optimization preserves well­formedness of code,

in analogy with Theorem 9.3.13. 2

9.4 Notes

Primitive definitions are permitted in most implementations of λ­calculus­

based systems. The AUTOMATH system (de Bruijn, 1980; van Daalen, 1980),

for example, relied vitally on definitions, as do modern systems such as Coq

(Barras et al., 1997). Most directly related to the system λlet is the work of

Severi and Poll (1994), who studied a pure type system supporting primitive

definitions at all levels. They observed that one might wish to permit prim­

itive definitions for items (e.g., kinds) even if the language does not include

operators parameterized by such items. Their decidability proof is not based

on logical relations, but instead defines a rewrite rule implementing beta­

delta reduction, which they show to be confluent and strongly normalizing.

For many references on the theory of module systems, see Chapter 8; the

presentation of λL M is most similar to that of Lillibridge (1997) and Dreyer,

Crary, and Harper (2003).
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Aspinall (1994) suggested that if types are viewed as program specifica­

tions, then singleton types would allow very specific specifications (e.g., re­

quiring that a particular function not only map natural numbers to natural

numbers, but that it compute factorials; the function could be specified as be­

gin a member of a singleton type, namely the type of all terms equivalent to

a reference implementation for factorial). He presented a system of labeled

singleton types with beta­equivalence and a limited form of extensionality

for lambda abstractions. Stone and Harper (2000) proved decidability of a

system essentially equivalent to λS, and later simplified their proof (Stone

and Harper, 2005). Coquand, Pollack, and Takeyama (2003) took a different

approach to deciding equivalence in the presence of singletons and extension­

ality; their algorithm is based on eta­expanding and expanding definitions,

followed by a comparison for beta­equivalence.

Courant (2002) has studied a system with labeled singleton types but no

extensionality principles at all; then equivalence depends on the typing con­

text but not the classifier at which the comparison is taking place, and so

it was possible to use a more traditional approach to equivalence by proving

confluence and strong­normalization of a rewrite relation similar to that used

by Severi and Poll.
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10 The Essence of ML Type Inference

François Pottier and Didier Rémy

10.1 What Is ML?

The name ML appeared during the late seventies. It then referred to a general­

purpose programming language that was used as a meta­language (whence its

name) within the theorem prover LCF (Gordon, Milner, and Wadsworth, 1979).

Since then, several new programming languages, each of which offers several

different implementations, have drawn inspiration from it. So, what does ML

stand for today?

For a semanticist, ML might stand for a programming language featuring

first­class functions, data structures built out of products and sums, muta­

ble memory cells called references, exception handling, automatic memory

management, and a call­by­value semantics. This view encompasses the Stan­

dard ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) families of

programming languages. We refer to it as ML­the­programming­language.

For a type theorist, ML might stand for a particular breed of type systems,

based on the simply­typed λ­calculus, but extended with a simple form of

polymorphism introduced by let declarations. These type systems have de­

cidable type inference; their type inference algorithms strongly rely on first­

order unification and can be made efficient in practice. Besides Standard ML

and Caml, this view encompasses programming languages such as Haskell

(Peyton Jones, 2003) and Clean (Brus, van Eekelen, van Leer, and Plasmeijer,

1987), whose semantics is rather different—indeed, it is nonstrict and pure

(Sabry, 1998)—but whose type system fits this description. We refer to it as

ML­the­type­system. It is also referred to as the Hindley­Milner type discipline

in the literature.

Code for this chapter may be found on the book’s web site.
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For us, ML might also stand for the particular programming language whose

formal definition is given and studied in this chapter. It is a core calculus fea­

turing first­class functions, local definitions, and constants. It is equipped

with a call­by­value semantics. By customizing constants and their seman­

tics, one may recover data structures, references, and more. We refer to this

particular calculus as ML­the­calculus.

Why study ML­the­type­system today, such a long time after its initial dis­

covery? One may think of at least two reasons.

First, its treatment in the literature is often cursory, because it is consid­

ered either as a simple extension of the simply­typed λ­calculus (TAPL, Chap­

ter 9) or as a subset of Girard and Reynolds’ System F (TAPL, Chapter 23).

The former view is supported by the claim that local (let) definitions, which

distinguish ML­the­type­system from the simply­typed λ­calculus, may be un­

derstood as a simple textual expansion facility. However, this view tells only

part of the story, because it fails to give an account of the principal types

property enjoyed by ML­the­type­system, leads to a naive type inference al­

gorithm whose time complexity is exponential not only in the worst case

but in the common case, and breaks down when the language is extended

with side effects, such as state or exceptions. The latter view is supported by

the fact that every type derivation within ML­the­type­system is also a valid

type derivation within an implicitly­typed variant of System F. Such a view is

correct but again fails to give an account of type inference for ML­the­type­

system, since type inference for System F is undecidable (Wells, 1999).

Second, existing accounts of type inference for ML­the­type­system (Milner,

1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;

Jones, 1999) often involve heavy manipulations of type substitutions. Such

a ubiquitous use of type substitutions is often quite obscure. Furthermore,

actual implementations of the type inference algorithm do not explicitly ma­

nipulate substitutions; instead, they extend a standard first­order unification

algorithm, where terms are updated in place as new equations are discovered

(Huet, 1976; Martelli and Montanari, 1982). Thus, it is hard to tell, from these

accounts, how to write an efficient type inference algorithm for ML­the­type­

system. Yet, in spite of the increasing speed of computers, efficiency remains

crucial when ML­the­type­system is extended with expensive features, such

as Objective Caml’s object types (Rémy and Vouillon, 1998), variant types

(Garrigue, 1998), or polymorphic methods (Garrigue and Rémy, 1999).

Our emphasis on efficiency might come as a surprise, since type inference

for ML­the­type­system is known to be dexptime­complete (Kfoury, Tiuryn,

and Urzyczyn, 1990; Mairson, Kanellakis, and Mitchell, 1991). In practice,

however, most implementations of it behave well. This apparent contradic­

tion may be explained by observing that types usually remain small and
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that let constructs are never deeply nested towards the left. Indeed, un­

der the assumption that types have bounded size and that programs have

bounded “scheme depth,” type inference may be performed in quasi­linear

time (McAllester, 2003). In ML­the­programming­language, algebraic data type

definitions allow complex data structures to be described by concise expres­

sions, such as “listX,” which helps achieve the bounded­type­size property.

In fact, in such favorable circumstances, even an inefficient algorithm may

behave well. For instance, some deployed implementations of type inference

for ML­the­type­system contain sources of inefficiency (see remark 10.1.21

on page 404) and do not operate in quasi­linear time under the bounded­

type­size assumption. However, such implementations are put under greater

stress when types become larger, a situation that occurs in some programs

(Saha, Heintze, and Oliva, 1998) and also arises when large, transparent type

expressions are used instead of algebraic data types, as in Objective Caml’s

object­oriented fragment (Rémy and Vouillon, 1998).

For these reasons, we believe it is worth giving an account of ML­the­type­

system that focuses on type inference and strives to be at once elegant and

faithful to an efficient implementation, such as Rémy’s (1992a). In this presen­

tation, we forego type substitutions and instead put emphasis on constraints,

which offer a number of advantages.

First, constraints allow a modular presentation of type inference as the

combination of a constraint generator and a constraint solver, allowing sep­

arate reasoning about when a program is correct and how to check whether

it is correct. This perspective has long been standard in the setting of the

simply­typed λ­calculus: see, for example, Wand (1987b) and TAPL, Chap­

ter 22. In the setting of ML­the­type­system, such a decomposition is pro­

vided by the reduction of typability problems to acyclic semi­unification prob­

lems (Henglein, 1993; Kfoury, Tiuryn, and Urzyczyn, 1994). This approach,

however, was apparently never used in production implementations of ML­

the­programming­language. An experimental extension of SML/NJ with poly­

morphic recursion (Emms and LeiSS, 1996) did reduce type inference to a

semi­unification problem. Semi­unification found applications in the closely

related area of program analysis; see, for example, Fähndrich, Rehof, and Das

(2000) and Birkedal and Tofte (2001). In this chapter, we give a constraint­

based description of a “classic” implementation of ML­the­type­system, which

is based on first­order unification and a mechanism for creating and instan­

tiating principal type schemes.

Second, it is often natural to define and implement the solver as a con­

straint rewriting system. The constraint language allows reasoning not only

about correctness—is every rewriting step meaning­preserving?—but also

about low­level implementation details, since constraints are the data struc­
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x,y ::= Identifiers:

z Variable

m Memory location

c Constant

t ::= Expressions:

x Identifier

λz.t Function

t t Application

let z = t in t Local definition

v,w ::= Values:

z Variable

m Memory location

λz.t Function

c v1 . . . vk Data

c ∈ Q+ ∧ k ≤ a(c)

c v1 . . . vk Partial application

c ∈ Q− ∧ k < a(c)

E ::= Evaluation Contexts:

[] Empty context

E t Left side of an application

v E Right side of an application

let z = E in t Local definition

Figure 10­1: Syntax of ML­the­calculus

tures manipulated throughout the type inference process. For instance, de­

scribing unification in terms of multi­equations allows reasoning about the

sharing of nodes in memory, which a substitution­based approach cannot

account for. Last, constraints are more general than type substitutions, and

allow smooth extensions of ML­the­type­system with recursive types, rows,

subtyping, and more. These arguments are developed, for example, in Jouan­

naud and Kirchner (1991).

Before delving into the details of this new presentation of ML­the­type­

system, it is worth recalling its standard definition. Thus, in what follows,

we first define the syntax and operational semantics of ML­the­calculus, and

equip it with a type system, known as Damas and Milner’s type system.

ML­the­Calculus

The syntax of ML­the­calculus is defined in Figure 10­1. It is made up of sev­

eral syntactic categories.

Identifiers group several kinds of names that may be referenced in a pro­

gram: variables, memory locations, and constants. We let x and y range over

identifiers. Variables—also called program variables, to avoid ambiguity—are

names that may be bound to values using λ or let binding forms; in other

words, they are names for function parameters or local definitions. We let

z and f range over program variables. We sometimes write for a program

variable that does not occur free within its scope: for instance, λ .t stands for

λz.t, provided z is fresh for t. (We say that z is fresh for t when z does not oc­
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cur free in t.) Memory locations are names that represent memory addresses.

They are used to model references (see Example 10.1.9 below). Memory loca­

tions never appear in source programs, that is, programs that are submitted

to a compiler. They only appear during execution, when new memory blocks

are allocated. Constants are fixed names for primitive values and operations,

such as integer literals and integer arithmetic operations. Constants are el­

ements of a finite or infinite set Q. They are never subject to α­conversion,

in contrast to variables and memory locations. Program variables, memory

locations, and constants belong to distinct syntactic classes and may never

be confused.

The set of constants Q is kept abstract, so most of our development is

independent of its concrete definition. We assume that every constant c has

a nonnegative integer arity a(c). We further assume thatQ is partitioned into

subsets of constructors Q+ and destructors Q−. Constructors and destructors

differ in that the former are used to form values, while the latter are used to

operate on values.

10.1.1 Example [Integers]: For every integer n, one may introduce a nullary con­

structor n̂. In addition, one may introduce a binary destructor +̂, whose ap­

plications are written infix, so t1 +̂ t2 stands for the double application +̂ t1

t2 of the destructor +̂ to the expressions t1 and t2. 2

Expressions—also known as terms or programs—are the main syntactic cat­

egory. Indeed, unlike procedural languages such as C and Java, functional

languages, including ML­the­programming­language, suppress the distinction

between expressions and statements. Expressions consist of identifiers, λ­

abstractions, applications, and local definitions. The λ­abstraction λz.t repre­

sents the function of one parameter named z whose result is the expression t,

or, in other words, the function that maps z to t. Note that the variable z is

bound within the term t, so (for instance) the notations λz1.z1 and λz2.z2

denote the same entity. The application t1 t2 represents the result of calling

the function t1 with actual parameter t2, or, in other words, the result of

applying t1 to t2. Application is left­associative, that is, t1 t2 t3 stands for

(t1 t2) t3. The construct let z = t1 in t2 represents the result of evaluating

t2 after binding the variable z to t1. Note that the variable z is bound within

t2, but not within t1, so for instance let z1 = z1 in z1 and let z2 = z1 in z2

are the same object. The construct let z = t1 in t2 has the same meaning as

(λz.t2) t1, but is dealt with in a more flexible way by ML­the­type­system. To

sum up, the syntax of ML­the­calculus is that of the pure λ­calculus, extended

with memory locations, constants, and the let construct.

Values form a subset of expressions. They are expressions whose evalua­

tion is completed. Values include identifiers, λ­abstractions, and applications
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of constants, of the form c v1 . . . vk, where k does not exceed c’s arity if c

is a constructor, and k is smaller than c’s arity if c is a destructor. In what

follows, we are often interested in closed values—ones that do not contain

any free program variables. We use the meta­variables v and w for values.

10.1.2 Example: The integer literals . . . , −̂1, 0̂, 1̂, . . . are nullary constructors, so they

are values. Integer addition +̂ is a binary destructor, so it is a value, and

so is every partial application +̂ v. Thus, both +̂ 1̂ and +̂ +̂ are values. An

application of +̂ to two values, such as 2̂+̂2̂, is not a value. 2

10.1.3 Example [Pairs]: Let (·, ·) be a binary constructor. If t1 are t2 are expres­

sions, then the double application (·, ·) t1 t2 may be called the pair of t1

and t2, and may be written (t1,t2). By the definition above, (t1,t2) is a value

if and only if t1 and t2 are both values. 2

Stores are finite mappings from memory locations to closed values. A store

µ represents what is usually called a heap, that is, a collection of values,

each of which is allocated at a particular address in memory and may contain

pointers to other elements of the heap. ML­the­programming­language allows

overwriting the contents of an existing memory block—an operation some­

times referred to as a side effect. In the operational semantics, this effect is

achieved by mapping an existing memory location to a new value. We write �

for the empty store. We write µ[m , v] for the store that maps m to v and

otherwise coincides with µ. When µ and µ′ have disjoint domains, we write

µµ′ for their union. We write dom(µ) for the domain of µ and range(µ) for

the set of memory locations that appear in its codomain.

The operational semantics of a pure language like the λ­calculus may be

defined as a rewriting system on expressions. Because ML­the­calculus has

side effects, however, we define its operational semantics as a rewriting sys­

tem on configurations. A configuration t/µ is a pair of an expression t and a

store µ. The memory locations in the domain of µ are not considered bound

within t/µ, so, for instance, m1/(m1 , 0̂) and m2/(m2 , 0̂) denote distinct

entities. (In the literature, memory locations are often considered bound in­

side configurations. This offers the advantage of making memory allocation a

deterministic operation. However, there is still a need for non­α­convertible

configurations: rules R­Extend and R­Context in Figure 10­2 cannot other­

wise be correctly stated! Quite a few papers run into this pitfall.)

A configuration t/µ is closed if and only if t has no free program variables

and every memory location that appears within t or within the range of µ is in

the domain of µ. If t is a closed source program, its evaluation begins within

an empty store—that is, with the configuration t/�. Because source programs

do not contain memory locations, this configuration is closed. Furthermore,

we shall see that closed configurations are preserved by reduction.
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(λz.t) v -→ [z, v]t (R­Beta)

let z = v in t -→ [z, v]t (R­Let)

t/µ
δ
-→ t′/µ′

t/µ -→ t′/µ′
(R­Delta)

t/µ -→ t′/µ′

dom(µ′′) # dom(µ′)

range(µ′′) # dom(µ′ \ µ)

t/µµ′′ -→ t′/µ′µ′′
(R­Extend)

t/µ -→ t′/µ′

E[t]/µ −−ñ E[t′]/µ′
(R­Context)

Figure 10­2: Semantics of ML­the­calculus

Note that, instead of separating expressions and stores, it is possible to

make store fragments part of the syntax of expressions; this idea, proposed in

Crank and Felleisen (1991), has also been used for the encoding of reference

cells in process calculi.

A context is an expression where a single subexpression has been replaced

with a hole, written []. Evaluation contexts form a strict subset of contexts. In

an evaluation context, the hole is meant to highlight a point in the program

where it is valid to apply a reduction rule. Thus, the definition of evaluation

contexts determines a reduction strategy: it tells where and in what order

reduction steps may occur. For instance, the fact that λz.[] is not an evalu­

ation context means that the body of a function is never evaluated—that is,

not until the function is applied. The fact that t E is an evaluation context

only if t is a value means that, to evaluate an application t1 t2, one should

fully evaluate t1 before attempting to evaluate t2. More generally, in the case

of a multiple application, it means that arguments should be evaluated from

left to right. Of course, other choices could be made: for instance, defining

E ::= . . . | t E | E v | . . . would enforce a right­to­left evaluation order, while

defining E ::= . . . | t E | E t | . . . would leave the evaluation order unspeci­

fied, effectively allowing reduction to alternate between both subexpressions,

and making evaluation nondeterministic (because side effects could occur in

different order). The fact that let z = v in E is not an evaluation context

means that the body of a local definition is never evaluated—that is, not until

the definition itself is reduced. We write E[t] for the expression obtained by

replacing the hole in E with the expression t.

Figure 10­2 defines first a relation -→ between arbitrary configurations,

then a relation −−ñ between closed configurations. If t/µ -→ t′/µ holds for

every store µ, then we write t -→ t′ and say that the reduction is pure.

The semantics need not be deterministic. That is, a configuration may re­

duce to two different configurations. In fact, our semantics is deterministic
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only if the relation
δ
-→, which is a parameter to our semantics, is itself de­

terministic. In practice,
δ
-→ is usually deterministic, up to α­conversion of

memory locations. As explained above, the semantics could also be made

nondeterministic by a different choice in the definition of evaluation contexts.

The key reduction rule is R­Beta, which states that a function application

(λz.t) v reduces to the function body, namely t, where every occurrence of

the formal argument z has been replaced with the actual argument v. The λ

construct, which prevented the function body t from being evaluated, disap­

pears, so the new term may (in general) be further reduced. Because ML­the­

calculus adopts a call­by­value strategy, rule R­Beta is applicable only if the

actual argument is a value v. In other words, a function cannot be invoked un­

til its actual argument has been fully evaluated. Rule R­Let is very similar to

R­Beta. Indeed, it specifies that let z = v in t has the same behavior, with re­

spect to reduction, as (λz.t) v. Substitution of a value for a program variable

throughout a term is expensive, so R­Beta and R­Let are never implemented

literally: they are only a simple specification. Actual implementations usually

employ runtime environments, which may be understood as a form of explicit

substitutions (Abadi, Cardelli, Curien, and Lévy, 1991; Hardin, Maranget, and

Pagano, 1998). Note that our choice of a call­by­value reduction strategy has

essentially no impact on the type system; the programming language Haskell,

whose reduction strategy is known as lazy or call­by­need, also relies on the

Hindley­Milner type discipline.

Rule R­Delta describes the semantics of constants. It states that a certain

relation
δ
-→ is a subset of -→. Of course, since the set of constants is un­

specified, the relation
δ
-→ must be kept abstract as well. We require that, if

t/µ
δ
-→ t′/µ′ holds, then

(i) t is of the form c v1 . . . vn, where c is a destructor of arity n; and

(ii) dom(µ) is a subset of dom(µ′).

Condition (i) ensures that δ­reduction concerns full applications of destruc­

tors only, and that these are evaluated in accordance with the call­by­value

strategy. Condition (ii) ensures that δ­reduction may allocate new memory

locations, but not deallocate existing locations. In particular, a “garbage col­

lection” operator, which destroys unreachable memory cells, cannot be made

available as a constant. Doing so would not make much sense anyway in the

presence of R­Extend. Condition (ii) allows proving that, if t/µ reduces (by

-→) to t′/µ′, then dom(µ) is also a subset of dom(µ′); checking this is left as

an exercise to the reader.

Rule R­Extend states that any valid reduction is also valid in a larger store.

The initial and final stores µ and µ′ in the original reduction are both ex­
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tended with a new store fragment µ′′. The rule’s second premise requires that

the domain of µ′′ be disjoint with that of µ′ (and consequently, also with that

of µ), so that the new memory locations are indeed undefined in the original

reduction. (They may, however, appear in the image of µ.) The last premise

ensures that the new memory locations in µ′′ do not accidentally carry the

same names as the locations allocated during the original reduction step, that

is, the locations in dom(µ′ \ µ). The notation A # B stands for A∩ B = �.

Rule R­Context completes the definition of the operational semantics by

defining −−ñ, a relation between closed configurations, in terms of -→. The

rule states that reduction may take place not only at the term’s root, but also

deep inside it, provided the path from the root to the point where reduction

occurs forms an evaluation context. This is how evaluation contexts deter­

mine an evaluation strategy. As a purely technical point, because −−ñ relates

closed configurations only, we do not need to require that the memory lo­

cations in dom(µ′ \ µ) be fresh for E; indeed, every memory location that

appears within E must be a member of dom(µ).

10.1.4 Example [Integers, continued]: The operational semantics of integer addi­

tion may be defined as follows:

k̂1 +̂ k̂2
δ
-→ k̂1 + k2 (R­Add)

The left­hand term is the double application +̂ k̂1 k̂2, while the right­hand

term is the integer literal k̂, where k is the sum of k1 and k2. The distinction

between object level and meta level (that is, between k̂ and k) is needed here

to avoid ambiguity. 2

10.1.5 Example [Pairs, continued]: In addition to the pair constructor defined in

Example 10.1.3, we may introduce two destructors π1 and π2 of arity 1. We

may define their operational semantics as follows, for i ∈ {1,2}:

πi (v1,v2)
δ
-→ vi (R­Proj)

Thus, our treatment of constants is general enough to account for pair con­

struction and destruction; we need not build these features explicitly into the

language. 2

10.1.6 Exercise [Booleans, Recommended, ««, 3]: Let true and false be nullary

constructors. Let if be a ternary destructor. Extend the semantics with

if true v1 v2
δ
-→ v1 (R­True)

if false v1 v2
δ
-→ v2 (R­False)

Let us use the syntactic sugar if t0 then t1 else t2 for the triple applica­

tion of if t0 t1 t2. Explain why these definitions do not quite provide the

expected behavior. Without modifying the semantics of if, suggest a new
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definition of the syntactic sugar if t0 then t1 else t2 that corrects the

problem. 2

10.1.7 Example [Sums]: Booleans may in fact be viewed as a special case of the more

general concept of sum. Let inj1 and inj2 be unary constructors, called re­

spectively left and right injections. Let case be a ternary destructor, whose

semantics is defined as follows, for i ∈ {1,2}:

case (inji v) v1 v2
δ
-→ vi v (R­Case)

Here, the value inji v is being scrutinized, while the values v1 and v2, which

are typically functions, represent the two arms of a standard case construct.

The rule selects an appropriate arm (here, vi ) based on whether the value un­

der scrutiny was formed using a left or right injection. The arm vi is executed

and given access to the data carried by the injection (here, v). 2

10.1.8 Exercise [«, 3]: Explain how to encode true, false, and the if construct

in terms of sums. Check that the behavior of R­True and R­False is properly

emulated. 2

10.1.9 Example [References]: Let ref and ! be unary destructors. Let := be a binary

destructor. We write t1 := t2 for the double application := t1 t2. Define the

operational semantics of these three destructors as follows:

ref v/�
δ
-→m/(m , v) if m is fresh for v (R­Ref)

!m/(m , v)
δ
-→ v/(m , v) (R­Deref)

m := v/(m , v0)
δ
-→ v/(m , v) (R­Assign)

According to R­Ref, evaluating ref v allocates a fresh memory locationm and

binds v to it. The name m must be chosen fresh for v to prevent inadvertent

capture of the memory locations that appear free within v. By R­Deref, evalu­

ating !m returns the value bound to the memory locationm within the current

store. By R­Assign, evaluatingm := v discards the value v0 currently bound to

m and produces a new store where m is bound to v. Here, the value returned

by the assignment m := v is v itself; in ML­the­programming­language, it is

usually a nullary constructor (), pronounced unit. 2

10.1.10 Example [Recursion]: Let fix be a binary destructor, whose operational se­

mantics is:

fix v1 v2
δ
-→ v1 (fix v1) v2 (R­Fix)

fix is a fixpoint combinator: it effectively allows recursive definitions of

functions. Indeed, the construct letrec f = λz.t1 in t2 provided by ML­

the­programming­language may be viewed as syntactic sugar for let f =

fix (λf.λz.t1) in t2. 2
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10.1.11 Exercise [Recommended, ««, 3]: Assuming the availability of Booleans and

conditionals, integer literals, subtraction, multiplication, integer comparison,

and a fixpoint combinator, most of which were defined in previous exam­

ples, define a function that computes the factorial of its integer argument,

and apply it to 3̂. Determine, step by step, how this expression reduces to a

value. 2

It is straightforward to check that, if t/µ reduces to t′/µ′, then t is not a

value. In other words, values are irreducible: they represent completed com­

putations. The proof is left as an exercise to the reader. The converse, how­

ever, does not hold: if the closed configuration t/µ is irreducible with respect

to −−ñ, then t is not necessarily a value. In that case, the configuration t/µ is

said to be stuck. It represents a runtime error, that is, a situation that does not

allow computation to proceed, yet is not considered a valid outcome. A closed

source program t is said to go wrong if and only if the initial configuration

t/� reduces to a stuck configuration.

10.1.12 Example: Runtime errors typically arise when destructors are applied to ar­

guments of an unexpected nature. For instance, the expressions +̂ 1̂ m and

π1 2̂ and !3̂ are stuck, regardless of the current store. The program let z =

+̂ +̂ in z 1 is not stuck, because +̂ +̂ is a value. However, its reduct through

R­Let is +̂ +̂ 1, which is stuck, so this program goes wrong. The primary

purpose of type systems is to prevent such situations from arising. 2

10.1.13 Remark: The configuration !m/µ is stuck if m is not in the domain of µ. In

that case, however, !m/µ is not closed. Because we consider −−ñ as a rela­

tion between closed configurations only, this situation cannot arise. In other

words, the semantics of ML­the­calculus never allows the creation of dan­

gling pointers. As a result, no particular precautions need be taken to guard

against them. Several strongly typed programming languages do neverthe­

less allow dangling pointers in a controlled fashion (Tofte and Talpin, 1997;

Walker, Crary, and Morrisett, 2000; DeLine and Fähndrich, 2001; Grossman,

Morrisett, Jim, Hicks, Wang, and Cheney, 2002). 2

Damas and Milner’s Type System

ML­the­type­system was originally defined by Milner (1978). Here, we repro­

duce the definition given a few years later by Damas and Milner (1982), which

is written in a more standard style: typing judgments are defined inductively

by a collection of typing rules. We refer to this type system as DM.

We must first define types. In DM, types are terms built out of type con­

structors and type variables. Furthermore, they are first­order terms: that is,
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in the grammar of types, none of the productions binds a type variable. This

situation is identical to that of the simply­typed λ­calculus.

We begin with several considerations concerning the specification of type

constructors.

First, we do not wish to fix the set of type constructors. Certainly, since

ML­the­calculus has functions, we need to be able to form an arrow type

T → T′ out of arbitrary types T and T′; that is, we need a binary type con­

structor →. However, because ML­the­calculus includes an unspecified set of

constants, we cannot say much else in general. If constants include integer

literals and integer operations, as in Example 10.1.1, then a nullary type con­

structor int is needed; if they include pair construction and destruction, as in

Examples 10.1.3 and 10.1.5, then a binary type constructor × is needed; etc.

Second, it is common to refer to the parameters of a type constructor by

position, that is, by numeric index. For instance, when one writes T → T′, it

is understood that the type constructor → has arity 2, that T is its first pa­

rameter, known as its domain, and that T′ is its second parameter, known as

its codomain. Here, however, we refer to parameters by names, known as di­

rections. For instance, we define two directions domain and codomain and let

the type constructor → have arity {domain, codomain}. The extra generality

afforded by directions is exploited in the definition of nonstructural subtyp­

ing (Example 10.2.9) and in the definition of rows (§10.8).

Last, we allow types to be classified using kinds. As a result, every type

constructor must come not only with an arity, but with a richer signature,

which describes the kinds of the types to which it is applicable and the

kind of the type that it produces. A distinguished kind ? is associated with

“normal” types, that is, types that are directly ascribed to expressions and

values. For instance, the signature of the type constructor → is {domain ,

?, codomain , ?} ⇒ ?, because it is applicable to two normal types and

produces a normal type. Introducing kinds other than ? allows viewing some

types as ill­formed: this is illustrated, for instance, in §10.8. In the simplest

case, however, ? is really the only kind, so the signature of a type constructor

is nothing but its arity (a set of directions), and every term is a well­formed

type, provided every application of a type constructor respects its arity.

10.1.14 Definition: Let d range over a finite or denumerable set of directions and κ

over a finite or denumerable set of kinds. Let ? be a distinguished kind. Let K

range over partial mappings from directions to kinds. Let F range over a finite

or denumerable set of type constructors, each of which has a signature of the

form K ⇒ κ. The domain of K is called the arity of F , while κ is referred to

as its image kind. We write κ instead of K ⇒ κ when K is empty. Let → be a

type constructor of signature {domain , ?, codomain , ?} ⇒ ?. 2
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The type constructors and their signatures collectively form a signature S.

In the following, we assume that a fixed signature S is given and that every

type constructor in it has finite arity, so as to ensure that types are machine

representable. However, in §10.8, we shall explicitly work with several distinct

signatures, one of which involves type constructors of denumerable arity.

A type variable is a name that is used to stand for a type. For simplicity,

we assume that every type variable is branded with a kind, or in other words,

that type variables of distinct kinds are drawn from disjoint sets. Each of

these sets of type variables is individually subject to α­conversion: that is,

renamings must preserve kinds. Attaching kinds to type variables is only a

technical convenience; in practice, every operation performed during type

inference preserves the property that every type is well­kinded, so it is not

necessary to keep track of the kind of every type variable. It is only necessary

to check that all types supplied by the programmer, within type declarations,

type annotations, or module interfaces, are well­kinded.

10.1.15 Definition: For every kind κ, let Vκ be a disjoint, denumerable set of type

variables. Let X, Y, and Z range over the set V of all type variables. Let X̄ and

Ȳ range over finite sets of type variables. We write X̄Ȳ for the set X̄ ∪ Ȳ and

often write X for the singleton set {X}. We write ftv(o) for the set of free type

variables of an object o. 2

The set of types, ranged over by T, is the free many­kinded term algebra

that arises out of the type constructors and type variables. Types are given

by the following inductive definition:

10.1.16 Definition: A type of kind κ is either a member of Vκ , or a term of the form

F {d1 , T1, . . . , dn , Tn}, where F has signature {d1 , κ1, . . . , dn , κn} ⇒ κ

and T1, . . . ,Tn are types of kind κ1, . . . , κn, respectively. 2

As a notational convention, we assume that, for every type constructor F ,

the directions that form the arity of F are implicitly ordered, so that we may

say that F has signature κ1 ⊗ . . . ⊗ κn ⇒ κ and employ the syntax F T1 . . . Tn
for applications of F . Applications of the type constructor → are written infix

and associate to the right, so T→ T′ → T′′ stands for T→ (T′ → T′′).

In order to give meaning to the free type variables of a type, or more gen­

erally, of a typing judgment, traditional presentations of ML­the­type­system,

including Damas and Milner’s, employ type substitutions. Most of our pre­

sentation avoids substitutions and uses constraints instead. However, we do

need substitutions on a few occasions, especially when relating our presenta­

tion to Damas and Milner’s.

10.1.17 Definition: A type substitution θ is a total, kind­preserving mapping of type

variables to types that is the identity everywhere but on a finite subset of V ,
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which we call the domain of θ and write dom(θ). The range of θ, which we

write range(θ), is the set ftv(θ(dom(θ))). A type substitution may naturally

be viewed as a total, kind­preserving mapping of types to types. 2

If ~X and ~T are respectively a vector of distinct type variables and a vector

of types of the same (finite) length such that, for every index i, Xi and Ti

have the same kind, then [~X , ~T] denotes the substitution that maps Xi to

Ti for every index i and is the identity elsewhere. The domain of [~X , ~T] is

a subset of X̄, the set underlying the vector ~X. Its range is a subset of ftv(T̄),

where T̄ is the set underlying the vector ~T. (These may be strict subsets; for

instance, the domain of [X, X] is the empty set, since this substitution is the

identity.) Every substitution θ may be written under the form [~X , ~T], where

X̄ = dom(θ). Then, θ is idempotent if and only if X̄ # ftv(T̄) holds.

As pointed out earlier, types are first­order terms. As a result, every type

variable that appears within a type T appears free within T. Things become

more interesting when we introduce type schemes. As its name implies, a

type scheme may describe an entire family of types; this effect is achieved via

universal quantification over a set of type variables.

10.1.18 Definition: A type scheme S is an object of the form ∀X̄.T, where T is a type

of kind ? and the type variables X̄ are considered bound within T. Any type

of the form [~X, ~T]T is called an instance of the type scheme ∀X̄.T. 2

One may view the type T as the trivial type scheme∀�.T, where no type vari­

ables are universally quantified, so types of kind ?may be viewed as a subset

of type schemes. The type scheme ∀X̄.T may be viewed as a finite way of

describing the possibly infinite family of its instances. Note that, throughout

most of this chapter, we work with constrained type schemes, a generalization

of DM type schemes (Definition 10.2.2).

Typing environments, or environments for short, are used to collect as­

sumptions about an expression’s free identifiers.

10.1.19 Definition: An environment Γ is a finite ordered sequence of pairs of a pro­

gram identifier and a type scheme. We write � for the empty environment and

“;” for the concatenation of environments. An environment may be viewed as

a finite mapping from program identifiers to type schemes by letting Γ(x) = S

if and only if Γ is of the form Γ1;x : S; Γ2, where Γ2 contains no assumption

about x. The set of defined program identifiers of an environment Γ , written

dpi(Γ), is defined by dpi(�) = � and dpi(Γ ;x : S) = dpi(Γ)∪ {x}. 2

To complete the definition of Damas and Milner’s type system, there re­

mains to define typing judgments. A typing judgment takes the form Γ ` t : S,

where t is an expression of interest, Γ is an environment, which typically con­

tains assumptions about t’s free program identifiers, and S is a type scheme.



10.1 What Is ML? 403

Γ(x) = S

Γ ` x : S
(dm­Var)

Γ ;z : T ` t : T′

Γ ` λz.t : T→ T′
(dm­Abs)

Γ ` t1 : T→ T′ Γ ` t2 : T

Γ ` t1 t2 : T′
(dm­App)

Γ ` t1 : S Γ ;z : S ` t2 : T

Γ ` let z = t1 in t2 : T
(dm­Let)

Γ ` t : T X̄ # ftv(Γ)

Γ ` t : ∀X̄.T
(dm­Gen)

Γ ` t : ∀X̄.T

Γ ` t : [~X, ~T]T
(dm­Inst)

Figure 10­3: Typing rules for DM

Such a judgment may be read: under assumptions Γ , the expression t has the

type scheme S. By abuse of language, it is sometimes said that t has type S.

A typing judgment is valid (or holds) if and only if it may be derived using

the rules that appear in Figure 10­3. An expression t is well­typed within the

environment Γ if and only if there exists some type scheme S such that the

judgment Γ ` t : S holds; it is ill­typed within Γ otherwise.

Rule dm­Var allows fetching a type scheme for an identifier x from the

environment. It is equally applicable to program variables, memory locations,

and constants. If no assumption concerning x appears in the environment

Γ , then the rule isn’t applicable. In that case, the expression x is ill­typed

within Γ . Assumptions about constants are usually collected in a so­called ini­

tial environment Γ0. It is the environment under which closed programs are

typechecked, so every subexpression is typechecked under some extension Γ

of Γ0. Of course, the type schemes assigned by Γ0 to constants must be con­

sistent with their operational semantics; we say more about this later (§10.5).

Rule dm­Abs specifies how to typecheck a λ­abstraction λz.t. Its premise re­

quires the body of the function, t, to be well­typed under an extra assumption

that causes all free occurrences of z within t to receive a common type T. Its

conclusion forms the arrow type T → T′ out of the types of the function’s

formal parameter, T, and result, T′. It is worth noting that this rule always

augments the environment with a type T—recall that, by convention, types

form a subset of type schemes—but never with a nontrivial type scheme.

Rule dm­App states that the type of a function application is the codomain

of the function’s type, provided that the domain of the function’s type is a

valid type for the actual argument. Rule dm­Let closely mirrors the opera­

tional semantics: whereas the semantics of the local definition let z = t1

in t2 is to augment the runtime environment by binding z to the value of

t1 prior to evaluating t2, the effect of dm­Let is to augment the typing envi­
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ronment by binding z to a type scheme for t1 prior to typechecking t2. Rule

dm­Gen turns a type into a type scheme by universally quantifying over a set

of type variables that do not appear free in the environment; this restriction

is discussed in Example 10.1.20 below. Rule dm­Inst, on the contrary, turns a

type scheme into one of its instances, which may be chosen arbitrarily. These

two operations are referred to as generalization and instantiation. The no­

tion of type scheme and the rules dm­Gen and dm­Inst are characteristic of

ML­the­type­system: they distinguish it from the simply­typed λ­calculus.

10.1.20 Example: It is unsound to allow generalizing type variables that appear free

in the environment. For instance, consider the typing judgment z : X ` z :

X (1), which, according to dm­Var, is valid. Applying an unrestricted version

of dm­Gen to it, we obtain z : X ` z : ∀X.X (2), whence, by dm­Inst, z : X `

z : Y (3). By dm­Abs and dm­Gen, we then have � ` λz.z : ∀XY.X → Y. In

other words, the identity function has unrelated argument and result types!

Then, the expression (λz.z) 0̂ 0̂, which reduces to the stuck expression 0̂ 0̂,

has type scheme ∀Z.Z. So, well­typed programs may cause runtime errors:

the type system is unsound.

What happened? It is clear that the judgment (1) is correct only because

the type assigned to z is the same in its assumption and in its right­hand

side. For the same reason, the judgments (2) and (3)—the former of which

may be written z : X ` z : ∀Y.Y—are incorrect. Indeed, such judgments defeat

the very purpose of environments, since they disregard their assumption.

By universally quantifying over X in the right­hand side only, we break the

connection between occurrences of X in the assumption, which remain free,

and occurrences in the right­hand side, which become bound. This is correct

only if there are in fact no free occurrences of X in the assumption. 2

10.1.21 Remark: A naive implementation of dm­Gen would traverse the environment

Γ in order to compute the set of its free type variables. However, the num­

ber of entries in Γ may be linear in the program size, so, even if types have

bounded size, the time required by this computation may be linear in the

program size. Since it is performed at every let node, this naive approach

gives type inference quadratic time complexity. To avoid this pitfall, our con­

straint solver annotates every type variable with an integer rank, which allows

telling, in constant time, whether it appears free in Γ (page 444). 2

It is a key feature of ML­the­type­system that dm­Abs may only introduce a

type T, rather than a type scheme, into the environment. Indeed, this allows

the rule’s conclusion to form the arrow type T → T′. If instead the rule were

to introduce the assumption z : S into the environment, then its conclusion

would have to form S → T′, which is not a well­formed type. In other words,
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this restriction is necessary to preserve the stratification between types and

type schemes. If we were to remove this stratification, thus allowing univer­

sal quantifiers to appear deep inside types, we would obtain an implicitly­

typed version of System F (TAPL, Chapter 23). Type inference for System F

is undecidable (Wells, 1999), while type inference for ML­the­type­system is

decidable, as we show later, so this design choice has a rather drastic impact.

10.1.22 Exercise [Recommended, «]: Build a type derivation for the expression λz1.

let z2 = z1 in z2. 2

10.1.23 Exercise [Recommended, «]: Let int be a nullary type constructor of signa­

ture ?. Let Γ0 consist of the bindings +̂ : int → int → int and k̂ : int, for every

integer k. Can you find derivations of the following valid typing judgments?

Which of these judgments are valid in the simply­typed λ­calculus, where

let z = t1 in t2 is syntactic sugar for (λz.t2) t1?

Γ0 ` λz.z : int→ int

Γ0 ` λz.z : ∀X.X→ X

Γ0 ` let f = λz.z+̂1̂ in f 2̂ : int

Γ0 ` let f = λz.z in f f 2̂ : int

Show that the expressions 1̂ 2̂ and λf.(f f) are ill­typed within Γ0. Could these

expressions be well­typed in a more powerful type system? 2

DM enjoys a number of nice theoretical properties, which have practical

implications.

First, it is sound: that is, well­typed programs do not go wrong. This essen­

tial property ensures that programs that are accepted by the typechecker may

be compiled without runtime checks. Establishing this property requires (i)

suitable hypotheses about the semantics of constants and the type schemes

assigned to constants in the initial environment, and (ii) in the presence of

side effects, a slight restriction of the syntax of let constructs, known as the

value restriction.

Furthermore, there exists an algorithm that, given a (closed) environment Γ

and a program t, tells whether t is well­typed with respect to Γ , and if so, pro­

duces a principal type scheme S. A principal type scheme is such that (i) it is

valid, that is, Γ ` t : S holds, and (ii) it is most general, that is, every judgment

of the form Γ ` t : S′ follows from Γ ` t : S by dm­Inst and dm­Gen. (For the

sake of simplicity, we have stated the properties of the type inference algo­

rithm only in the case of a closed environment Γ ; the specification is slightly

heavier in the general case.) This implies that type inference is decidable: the

compiler need not require expressions to be annotated with types. The fact

that, under a fixed environment Γ , all of the type information associated with
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an expression t may be summarized in the form of a single, principal type

scheme is also key to modular programming. Indeed, exporting a value out

of a module requires explicitly assigning a type scheme to it as part of the

module’s signature. If the chosen type scheme is not principal, then part of

the value’s (hence, of the module’s) potential for reuse is lost.

Road Map

Before proving the above claims, we first generalize our presentation by mov­

ing to a constraint­based setting. The necessary tools—the constraint lan­

guage, its interpretation, and a number of constraint equivalence laws—are

introduced in §10.2. In §10.3, we describe the standard constraint­based type

system HM(X) (Odersky, Sulzmann, and Wehr, 1999). We prove that, when

constraints are made up of equations between free, finite terms, HM(X) is

a reformulation of DM. In the presence of a more powerful constraint lan­

guage, HM(X) is an extension of DM. In §10.4, we show that type inference

may be viewed as a combination of constraint generation and constraint solv­

ing, as promised earlier. Then, in §10.5, we give a type soundness theorem. It

is stated purely in terms of constraints, but—thanks to the results developed

in the previous sections—applies equally to HM(X) and DM.

Throughout this core material, the syntax and interpretation of constraints

are left partly unspecified. Thus, the development is parameterized with re­

spect to them—hence the unknown X in the name HM(X). We really describe

a family of constraint­based type systems, all of which share a common con­

straint generator and a common type soundness proof. Constraint solving,

however, cannot be independent of X: on the contrary, the design of an ef­

ficient solver is heavily dependent on the syntax and interpretation of con­

straints. In §10.6, we consider constraint solving in the particular case where

constraints are made up of equations interpreted in a free tree model, and

define a constraint solver on top of a standard first­order unification algo­

rithm.

The remainder of this chapter deals with extensions of the framework. In

§10.7, we explain how to extend ML­the­calculus with a number of features,

including products, sums, references, recursion, algebraic data types, and re­

cursive types. Last, in §10.8, we extend the type language with rows and use

them to assign polymorphic type schemes to operations on records and vari­

ants.
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σ ::= type scheme:

∀X̄[C].T

C,D ::= constraint:

true truth

false falsity

P T1 . . .Tn predicate application

C ∧ C conjunction

∃X̄.C existential quantification

def x : σ in C type scheme introduction

x � T type scheme instantiation

C,D ::= Syntactic sugar for constraints:

. . . As before

σ � T Definition 10.2.3

let x : σ in C Definition 10.2.3

∃σ Definition 10.2.3

def Γ in C Definition 10.2.4

let Γ in C Definition 10.2.4

∃Γ Definition 10.2.4

Figure 10­4: Syntax of type schemes and constraints

10.2 Constraints

In this section, we define the syntax and logical meaning of constraints. Both

are partly unspecified. Indeed, the set of type constructors (Definition 10.1.14)

must contain at least the binary type constructor →, but might contain more.

Similarly, the syntax of constraints involves a set of so­called predicates on

types, which we require to contain at least a binary subtyping predicate ≤, but

might contain more. (The introduction of subtyping, which is absent in DM,

has little impact on the complexity of our proofs, yet increases the frame­

work’s expressive power. When subtyping is not desired, we interpret the

predicate ≤ as equality.) The logical interpretation of type constructors and

of predicates is left almost entirely unspecified. This freedom allows reason­

ing not only about Damas and Milner’s type system, but also about a family

of constraint­based extensions of it.

Syntax of Constraints

We now define the syntax of constrained type schemes and of constraints and

introduce some extra constraint forms as syntactic sugar.

10.2.1 Definition: Let P range over a finite or denumerable set of predicates, each

of which has a signature of the form κ1 ⊗ . . .⊗ κn ⇒ ·, where n ≥ 0. For every

kind κ, let =κ and ≤κ be distinguished predicates of signature κ ⊗ κ ⇒ ·. 2

10.2.2 Definition: The syntax of type schemes and constraints is given in Figure 10­4.

It is further restricted by the following requirements. In the type scheme

∀X̄[C].T and in the constraint x � T, the type T must have kind ?. In the con­
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straint P T1 . . .Tn, the types T1, . . . ,Tn must have kind κ1, . . . , κn , respectively,

if P has signature κ1⊗. . .⊗κn ⇒ ·. We write∀X̄.T for ∀X̄[true].T, which allows

viewing DM type schemes as a subset of constrained type schemes. 2

We write T1 =κ T2 and T1 ≤κ T2 for the binary predicate applications =κ T1 T2

and ≤κ T1 T2, and refer to them as equality and subtyping constraints, respec­

tively. We often omit the subscript κ, so T1 = T2 and T1 ≤ T2 are well­formed

constraints whenever T1 and T2 have the same kind. By convention, ∃ and def

bind tighter than ∧; that is, ∃X̄.C ∧ D is (∃X̄.C) ∧ D and def x : σ in C ∧ D

is (def x : σ in C) ∧ D. In ∀X̄[C].T, the type variables X̄ are bound within

C and T. In ∃X̄.C, the type variables X̄ are bound within C. The sets of free

type variables of a type scheme σ and of a constraint C, written ftv(σ) and

ftv(C), respectively, are defined accordingly. In def x : σ in C, the identifier

x is bound within C. The sets of free program identifiers of a type scheme

σ and of a constraint C, written fpi(σ) and fpi(C), respectively, are defined

accordingly. Note that x occurs free in the constraint x � T.

The constraint true, which is always satisfied, mainly serves to indicate

the absence of a nontrivial constraint, while false, which has no solution,

may be understood as the indication of a type error. Composite constraints

include conjunction and existential quantification, which have their standard

meaning, as well as type scheme introduction and type scheme instantiation

constraints, which are similar to Gustavsson and Svenningsson’s constraint

abstractions (2001). In order to be able to explain these last two forms, we

must first introduce a number of derived constraint forms:

10.2.3 Definition: Let σ be∀X̄[D].T. If X̄ # ftv(T′) holds, then σ � T′ (read: T′ is an

instance of σ ) stands for the constraint ∃X̄.(D∧T ≤ T′). We write ∃σ (read: σ

has an instance) for ∃X̄.D and let x : σ in C for ∃σ ∧ def x : σ in C. 2

Constrained type schemes generalize Damas and Milner’s type schemes, while

this definition of instantiation constraints generalizes Damas and Milner’s no­

tion of instance (Definition 10.1.18). Let us draw a comparison. First, Damas

and Milner’s instance relation is binary (given a type scheme S and a type T,

either T is an instance of S, or it isn’t), and is purely syntactic. For instance,

the type Y → Z is not an instance of ∀X.X → X in Damas and Milner’s sense,

because Y and Z are distinct type variables. In our presentation, on the other

hand, ∀X.X → X � Y → Z is not an assertion; rather, it is a constraint, which

by definition is ∃X.(true∧ X→ X ≤ Y→ Z). We later prove that it is equivalent

to ∃X.(Y ≤ X∧X ≤ Z) and to Y ≤ Z, and, if subtyping is interpreted as equality,

to Y = Z. That is, σ � T′ represents a condition on (the ground types denoted

by) the type variables in ftv(σ ,T′) for T′ to be an instance of σ , in a logical,

rather than purely syntactic, sense. Second, the definition of instantiation
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constraints involves subtyping, to ensure that any supertype of an instance

of σ is again an instance of σ (see rule C­ExTrans on page 418). This is con­

sistent with the purpose of subtyping: to allow a subtype where a supertype

is expected (TAPL, Chapter 15). Third and last, every type scheme σ is now

of the form ∀X̄[C].T. The constraint C, whose free type variables may or may

not be members of X̄, is meant to restrict the set of instances of the type

scheme ∀X̄[C].T. This is evident in the instantiation constraint ∀X̄[C].T � T′,

which by Definition 10.2.3 stands for ∃X̄.(C ∧ T ≤ T′): the values that X̄ may

assume are restricted by the demand that C be satisfied. This requirement

vanishes in the case of DM type schemes, where C is true. Our notions of con­

strained type scheme and of instantiation constraint are standard, coinciding

with those of HM(X) (Odersky, Sulzmann, and Wehr, 1999).

Let us now come back to an explanation of type scheme introduction and

instantiation constraints. In brief, the construct def x : σ in C binds the name

x to the type scheme σ within the constraint C. If C contains a subconstraint

of the form x � T, where this occurrence of x is free in C, then this subcon­

straint acquires the meaning σ � T. Thus, the constraint x � T is indeed an

instantiation constraint, where the type scheme that is being instantiated is

referred to by name. The constraint def x : σ in C may be viewed as an ex­

plicit substitution of the type scheme σ for the name x within C. Later (§10.4),

we use such explicit substitutions to supplant typing environments. That is,

where Damas and Milner’s type system augments the current typing envi­

ronment (dm­Abs, dm­Let), we introduce a new def binding in the current

constraint; where it looks up the current typing environment (dm­Var), we

employ an instantiation constraint. (The reader may wish to look ahead at Fig­

ure 10­9 on page 431.) The point is that it is then up to a constraint solver to

choose a strategy for reducing explicit substitutions—for instance, one might

wish to simplify σ before substituting it for x within C—whereas the use of

environments in standard type systems such as DM and HM(X) imposes an

eager substitution strategy, which is inefficient and thus never literally imple­

mented. The use of type scheme introduction and instantiation constraints

allows separating constraint generation and constraint solving without com­

promising efficiency, or, in other words, without introducing a gap between

the description of the type inference algorithm and its actual implementation.

Although the algorithm that we plan to describe is not new (Rémy, 1992a), its

description in terms of constraints is: to the best of our knowledge, the only

close relative of our def constraints is to be found in Gustavsson and Sven­

ningsson (2001). An earlier work that contains similar ideas is Müller (1994).

Approaches based on semi­unification (Henglein, 1989, 1993) achieve a simi­

lar separation between constraint generation and constraint solving, but are

based on a rather different constraint language.
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In the type system of Damas and Milner, every type scheme S has a fixed,

nonempty set of instances. In a constraint­based setting, things are more

complex: given a type scheme σ and a type T, whether T is an instance

of σ (that is, whether the constraint σ � T is satisfied) depends on the

meaning assigned to the type variables in ftv(σ ,T). Similarly, given a type

scheme, whether some type is an instance of σ (that is, whether the con­

straint ∃Z.σ � Z, where Z is fresh for σ , is satisfied) depends on the meaning

assigned to the type variables in ftv(σ). Because we do not wish to allow

forming type schemes that have no instances, we often use the constraint

∃Z.σ � Z. In fact, we later prove that it is equivalent to ∃σ , as defined above.

We also use the constraint form let x : σ in C, which requires σ to have an

instance and at the same time associates it with the name x. Because the def

form is more primitive, it is easier to work with at a low level, but it is no

longer explicitly used after §10.2; we always use let instead.

10.2.4 Definition: Environments Γ remain as in Definition 10.1.19, except DM type

schemes S are replaced with constrained type schemes σ . The set of free

program identifiers of an environment Γ , written fpi(Γ), is defined by fpi(�) =

� and fpi(Γ ;x : σ) = fpi(Γ) ∪ fpi(σ). We write dfpi(Γ) for dpi(Γ)∪ fpi(Γ). We

define def � in C as C and def Γ ;x : σ in C as def Γ in def x : σ in C. Similarly,

we define let � in C as C and let Γ ;x : σ in C as let Γ in let x : σ in C. We define

∃� as true and ∃(Γ ;x : σ) as ∃Γ ∧ def Γ in ∃σ . 2

In order to establish or express certain laws of equivalence between con­

straints, we need constraint contexts. A constraint context is a constraint with

zero, one, or several holes, written []. The syntax of contexts is as follows:

C ::= [] | C | C∧ C | ∃X̄.C | def x : σ in C | def x : ∀X̄[C].T in C

The application of a constraint context C to a constraint C, written C[C], is

defined in the usual way. Because a constraint context may have any number

of holes, C may disappear or be duplicated in the process. Because a hole

may appear in the scope of a binder, some of C’s free type variables and free

program identifiers may become bound in C[C]. We write dtv(C) and dpi(C)

for the sets of type variables and program identifiers, respectively, that Cmay

thus capture. We write let x : ∀X̄[C].T in C for ∃X̄.C ∧ def x : ∀X̄[C].T in C.

(Being able to state such a definition is why we require multi­hole contexts.)

We let X range over existential constraint contexts, defined by X ::= ∃X̄.[].

Meaning of Constraints

We have defined the syntax of constraints and given an informal description

of their meaning. We now give a formal definition of the interpretation of

constraints. We begin with the definition of a model:
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10.2.5 Definition: For every kind κ, let Mκ be a nonempty set, whose elements

are called the ground types of kind κ. In the following, t ranges overMκ , for

some κ that may be determined from the context. For every type constructor

F of signature K ⇒ κ, let F denote a total function from MK into Mκ , where

the indexed productMK is the set of all mappings T of domain dom(K) that

map every d ∈ dom(K) to an element of MK(d). For every predicate symbol

P of signature κ1 ⊗ . . .⊗ κn ⇒ ·, let P denote a predicate on Mκ1 × . . .×Mκn .

For every kind κ, we require the predicate =κ to be equality on Mκ and the

predicate ≤κ to be a partial order onMκ . 2

For the sake of convenience, we abuse notation and write F for both the

type constructor and its interpretation, and similarly for predicates.

By varying the set of type constructors, the set of predicates, the set of

ground types, and the interpretation of type constructors and predicates, one

may define an entire family of related type systems. We refer to the collection

of these choices as X. Thus, the type system HM(X), described in §10.3, is

parameterized by X.

The following examples give standard ways of defining the set of ground

types and the interpretation of type constructors.

10.2.6 Example [Syntactic models]: For every kind κ, letMκ consist of the closed

types of kind κ. Then, ground types are types that do not have any free type

variables, and form the so­called Herbrand universe. Let every type construc­

tor F be interpreted as itself. Models that define ground types and interpret

type constructors in this manner are referred to as syntactic. 2

10.2.7 Example [Tree models]: Let a path π be a finite sequence of directions. The

empty path is written ε and the concatenation of the pathsπ and π ′ is written

π · π ′. Let a tree be a partial function t from paths to type constructors

whose domain is nonempty and prefix­closed and such that, for every path

π in the domain of t , if the type constructor t(π) has signature K ⇒ κ, then

π · d ∈ dom(t) is equivalent to d ∈ dom(K) and, furthermore, for every

d ∈ dom(K), the type constructor t(π · d) has image kind K(d). If π is in

the domain of t , then the subtree of t rooted at π , written t/π , is the partial

function π ′ , t(π · π ′). A tree is finite if and only if it has finite domain. A

tree is regular if and only if it has a finite number of distinct subtrees. Every

finite tree is thus regular. Let Mκ consist of the finite (respectively regular)

trees t such that t(ε) has image kind κ: then, we have a finite (respectively

regular) tree model.

If F has signature K ⇒ κ, one may interpret F as the function that maps

T ∈ MK to the ground type t ∈ Mκ defined by t(ε) = F and t/d = T(d) for

d ∈ dom(T), that is, the unique ground type whose head symbol is F and
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whose subtree rooted at d is T(d). Then, we have a free tree model. Note

that free finite tree models coincide with syntactic models, as defined in the

previous example. 2

Rows (§10.8) are interpreted in a tree model, albeit not a free one. The fol­

lowing examples suggest different ways of interpreting the subtyping predi­

cate.

10.2.8 Example [Equality models]: The simplest way of interpreting the subtyp­

ing predicate is to let ≤ denote equality on every Mκ . Models that do so

are referred to as equality models. When no predicate other than equality is

available, we say that the model is equality­only. 2

10.2.9 Example [Structural, nonstructural subtyping]: Let a variance ν be a

nonempty subset of {−,+}, written − (contravariant), + (covariant), or ± (in­

variant) for short. Define the composition of two variances as an associative,

commutative operation with + as neutral element, ± as absorbing element

(that is, ±− = ±+ = ±± = ±), and such that −− = +. Now, consider a free

(finite or regular) tree model, where every direction d comes with a fixed vari­

ance ν(d). Define the variance ν(π) of a path π as the composition of the

variances of its elements. Let à be a partial order on type constructors such

that (i) if F1 à F2 holds and F1 and F2 have signature K1 ⇒ κ1 and K2 ⇒ κ2, re­

spectively, then K1 and K2 agree on the intersection of their domains and κ1

and κ2 coincide; and (ii) F0 à F1 à F2 implies dom(F0)∩ dom(F2) ⊆ dom(F1).

Let à+, à−, and à± stand for à, á, and =, respectively. Then, define the inter­

pretation of subtyping as follows: if t1, t2 ∈Mκ , let t1 ≤ t2 hold if and only if,

for every path π ∈ dom(t1)∩ dom(t2), t1(π) àν(π) t2(π) holds. It is not diffi­

cult to check that ≤ is a partial order on every Mκ . The reader is referred to

Amadio and Cardelli (1993), Kozen, Palsberg, and Schwartzbach (1995), and

Brandt and Henglein (1997) for more details about this construction. Models

that define subtyping in this manner are referred to as nonstructural subtyp­

ing models.

A simple nonstructural subtyping model is obtained by: letting the direc­

tions domain and codomain be contra­ and covariant, respectively; introduc­

ing, in addition to the type constructor →, two type constructors ⊥ and > of

signature ?; and letting ⊥ à → à >. This gives rise to a model where ⊥ is the

least ground type, > is the greatest ground type, and the arrow type construc­

tor is, as usual, contravariant in its domain and covariant in its codomain.

This form of subtyping is called nonstructural because comparable ground

types may have different shapes: consider, for instance, ⊥ and ⊥ → >.

A typical use of nonstructural subtyping is in type systems for records. One

may, for instance, introduce a covariant direction content of kind ?, a kind
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◦, a type constructor abs of signature ◦, a type constructor pre of signature

{content , ?} ⇒ ◦, and let pre à abs. This gives rise to a model where

pre t ≤ abs holds for every t ∈ M?. Again, comparable ground types may

have different shapes: consider, for instance, pre > and abs. §10.8 says more

about typechecking operations on records.

Nonstructural subtyping has been studied, for example, in Kozen, Palsberg,

and Schwartzbach (1995), Palsberg, Wand, and O’Keefe (1997), Jim and Pals­

berg (1999), Pottier (2001b), Su et al. (2002), and Niehren and Priesnitz (2003).

An important particular case arises when any two type constructors related

by à have the same arity (and thus also the same signatures). In that case, it

is not difficult to show that any two ground types related by subtyping must

have the same shape, that is, if t1 ≤ t2 holds, then dom(t1) and dom(t2) must

coincide. For this reason, such an interpretation of subtyping is usually re­

ferred to as atomic or structural subtyping. It has been studied in the finite

(Mitchell, 1984, 1991b; Tiuryn, 1992; Pratt and Tiuryn, 1996; Frey, 1997; Re­

hof, 1997; Kuncak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn and

Wand, 1993) cases. Structural subtyping is often used in automated program

analyses that enrich standard types with atomic annotations without altering

their shape. 2

Many other kinds of constraints exist, which we lack space to list; see

Comon (1994) for a short survey.

Throughout this chapter, we assume (unless otherwise stated) that the set

of type constructors, the set of predicates, and the model—which, together,

form the parameter X—are arbitrary, but fixed.

As usual, the meaning of a constraint is a function of the meaning of its

free type variables and of its free program identifiers, which are respectively

given by a ground assignment and a ground environment.

10.2.10 Definition: A ground assignment φ is a total, kind­preserving mapping from

V into M. Ground assignments are extended to types by φ(F T1 . . . Tn) =

F(φ(T1), . . . ,φ(Tn)). Then, for every type T of kind κ, φ(T) is a ground type

of kind κ.

A ground type scheme s is a set of ground types, which we require to be

upward­closed with respect to subtyping: that is, t ∈ s and t ≤ t′ must im­

ply t′ ∈ s. A ground environment ψ is a partial mapping from identifiers to

ground type schemes.

Because the syntax of type schemes and constraints is mutually recursive,

so is their interpretation. The interpretation of a type scheme σ under a

ground assignment φ and a ground environment ψ is a ground type scheme,

written (φ,ψ)σ . It is defined in Figure 10­5. The ↑ is the upward closure
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Interpretation of type schemes:

(φ,ψ)(∀X̄[C].T) =

↑{φ[~X, ~t](T) ; φ[~X, ~t],ψ |= C}

Interpretation of constraints:

φ,ψ |= true (CM­True)

P(φ(T1), . . . ,φ(Tn))

φ,ψ |= P T1 . . . Tn
(CM­Predicate)

φ,ψ |= C1

φ,ψ |= C2

φ,ψ |= C1 ∧ C2

(CM­And)

φ[~X, ~t],ψ |= C

φ,ψ |= ∃X̄.C
(CM­Exists)

φ,ψ[x, (φ,ψ)σ] |= C

φ,ψ |= def x : σ in C
(CM­Def)

φ(T) ∈ ψ(x)

φ,ψ |= x � T
(CM­Instance)

Figure 10­5: Meaning of constraints

operator and |= is the constraint satisfaction predicate, defined next. The in­

terpretation of a constraint C under a ground assignment φ and a ground

environment ψ is a truth value, written φ,ψ |= C (read: φ and ψ satisfy C).

The three­place predicate |= is defined by the rules in Figure 10­5. A con­

straint C is satisfiable if and only if φ,ψ |= C holds for some φ and ψ. It is

false (or unsatisfiable) otherwise. 2

Let us now explain these definitions. The interpretation of the type scheme

∀X̄[C].T is a set of ground types, which we may refer to as the type scheme’s

ground instances. It contains the images of T under extensions of φ with

new values for the universally quantified variables X̄; these values may be

arbitrary, but must be such that the constraint C is satisfied. We implicitly

require ~X and ~t to have matching kinds, so that φ[~X , ~t] remains a kind­

preserving ground assignment. This set is upward closed, so any ground type

that lies above a ground instance of σ is also a ground instance of σ . This

interpretation is standard; see, for example, Pottier (2001a).

The rules that define |= (Figure 10­5) are syntax­directed. CM­True states

that the constraint true is a tautology, that is, holds in every context. No rule

matches the constraint false, which means that it holds in no context. CM­

Predicate states that the meaning of a predicate application is given by the

predicate’s interpretation within the model. More specifically, if P ’s signature

is κ1 ⊗ . . .⊗ κn ⇒ ·, then, by well­formedness of the constraint, every Ti is of

kind κi , so φ(Ti) is a ground type in Mκi . By Definition 10.2.5, P denotes a

predicate on Mκ1 × . . . ×Mκn , so the rule’s premise is mathematically well­

formed. It is independent of ψ, which is natural, since a predicate application

has no free program identifiers. CM­And requires each of the conjuncts to be
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valid in isolation. CM­Exists allows the type variables ~X to denote arbitrary

ground types ~t within C, independently of their image through φ. CM­Def

deals with type scheme introduction constraints, of the form def x : σ in C.

It binds x, within C, to the ground type scheme currently denoted by σ . Last,

CM­Instance concerns type scheme instantiation constraints of the form x �

T. Such a constraint is valid if and only if the ground type denoted by T is a

member of the ground type scheme denoted by x.

It is possible to prove that the constraints def x : σ in C and [x, σ]C have

the same meaning, where the latter denotes the capture­avoiding substitution

of σ for x throughout C. As a matter of fact, it would have been possible to

use this equivalence as a definition of the meaning of def constraints, but the

present style is pleasant as well. This confirms our claim that the def form is

an explicit substitution form.

Because constraints lie at the heart of our treatment of ML­the­type­system,

most of our proofs involve establishing logical properties of constraints.

These properties are usually not stated in terms of the satisfaction predi­

cate |=, which is too low­level. Instead, we reason in terms of entailment or

equivalence assertions. Let us first define these notions.

10.2.11 Definition: We write C1 ð C2, and say that C1 entails C2, if and only if,

for every ground assignment φ and for every ground environment ψ, the

assertion φ,ψ |= C1 implies φ,ψ |= C2. We write C1 ≡ C2, and say that C1

and C2 are equivalent, if and only if C1 ð C2 and C2 ð C1 hold. 2

In other words, C1 entails C2 when C1 imposes stricter requirements on

its free type variables and program identifiers than C2 does. Note that C is

unsatisfiable if and only if C ≡ false holds. It is straightforward to check

that entailment is reflexive and transitive and that ≡ is indeed an equivalence

relation.

We immediately exploit the notion of constraint equivalence to define what

it means for a type constructor to be covariant, contravariant, or invariant

with respect to one of its parameters. Let F be a type constructor of signature

κ1 ⊗ . . .⊗ κn ⇒ κ. Let i ∈ {1, . . . , n}. F is covariant (respectively contravariant,

invariant) with respect to its ith parameter if and only if, for all types T1, . . . ,Tn
and T′i of appropriate kinds, the constraint F T1 . . .Ti . . . Tn ≤ F T1 . . .T

′
i . . . Tn

is equivalent to Ti ≤ T′i (respectively T′i ≤ Ti , Ti = T′i ).

10.2.12 Exercise [«, 3]: Check the following facts: (i) in an equality model, covari­

ance, contravariance, and invariance coincide; (ii) in an equality free tree

model, every type constructor is invariant with respect to each of its parame­

ters; and (iii) in a nonstructural subtyping model, if the direction d has been

declared covariant (respectively contravariant, invariant), then every type con­
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structor whose arity includes d is covariant (respectively contravariant, in­

variant) with respect to d. 2

In the following, we require the type constructor → to be contravariant

with respect to its domain and covariant with respect to its codomain—a

standard requirement in type systems with subtyping (TAPL, Chapter 15).

This requirement is summed up by the following equivalence law:

T1 → T2 ≤ T′1 → T′2 ≡ T′1 ≤ T1 ∧ T2 ≤ T′2 (C­Arrow)

Note that this requirement bears on the interpretation of types and of the

subtyping predicate. In an equality free tree model, by (i) and (ii) in the exer­

cise above, it is always satisfied. In a nonstructural subtyping model, it boils

down to requiring that the directions domain and codomain be declared con­

travariant and covariant, respectively. In the general case, we do not have any

knowledge of the model and cannot formulate a more precise requirement.

Thus, it is up to the designer of the model to ensure that C­Arrow holds.

We also exploit the notion of constraint equivalence to define what it means

for two type constructors to be incompatible. Two type constructors F1 and

F2 with the same image kind are incompatible if and only if all constraints

of the form F1 ~T1 ≤ F2 ~T2 and F2 ~T2 ≤ F1 ~T1 are false. Note that in an equality

free tree model, any two distinct type constructors are incompatible. In the

following, we often indicate that a newly introduced type constructor must

be isolated. We implicitly require that, whenever both F1 and F2 are isolated,

F1 and F2 be incompatible. Thus, the notion of isolation provides a concise

and modular way of stating a collection of incompatibility requirements. We

require the type constructor → to be isolated.

Reasoning with Constraints

In this section, we give a number of equivalence laws that are often useful and

help understand the meaning of constraints. To begin, we note that entail­

ment is preserved by arbitrary constraint contexts, as stated by the theorem

below. As a result, constraint equivalence is a congruence. Throughout this

chapter, these facts are often used implicitly.

10.2.13 Theorem [Congruence]: C1 ð C2 implies C[C1] ð C[C2]. 2

Next, we define what it means for a constraint to determine a set of type

variables. In brief, C determines Ȳ if and only if, given a ground assignment

for ftv(C) \ Ȳ and given that C holds, it is possible to reconstruct, in a unique

way, a ground assignment for Ȳ. Determinacy appears in the equivalence law

C­LetAll on page 418 and is exploited by the constraint solver in §10.6.
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10.2.14 Definition: C determines Ȳ if and only if, for every environment Γ , two

ground assignments that satisfy def Γ in C and that coincide outside Ȳ must

coincide on Ȳ as well. 2

We now give a toolbox of constraint equivalence laws. It is worth noting

that they do not form a complete axiomatization of constraint equivalence;

in fact, they cannot, since the syntax and meaning of constraints is partly

unspecified.

10.2.15 Theorem: All equivalence laws in Figure 10­6 hold. 2

Let us explain. C­And and C­AndAnd state that conjunction is commuta­

tive and associative. C­Dup states that redundant conjuncts may be freely

added or removed, where a conjunct is redundant if and only if it is entailed

by another conjunct. Throughout this chapter, these three laws are often used

implicitly. C­ExEx and C­Ex* allow grouping consecutive existential quanti­

fiers and suppressing redundant ones, where a quantifier is redundant if and

only if the variables bound by it do not occur free within its scope. C­ExAnd

allows conjunction and existential quantification to commute, provided no

capture occurs; it is known as a scope extrusion law. When the rule is ori­

ented from left to right, its side­condition may always be satisfied by suitable

α­conversion. C­ExTrans states that it is equivalent for a type T to be an

instance of σ or to be a supertype of some instance of σ . We note that the in­

stances of a monotype are its supertypes, that is, by Definition 10.2.3, T′ � T

and T′ ≤ T are equivalent. As a result, specializing C­ExTrans to the case

where σ is a monotype, we find that T′ ≤ T is equivalent to ∃Z.(T′ ≤ Z∧Z ≤ T),

for fresh Z, a standard equivalence law. When oriented from left to right, it

becomes an interesting simplification law: in a chain of subtyping constraints,

an intermediate variable such as Z may be suppressed, provided it is local, as

witnessed by the existential quantifier ∃Z. C­InId states that, within the scope

of the binding x : σ , every free occurrence of x may be safely replaced with σ .

The restriction to free occurrences stems from the side­condition x 6∈ dpi(C).

When the rule is oriented from left to right, its other side­conditions, which

require the context let x : σ in C not to capture σ ’s free type variables or

free program identifiers, may always be satisfied by suitable α­conversion.

C­In* complements the previous rule by allowing redundant let bindings to

be simplified. We note that C­InId and C­In* provide a simple procedure for

eliminating let forms. C­InAnd states that the let form commutes with con­

junction; C­InAnd* spells out a common particular case. C­InEx states that it

commutes with existential quantification. When the rule is oriented from left

to right, its side­condition may always be satisfied by suitable α­conversion.

C­LetLet states that let forms may commute, provided they bind distinct
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C1 ∧ C2 ≡ C2 ∧ C1 (C­And)

(C1 ∧ C2)∧ C3 ≡ C1 ∧ (C2 ∧ C3) (C­AndAnd)

C1 ∧ C2 ≡ C1 if C1 ð C2 (C­Dup)

∃X̄.∃Ȳ.C ≡ ∃X̄Ȳ.C (C­ExEx)

∃X̄.C ≡ C if X̄ # ftv(C) (C­Ex*)

(∃X̄.C1)∧ C2 ≡ ∃X̄.(C1 ∧ C2) if X̄ # ftv(C2) (C­ExAnd)

∃Z.(σ � Z∧ Z ≤ T) ≡ σ � T if Z 6∈ ftv(σ ,T) (C­ExTrans)

let x : σ in C[x � T] ≡ let x : σ in C[σ � T] (C­InId)

if x 6∈ dpi(C) and dtv(C) # ftv(σ) and {x} ∪ dpi(C) # fpi(σ)

let Γ in C ≡ ∃Γ ∧ C if dpi(Γ) # fpi(C) (C­In*)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1)∧ (let Γ in C2) (C­InAnd)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1)∧ C2 if dpi(Γ) # fpi(C2) (C­InAnd*)

let Γ in ∃X̄.C ≡ ∃X̄.let Γ in C if X̄ # ftv(Γ) (C­InEx)

let Γ1; Γ2 in C ≡ let Γ2; Γ1 in C (C­LetLet)

if dpi(Γ1) # dpi(Γ2) and dpi(Γ2) # fpi(Γ1) and dpi(Γ1) # fpi(Γ2)

let x : ∀X̄[C1 ∧ C2].T in C3 ≡ C1 ∧ let x : ∀X̄[C2].T in C3 if X̄ # ftv(C1) (C­LetAnd)

let Γ ;x : ∀X̄[C1].T in C2 ≡ let Γ ;x : ∀X̄[let Γ in C1].T in C2 (C­LetDup)

if X̄ # ftv(Γ) and dpi(Γ) # fpi(Γ)

let x : ∀X̄[∃Ȳ.C1].T in C2 ≡ let x : ∀X̄Ȳ[C1].T in C2 if Ȳ # ftv(T) (C­LetEx)

let x : ∀X̄Ȳ[C1].T in C2 ≡ ∃Ȳ.let x : ∀X̄[C1].T in C2 (C­LetAll)

if Ȳ # ftv(C2) and ∃X̄.C1 determines Ȳ

∃X.(T ≤ X∧ let x : X in C) ≡ let x : T in C if X 6∈ ftv(T, C) (C­LetSub)

~X = ~T∧ [~X, ~T]C ≡ ~X = ~T∧ C (C­Eq)

true ≡ ∃X̄.(~X = ~T) if X̄ # ftv(T̄) (C­Name)

[~X, ~T]C ≡ ∃X̄.(~X = ~T∧ C) if X̄ # ftv(T̄) (C­NameEq)

Figure 10­6: Constraint equivalence laws
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program identifiers and provided no free program identifiers are captured

in the process. C­LetAnd allows the conjunct C1 to be moved outside of the

constrained type scheme ∀X̄[C1 ∧ C2].T, provided it does not involve any of

the universally quantified type variables X̄. When oriented from left to right,

the rule yields an important simplification law: indeed, taking an instance of

∀X̄[C2].T is less expensive than taking an instance of∀X̄[C1∧C2].T, since the

latter involves creating a copy of C1, while the former does not. C­LetDup al­

lows pushing a series of let bindings into a constrained type scheme, provided

no capture occurs in the process. It is not used as a simplification law but as a

tool in some proofs. C­LetEx states that it does not make any difference for a

set of type variables Ȳ to be existentially quantified inside a constrained type

scheme or part of the type scheme’s universal quantifiers. Indeed, in either

case, taking an instance of the type scheme means producing a constraint

where Ȳ is existentially quantified. C­LetAll states that it is equivalent for

a set of type variables Ȳ to be part of a type scheme’s universal quantifiers

or existentially bound outside the let form, provided these type variables are

determined. In other words, when a type variable is sufficiently constrained,

it does not matter whether it is polymorphic or monomorphic. Together, C­

LetEx and C­LetAll allow, in some situations, hoisting existential quantifiers

out of the left­hand side of a let form.

10.2.16 Example: C­LetAll would be invalid without the condition that ∃X̄.C1 de­

termines Ȳ. Consider, for instance, the constraint let x : ∀Y.Y → Y in (x �

int → int ∧ x � bool → bool) (1), where int and bool are incompatible nullary

type constructors. By C­InId and C­In*, it is equivalent to ∀Y.Y → Y ≤ int →

int ∧ ∀Y.Y → Y ≤ bool → bool which, by Definition 10.2.3, means ∃Y.(Y →

Y ≤ int → int) ∧ ∃Y.(Y → Y ≤ bool → bool), that is, true. Now, if C­LetAll

was valid without its side­condition, then (1) would also be equivalent to

∃Y.let x : Y→ Y in (x � int→ int∧x � bool → bool), which by C­InId and C­In*

is ∃Y.(Y→ Y ≤ int→ int∧ Y→ Y ≤ bool→ bool). By C­Arrow and C­ExTrans,

this is int = bool, that is, false. Thus, the law is invalid in this case. It is easy to

see why: when the type scheme σ contains a ∀Y quantifier, every instance of

σ receives its own ∃Y quantifier, making Y a distinct (local) type variable; but

when Y is not universally quantified, all instances of σ share references to a

single (global) type variable Y. This corresponds to the intuition that, in the

former case, σ is polymorphic in Y, while in the latter case, it is monomorphic

in Y. It is possible to prove that, when deprived of its side­condition, C­LetAll

is only an entailment law, that is, its right­hand side entails its left­hand side.

Similarly, it is in general invalid to hoist an existential quantifier out of the

left­hand side of a let form. To see this, one may study the (equivalent) con­

straint let x : ∀X[∃Y.X = Y → Y].X in (x � int → int ∧ x � bool → bool).

Naturally, in the above examples, the side­condition “true determines Y” does
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not hold: by Definition 10.2.14, it is equivalent to “two ground assignments

that coincide outside Y must coincide on Y as well,” which is false when M?

contains two distinct elements, such as int and bool here.

There are cases, however, where the side­condition does hold. For instance,

we later prove that ∃X.Y = int determines Y; see Lemma 10.6.7. As a result,

C­LetAll states that let x : ∀XY[Y = int].Y → X in C (1) is equivalent to

∃Y.let x : ∀X[Y = int].Y → X in C (2), provided Y 6∈ ftv(C). The intuition is

simple: because Y is forced to assume the value int by the equation Y = int, it

makes no difference whether Y is or isn’t universally quantified. By C­LetAnd,

(2) is equivalent to ∃Y.(Y = int ∧ let x : ∀X.Y → X in C) (3). In an efficient

constraint solver, simplifying (1) into (3) before using C­InId to eliminate the

let form is worthwhile, since doing so obviates the need for copying the type

variable Y and the equation Y = int at every free occurrence of x inside C. 2

C­LetSub is the analog of an environment strengthening lemma: roughly

speaking, it states that, if a constraint holds under the assumption that x has

type X, where X is some supertype of T, then it also holds under the assump­

tion that x has type T. The last three rules deal with the equality predicate.

C­Eq states that it is valid to replace equals with equals; note the absence of a

side­condition. When oriented from left to right, C­Name allows introducing

fresh names ~X for the types ~T. As always, ~X stands for a vector of distinct

type variables; ~T stands for a vector of the same length of types of appropri­

ate kind. Of course, this makes sense only if the definition is not circular, that

is, if the type variables X̄ do not occur free within the terms T̄. When oriented

from right to left, C­Name may be viewed as a simplification law: it allows

eliminating type variables whose value has been determined. C­NameEq is

a combination of C­Eq and C­Name. It shows that applying an idempotent

substitution to a constraint C amounts to placing C within a certain context.

So far, we have considered def a primitive constraint form and defined

the let form in terms of def, conjunction, and existential quantification. The

motivation for this approach was to simplify the (omitted) proofs of several

constraint equivalence laws. However, in the remainder of this chapter, we

work with let forms exclusively and never employ the def construct. This of­

fers us an extra property: every constraint that contains a false subconstraint

must be false.

10.2.17 Lemma: C[false] ≡ false. 2

Reasoning with Constraints in an Equality­Only Syntactic Model

We have given a number of equivalence laws that are valid with respect to

any interpretation of constraints, that is, within any model. However, an im­
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portant special case is that of equality­only syntactic models. Indeed, in that

specific setting, our constraint­based type systems are in close correspon­

dence with DM. In brief, we aim to prove that every satisfiable constraint C

such that fpi(C) = � admits a canonical solved form and to show that this

notion corresponds to the standard concept of a most general unifier. These

results are exploited when we relate HM(X) with Damas and Milner’s system

(p. 428).

Thus, let us now assume that constraints are interpreted in an equality­

only syntactic model. Let us further assume that, for every kind κ, (i) there

are at least two type constructors of image kind κ and (ii) for every type con­

structor F of image kind κ, there exists t ∈Mκ such that t(ε) = F . We refer to

models that violate (i) or (ii) as degenerate; one may argue that such models

are of little interest. The assumption that the model is nondegenerate is used

in the proof of Theorem 10.3.7. Last, throughout the present subsection we

manipulate only constraints that have no free program identifiers.

A solved form is a conjunction of equations, where the left­hand sides are

distinct type variables that do not appear in the right­hand sides, possibly

surrounded by a number of existential quantifiers. Our definition is identi­

cal to Lassez, Maher, and Marriott’s solved forms (1988) and to Jouannaud

and Kirchner’s tree solved forms (1991), except we allow for prenex existen­

tial quantifiers, which are made necessary by our richer constraint language.

Jouannaud and Kirchner also define dag solved forms, which may be expo­

nentially smaller. Because we define solved forms only for proof purposes,

we need not take performance into account at this point. The efficient con­

straint solver presented in §10.6 does manipulate graphs, rather than trees.

Type scheme introduction and instantiation constructs cannot appear within

solved forms; indeed, provided the constraint at hand has no free program

identifiers, they can be expanded away. For this reason, their presence in the

constraint language has no impact on the results contained in this section.

10.2.18 Definition: A solved form is of the form ∃Ȳ.(~X = ~T), where X̄ # ftv(T̄). 2

Solved forms offer a convenient way of reasoning about constraints be­

cause every satisfiable constraint is equivalent to one. This property is estab­

lished by the following lemma.

10.2.19 Lemma: Every constraint is equivalent to either a solved form or false. 2

It is possible to impose further restrictions on solved forms. A solved form

∃Ȳ.(~X = ~T) is canonical if and only if its free type variables are exactly X̄. This

is stated, in an equivalent way, by the following definition.

10.2.20 Definition: A canonical solved form is a constraint of the form ∃Ȳ.(~X = ~T),

where ftv(T̄) ⊆ Ȳ and X̄ # Ȳ. 2
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10.2.21 Lemma: Every solved form is equivalent to a canonical solved form. 2

It is easy to describe the solutions of a canonical solved form: they are the

ground refinements of the substitution [~X , ~T]. Hence, every canonical

solved form is satisfiable.

The following definition allows entertaining a dual view of canonical solved

forms, either as constraints or as idempotent type substitutions. The latter

view is commonly found in standard treatments of unification (Lassez, Maher,

and Marriott, 1988; Jouannaud and Kirchner, 1991) and in classic presenta­

tions of ML­the­type­system.

10.2.22 Definition: If [~X , ~T] is an idempotent substitution of domain X̄, let ∃[~X ,
~T] denote the canonical solved form ∃Ȳ.(~X = ~T), where Ȳ = ftv(T̄). An idem­

potent substitution θ is a most general unifier of the constraint C if and only

if ∃θ and C are equivalent. 2

By definition, equivalent constraints admit the same most general unifiers.

Many properties of canonical solved forms may be reformulated in terms

of most general unifiers. By Lemmas 10.2.19 and 10.2.21, every satisfiable

constraint admits a most general unifier.

10.3 HM(X)

Constraint­based type systems appeared during the 1980s (Mitchell, 1984;

Fuh and Mishra, 1988) and were widely studied during the following decade

(Curtis, 1990; Aiken and Wimmers, 1993; Jones, 1994; Smith, 1994; Palsberg,

1995; Trifonov and Smith, 1996; Fähndrich, 1999; Pottier, 2001b). We now

present one such system, baptized HM(X) because it is a parameterized ex­

tension of Hindley and Milner’s type discipline; the meaning of the parameter

X was explained on page 411. Its original description is due to Odersky, Sulz­

mann, and Wehr (1999). Since then, it has been completed in a number of

works including Müller (1998), Sulzmann, Müller, and Zenger (1999), Sulz­

mann (2000), Pottier (2001a), and Skalka and Pottier (2002). Each of these

presentations introduces minor variations. Here, we follow Pottier (2001a),

which is itself inspired by Sulzmann, Müller, and Zenger (1999).

Definition

Our presentation of HM(X) relies on the constraint language introduced in

§10.2. Technically, our approach to constraints is less abstract than that

of Odersky, Sulzmann, and Wehr (1999). We interpret constraints within a

model, give conjunction and existential quantification their standard mean­
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Γ(x) = σ C ð ∃σ

C, Γ ` x : σ
(hmx­Var)

C, (Γ ;z : T) ` t : T′

C, Γ ` λz.t : T→ T′
(hmx­Abs)

C, Γ ` t1 : T→ T′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T′
(hmx­App)

C, Γ ` t1 : σ C, (Γ ;z : σ) ` t2 : T

C, Γ ` let z = t1 in t2 : T
(hmx­Let)

C ∧D, Γ ` t : T X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, Γ ` t : ∀X̄[D].T
(hmx­Gen)

C, Γ ` t : ∀X̄[D].T

C ∧D, Γ ` t : T
(hmx­Inst)

C, Γ ` t : T C ð T ≤ T′

C, Γ ` t : T′
(hmx­Sub)

C, Γ ` t : σ X̄ # ftv(Γ , σ)

∃X̄.C, Γ ` t : σ
(hmx­Exists)

Figure 10­7: Typing rules for HM(X)

ing, and derive a number of equivalence laws (§10.2). Odersky et al., on the

other hand, do not explicitly rely on a logical interpretation; instead, they

axiomatize constraint equivalence, that is, they consider a number of equiva­

lence laws as axioms. Thus, they ensure that their high­level proofs, such as

type soundness and correctness and completeness of type inference, are in­

dependent of the low­level details of the logical interpretation of constraints.

Their approach is also more general, since it allows dealing with other logi­

cal interpretations, such as “open­world” interpretations, where constraints

are interpreted not within a fixed model, but within a family of extensions

of a “current” model. In this chapter, we have avoided this extra layer of ab­

straction and given fixed meaning to constraints, making things somewhat

simpler. However, the changes required to adopt Odersky et al.’s approach

would not be extensive, since the forthcoming proofs do indeed rely mostly

on constraint equivalence laws, rather than on low­level details of the logical

interpretation of constraints.

Another slight departure from Odersky et al.’s work lies in the fact that

we have enriched the constraint language with type scheme introduction and

instantiation forms, which were absent in the original presentation of HM(X).

To prevent this addition from affecting HM(X), we require the constraints

that appear in HM(X) typing judgments to have no free program identifiers.

Note that this does not prevent them from containing let forms.

The type system HM(X) consists of a four­place judgment whose parame­

ters are a constraint C, an environment Γ , an expression t, and a type scheme

σ . A judgment is written C, Γ ` t : σ and is read: under the assumptions C

and Γ , the expression t has type σ . One may view C as an assumption about
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the judgment’s free type variables and Γ as an assumption about t’s free pro­

gram identifiers. Recall that Γ now contains constrained type schemes, and

that σ is a constrained type scheme.

We would like the validity of a typing judgment to depend not on the syn­

tax, but only on the meaning of its constraint assumption. We enforce this

point of view by considering judgments equal modulo equivalence of their

constraint assumptions. In other words, the typing judgments C, Γ ` t : σ

and D, Γ ` t : σ are considered identical when C ≡ D holds. A judgment is

valid, or holds, if and only if it is derivable via the rules given in Figure 10­7.

Note that a valid judgment may involve an arbitrary constraint. A (closed)

program t is well­typed within the (closed) environment Γ if and only if a

judgment of the form C, Γ ` t : σ holds for some satisfiable constraint C. One

might wonder why we do not make the apparently stronger requirement that

C ∧ ∃σ be satisfiable; however, by inspection of the typing rules, the reader

may check that, if the above judgment is derivable, then C ð ∃σ holds, hence

the two requirements are equivalent.

Let us now explain the rules. Like dm­Var, hmx­Var looks up the environ­

ment to determine the type scheme associated with the program identifier x.

Its second premise plays a minor technical role: as noted in the previous para­

graph, its presence helps simplify the definition of well­typedness. hmx­Abs,

hmx­App, and hmx­Let are identical to dm­Abs, dm­App, and dm­Let, respec­

tively, except that the assumption C is made available to every subderivation.

We recall that the type T may be viewed as the type scheme ∀�[true].T (Defi­

nitions 10.1.18 and 10.2.2). As a result, types form a subset of type schemes,

which implies that Γ ;z : T is a well­formed environment and C, Γ ` t : T a

well­formed typing judgment. To understand hmx­Gen, it is best to first con­

sider the particular case where C is true. This yields the following, simpler

rule:

D, Γ ` t : T X̄ # ftv(Γ)

∃X̄.D, Γ ` t : ∀X̄[D].T
(hmx­Gen’)

The second premise is identical to that of dm­Gen: the type variables that

are generalized must not occur free within the environment. The conclusion

forms the type scheme∀X̄[D].T, where the type variables X̄ have become uni­

versally quantified, but are still subject to the constraint D. Note that the

type variables that occur free in D may include not only X̄, but also other

type variables, typically free in Γ . hmx­Gen may be viewed as a more liberal

version of hmx­Gen’, whereby part of the current constraint, namely C, need

not be copied if it does not concern the type variables that are being gener­

alized, namely X̄. This optimization is important in practice, because C may

be very large. An intuitive explanation for its correctness is given by the con­
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straint equivalence law C­LetAnd, which expresses the same optimization in

terms of let constraints. Because HM(X) does not use let constraints, the op­

timization is hard­wired into the typing rule. As a last technical remark, let

us point out that replacing C ∧ ∃X̄.D with C ∧ D in hmx­Gen’s conclusion

would not affect the set of derivable judgments; this fact may be established

using hmx­Exists and Lemma 10.3.1. hmx­Inst allows taking an instance of

a type scheme. The reader may be surprised to find that, contrary to dm­

Inst, it does not involve a type substitution. Instead, the rule merely drops

the universal quantifier, which amounts to applying the identity substitu­

tion ~X , ~X. One should recall, however, that type schemes are considered

equal modulo α­conversion, so it is possible to rename the type scheme’s

universal quantifiers prior to using hmx­Inst. The reason why this provides

sufficient expressive power appears in Exercise 10.3.2 below. The constraint

D carried by the type scheme is recorded as part of the current constraint

in hmx­Inst’s conclusion. The subsumption rule hmx­Sub allows a type T to

be replaced at any time with an arbitrary supertype T′. Because both T and

T′ may have free type variables, whether T ≤ T′ holds depends on the cur­

rent assumption C, which is why the rule’s second premise is an entailment

assertion. An operational explanation of hmx­Sub is that it requires all uses

of subsumption to be explicitly recorded in the current constraint. Note that

hmx­Sub remains a useful and necessary rule even when subtyping is inter­

preted as equality: then, it allows exploiting the type equations found in C.

Last, hmx­Exists allows the type variables that occur only within the current

constraint to become existentially quantified. As a result, these type variables

no longer occur free in the rule’s conclusion; in other words, they have be­

come local to the subderivation rooted at the premise. One may prove that

the presence of hmx­Exists in the type system does not augment the set of

well­typed programs, but does augment the set of valid typing judgments; it

is a pleasant technical convenience. Indeed, because judgments are consid­

ered equal modulo constraint equivalence, constraints may be transparently

simplified at any time. (By simplifying a constraint, we mean replacing it with

an equivalent constraint whose syntactic representation is considered sim­

pler.) Bearing this fact in mind, one finds that an effect of rule hmx­Exists

is to enable more simplifications: because constraint equivalence is a con­

gruence, C ≡ D implies ∃X̄.C ≡ ∃X̄.D, but the converse does not hold in

general. For instance, there is in general no way of simplifying the judgment

X ≤ Y ≤ Z, Γ ` t : σ , but if it is known that Y does not appear free in Γ or

σ , then hmx­Exists allows deriving ∃Y.(X ≤ Y ≤ Z), Γ ` t : σ , which is the

same judgment as X ≤ Z, Γ ` t : σ . Thus, an interesting simplification has

been enabled. Note that X ≤ Y ≤ Z ≡ X ≤ Z does not hold, while, according to

C­ExTrans, ∃Y.(X ≤ Y ≤ Z) ≡ X ≤ Z does.
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A pleasant property of HM(X) is that strengthening a judgment’s con­

straint assumption (that is, weakening the judgment itself) preserves its va­

lidity. It is worth noting that in traditional presentations, which rely more

heavily on type substitutions, the analog of this result is a type substitu­

tion lemma; see for instance Tofte (1988), Lemma 2.7; Rémy (1992a), Lemma

1; Leroy (1992), Proposition 1.2; and Skalka and Pottier (2002), Lemma 3.4.

Here, the lemma further states that weakening a judgment does not alter the

shape of its derivation, a useful property when reasoning by induction on

type derivations.

10.3.1 Lemma [Weakening]: If C′ ð C, then every derivation of C, Γ ` t : σ may be

turned into a derivation of C′, Γ ` t : σ with the same shape. 2

10.3.2 Exercise [Recommended, ««]: In some presentations of HM(X), hmx­Inst

is replaced with the following variant:

C, Γ ` t : ∀X̄[D].T C ð [~X, ~T]D

C, Γ ` t : [~X, ~T]T
(hmx­Inst’)

Show that hmx­Inst’ is admissible in our presentation of HM(X)—that is, if its

premise is derivable according to the rules of Figure 10­7, then so is its con­

clusion. Thus, the choice between hmx­Inst and hmx­Inst’ is only stylistic: it

makes no difference in the system’s expressive power. Because hmx­Inst is

more elementary, choosing it simplifies some proofs. 2

10.3.3 Exercise [«]: Give a derivation of true, � ` λz.z : int → int. Give a derivation

of true, � ` λz.z : ∀X.X → X. Check that the former judgment also follows

from the latter via hmx­Inst’ (Exercise 10.3.2), and determine which deriva­

tion of true, � ` λz.z : int→ int this path gives rise to. 2

We do not give a direct type soundness proof for HM(X). Instead, in the

forthcoming sections, we prove that well­typedness in HM(X) is equivalent

to the satisfiability of a certain constraint and use that characterization as

a basis for our type soundness proof. A direct type soundness result, based

on a denotational semantics, may be found in Odersky, Sulzmann, and Wehr

(1999). Another type soundness proof, which follows Wright and Felleisen’s

syntactic approach (1994), appears in Skalka and Pottier (2002). Last, a hybrid

approach, which combines some of the advantages of the previous two, is

given in Pottier (2001a).

An Alternate Presentation of HM(X)

The presentation of HM(X) given in Figure 10­7 has only four syntax­directed

rules out of eight. It is a good specification of the type system, but it is far
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Γ(x) = ∀X̄[D].T

C ∧D, Γ ` x : T
(hmd­VarInst)

C, (Γ ;z : T) ` t : T′

C, Γ ` λz.t : T→ T′
(hmd­Abs)

C, Γ ` t1 : T→ T′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T′
(hmd­App)

C ∧D, Γ ` t1 : T1 X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, (Γ ;z : ∀X̄[D].T1) ` t2 : T2

C ∧ ∃X̄.D, Γ ` let z = t1 in t2 : T2

(hmd­LetGen)

C, Γ ` t : T C ð T ≤ T′

C, Γ ` t : T′
(hmd­Sub)

C, Γ ` t : T X̄ # ftv(Γ ,T)

∃X̄.C, Γ ` t : T
(hmd­Exists)

Figure 10­8: An alternate presentation of HM(X)

from an algorithmic description. As a first step towards such a description,

we provide an alternate presentation of HM(X), where generalization is per­

formed only at let expressions and instantiation takes place only at refer­

ences to program identifiers (Figure 10­8). This presentation only has two

non­syntax­directed rules, making it sometimes easier to reason about. It has

the property that all judgments are of the form C, Γ ` t : T, rather than

C, Γ ` t : σ . The following theorem states that the two presentations are

indeed equivalent.

10.3.4 Theorem: C, Γ ` t : T is derivable via the rules of Figure 10­8 if and only if it

is a valid HM(X) judgment. 2

This theorem shows that the rule sets of Figures 10­7 and 10­8 derive

the same monomorphic judgments, that is, the same judgments of the form

C, Γ ` t : T. The fact that judgments of the form C, Γ ` t : σ , where σ is

a not a monotype, cannot be derived using the new rule set is a technical

simplification, without deep significance.

10.3.5 Exercise [«««, 3]: Show that it is possible to simplify the presentation of

Damas and Milner’s type system in an analogous manner. That is, define an

alternate set of typing rules for DM, which allows deriving judgments of the

form Γ ` t : T; then, show that this new rule set is equivalent to the previous

one, in the same sense as above. Which auxiliary properties of DM does your

proof require? A solution is given by Clement, Despeyroux, Despeyroux, and

Kahn (1986). 2
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Relating HM(X) with Damas and Milner’s Type System

In order to explain our interest in HM(X), we wish to show that it is more gen­

eral than Damas and Milner’s type system. Since HM(X) really is a family of

type systems, we must make this statement more precise. First, every mem­

ber of the HM(X) family contains DM. Conversely, DM contains HM(=), the

constraint­based type system obtained by specializing HM(X) to the setting

of an equality­only syntactic model.

The first of these assertions is easy to prove because the mapping from

DM judgments to HM(X) judgments is essentially the identity: every valid

DM judgment may be viewed as a valid HM(X) judgment under the trivial

assumption true. This statement relies on the fact that the DM type scheme

∀X̄.T is identified with the constrained type scheme ∀X̄[true].T, so DM type

schemes (respectively environments) form a subset of HM(X) type schemes

(respectively environments). Its proof is easy and relies on Exercise 10.3.2.

10.3.6 Theorem: If Γ ` t : S holds in DM, then true, Γ ` t : S holds in HM(X). 2

We are now interested in proving that HM(=), as defined above, is con­

tained within DM. To this end, we must translate every HM(=) judgment to

a DM judgment. It turns out that this is possible if the original judgment’s

constraint assumption is satisfiable. The translation relies on the fact that

the definition of HM(=) assumes an equality­only syntactic model. Indeed, in

that setting, every satisfiable constraint admits a most general unifier (Defi­

nition 10.2.22), whose properties we make essential use of.

Unfortunately, due to lack of space, we cannot give the details of this trans­

lation, which are fairly involved. Let us merely say that, given a type scheme

σ and an idempotent type substitution θ such that ftv(σ) ⊆ dom(θ) and

∃θ ð ∃σ hold, the translation of σ under θ is a DM type scheme, written

Jσ Kθ . Its meaning is intended to be the same as that of the HM(X) type

scheme θ(σ). For instance, under the identity substitution, the translation of

the HM(X) type scheme ∀XY[X = Y → Y].X is the DM type scheme ∀Z.Z → Z.

The translation is extended to environments in such a way that JΓ Kθ is defined

when ftv(Γ) ⊆ dom(θ) holds. We are now ready to state the main theorem.

10.3.7 Theorem: Let C, Γ ` t : σ hold in HM(=). Let θ be a most general unifier of

C such that ftv(Γ , σ) ⊆ dom(θ). Then, JΓ Kθ ` t : Jσ Kθ holds in DM. 2

Note that, by requiring θ to be a most general unifier of C, we also require C

to be satisfiable. Judgments that carry an unsatisfiable constraint cannot be

translated.

Together, Theorems 10.3.6 and 10.3.7 yield a precise correspondence be­

tween DM and HM(=): there exists a compositional translation from each to
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the other. In other words, they may be viewed as two equivalent formulations

of a single type system. One might also say that HM(=) is a constraint­based

formulation of DM. Furthermore, Theorem 10.3.6 states that every member of

the HM(X) family is an extension of DM. This explains our double interest in

HM(X), as an alternate formulation of DM, which we believe is more pleasant

for reasons already discussed, and as a more expressive framework.

10.4 Constraint Generation

We now explain how to reduce type inference problems for HM(X) to con­

straint solving problems. A type inference problem consists of a type environ­

ment Γ , an expression t, and a type T of kind ?. The problem is to determine

whether there exists a satisfiable constraint C such that C, Γ ` t : T holds. A

constraint solving problem consists of a constraint C. The problem is to de­

termine whether C is satisfiable. To reduce a type inference problem (Γ ,t,T)

to a constraint solving problem, we must produce a constraint C that is both

sufficient and necessary for C, Γ ` t : T to hold. Below, we explain how to

compute such a constraint, which we write JΓ ` t : TK. We check that it is

indeed sufficient by proving JΓ ` t : TK, Γ ` t : T. That is, the constraint

JΓ ` t : TK is specific enough to guarantee that t has type T under environ­

ment Γ . We say that constraint generation is sound. We check that it is indeed

necessary by proving that, for every constraint C, the validity of C, Γ ` t : T

implies C ð JΓ ` t : TK. That is, every constraint that guarantees that t has

type T under environment Γ is at least as specific as JΓ ` t : TK. We say

that constraint generation is complete. Together, these properties mean that

JΓ ` t : TK is the least specific constraint that guarantees that t has type T

under environment Γ .

We now see how to reduce a type inference problem to a constraint solving

problem. Indeed, if there exists a satisfiable constraint C such that C, Γ `

t : T holds, then, by the completeness property, C ð JΓ ` t : TK holds, so

JΓ ` t : TK is satisfiable. Conversely, by the soundness property, if JΓ ` t : TK

is satisfiable, then we have a satisfiable constraint C such that C, Γ ` t : T

holds. In other words, t is well­typed with type T under environment Γ if and

only if JΓ ` t : TK is satisfiable.

The reader may be somewhat puzzled by the fact that our formulation

of the type inference problem requires an appropriate type T to be known

in advance, whereas the very purpose of type inference seems to consist in

discovering the type of t! In other words, we have made T an input of the con­

straint generation algorithm, instead of an output. Fortunately, this causes

no loss of generality, because it is possible to let T be a type variable X, cho­
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sen fresh for Γ . Then, the constraint produced by the algorithm will contain

information about X. This is the point of the following exercise.

10.4.1 Exercise [Recommended, «]: Let X 6∈ ftv(Γ). Show that, if there exist a sat­

isfiable constraint C and a type T such that C, Γ ` t : T holds, then there

exists a satisfiable constraint C′ such that C′, Γ ` t : X holds. Conclude that,

given a closed environment Γ and an arbitrary type variable X, the term t is

well­typed within Γ if and only if JΓ ` t : XK is satisfiable. 2

This shows that providing T as an input to the constraint generation proce­

dure is not essential. We adopt this style because it is convenient. A somewhat

naive alternative would be to provide Γ and t only, and to have the procedure

return both a constraint C and a type T (Sulzmann, Müller, and Zenger, 1999).

It turns out that this does not quite work, because C and T may mention

“fresh” variables, which we must be able to quantify over, if we are to avoid

an informal treatment of “freshness.” Thus, the true alternative is to provide

Γ and t only and to have the procedure return a type scheme σ (Bourdoncle

and Merz, 1997; Bonniot, 2002).

The existence of a sound and complete constraint generation procedure

is the analog of the existence of principal type schemes in classic presenta­

tions of ML­the­type­system (Damas and Milner, 1982). Indeed, a principal

type scheme is least specific in the sense that all valid types are substitution

instances of it. Here, the constraint JΓ ` t : TK is least specific in the sense

that all valid constraints entail it. More about principal types and principal

typings may be found in Jim (1996) and Wells (2002).

How do we perform constraint generation? A standard approach (Sulz­

mann, Müller, and Zenger, 1999; Bonniot, 2002) is to define JΓ ` t : TK by

induction on the structure of t. At every let node, following hmd­LetGen,

part of the current constraint, namelyD, is turned into a type scheme, namely

∀X̄[D].T, which is used to extend the environment. Then, at every occurrence

of the program variable that was bound at this let node, following hmd­

VarInst, this type scheme is retrieved from the environment, and a copy of

D is added back to the current constraint. If such an approach is adopted, it is

important to simplify the type scheme ∀X̄[D].T before it is stored in the en­

vironment, because it would be inefficient to copy an unsimplified constraint.

In other words, in an efficient implementation of this standard approach,

constraint generation and constraint simplification cannot be separated.

Type scheme introduction and elimination constraints, which we intro­

duced in §10.2 but did not use in the specification of HM(X), are intended

as a means of solving this problem. By extending our vocabulary, we are able

to achieve the desired separation between constraint generation, on the one

hand, and constraint solving and simplification, on the other hand, without
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Jx : TK = x � T

Jλz.t : TK = ∃X1X2.(let z : X1 in Jt : X2K∧ X1 → X2 ≤ T)

Jt1 t2 : TK = ∃X2.(Jt1 : X2 → TK∧ Jt2 : X2K)

Jlet z = t1 in t2 : TK = let z : ∀X[Jt1 : XK].X in Jt2 : TK

Figure 10­9: Constraint generation

compromising efficiency. Indeed, by exploiting these new constraint forms,

we may define a constraint generation procedure whose time and space com­

plexity is linear, because it no longer involves copying subconstraints back

and forth between the environment and the constraint that is being gener­

ated. (It is then up to the constraint solver to perform simplification and

copying, if and when necessary.) In fact, the environment is suppressed al­

together: we define Jt : TK by induction on the structure of t—notice the

absence of the parameter Γ . Then, the constraint JΓ ` t : TK discussed above

becomes syntactic sugar for let Γ in Jt : TK. We now employ the full constraint

language: the program identifiers that appear free in t may also appear free in

Jt : TK, as part of instantiation constraints. They become bound when Jt : TK

is placed within the context let Γ in []. A similar approach to constraint gen­

eration appears in Müller (1994).

The defining equations for Jt : TK appear in Figure 10­9. We refer to them

as the constraint generation rules. The definition is quite terse and certainly

simpler than the declarative specification of HM(X) given in Figure 10­7; yet,

we prove below that the two are equivalent.

Before explaining the definition, we state the requirements that bear on

the type variables X1, X2, and X, which appear bound in the right­hand sides

of the second, third, and fourth equations. These type variables must have

kind ?. They must be chosen distinct (that is, X1 6= X2 in the second equa­

tion) and fresh for the objects that appear on the left­hand side—that is, the

type variables that appear bound in an equation’s right­hand side must not

occur free in the term and type that appear in the equation’s left­hand side.

Provided this restriction is obeyed, different choices of X1, X2, and X lead

to α­equivalent constraints—that is, to the same constraint, since we iden­

tify objects up to α­conversion—which guarantees that the above equations

make sense. Since expressions do not have free type variables, the freshness

requirement may be simplified to: type variables that appear bound in an

equation’s right­hand side must not appear free in T. However, this simplifica­

tion would be rendered invalid by the introduction of open type annotations
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within expressions. Note that we are able to state a precise (as opposed to in­

formal) freshness requirement. This is made possible by the fact that Jt : TK

has no free type variables other than those of T, which in turn depends on

our explicit use of existential quantification to limit the scope of auxiliary

variables.

Let us now review the four equations. The first equation may be read: x

has type T if and only if T is an instance of the type scheme associated with

x. Note that we no longer consult the type scheme associated with x in the

environment—indeed, there is no environment. Instead, we merely generate

an instantiation constraint, where x appears free. (For this reason, every pro­

gram identifier that occurs free within t typically also occurs free within

Jt : TK.) This constraint acquires its full meaning when it is later placed within

a context of the form let x : σ in []. This equation roughly corresponds to

hmd­VarInst. The second equation may be read: λz.t has type T if and only

if, for some X1 and X2, (i) under the assumption that z has type X1, t has type

X2, and (ii) T is a supertype of X1 → X2. Here, the types associated with z

and t must be fresh type variables, namely X1 and X2, because we cannot in

general guess them. These type variables are bound so as to guarantee that

the generated constraint is unique up to α­conversion. They are existentially

bound because we intend the constraint solver to discover their value. Con­

dition (i) is expressed by the subconstraint let z : X1 in Jt : X2K. This makes

sense as follows. The constraint Jt : X2K typically contains a number of in­

stantiation constraints bearing on z, of the form z � Ti . By wrapping it within

the context let z : X1 in [], we effectively require every Ti to be a supertype

of X1. Note that z does not occur free in the constraint let z : X1 in Jt : X2K,

which is necessary for well­formedness of the definition, since it does not

occur free in λz.t. This equation roughly corresponds to hmd­Exists, hmd­

Abs, and hmd­Sub. The third equation may be read: t1 t2 has type T if and

only if, for some X2, t1 has type X2 → T and t2 has type X2. Here, the fresh

type variable X2 stands for the unknown type of t2. This equation roughly

corresponds to hmd­App. The last equation, which roughly corresponds to

hmd­LetGen, may be read: let z = t1 in t2 has type T if and only if, under

the assumption that z has every type X such that Jt1 : XK holds, t2 has type

T. As in the case of λ­abstractions, the instantiation constraints bearing on z

that appear within Jt2 : TK are given a meaning via a let prefix. The difference

is that z may now be assigned a type scheme, as opposed to a monotype.

An appropriate type scheme is built as follows. The constraint Jt1 : XK is the

least specific constraint that must be imposed on the fresh type variable X

so as to make it a valid type for t1. In other words, t1 has every type X such

that Jt1 : XK holds, and none other. That is, the type scheme ∀X[Jt1 : XK].X,

abbreviated σ in the following, is a principal type scheme for t1. It is inter­
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esting to note that there is no question of which type variables to generalize.

Indeed, by construction, no type variables other than X may appear free in

Jt1 : XK, so we cannot generalize more variables. On the other hand, it is valid

to generalize X, since it does not appear free anywhere else. This interesting

simplification is inspired by Sulzmann, Müller, and Zenger (1999), where a

similar technique is used. Now, what happens when Jt2 : TK is placed inside

the context let z : σ in []? When placed inside this context, an instantiation

constraint of the form z � T′ acquires the meaning σ � T′, which by defini­

tion of σ and by Lemma 10.4.6 (see below) is equivalent to Jt1 : T′K. Thus, the

constraint produced by the fourth equation simulates a textual expansion of

the let construct, where every occurrence of z would be replaced with t1.

Thanks to type scheme introduction and instantiation constraints, however,

this effect is achieved without duplication of source code or constraints. In

other words, constraint generation has linear time and space complexity.

10.4.2 Exercise [«, 3]: Define the size of an expression, of a type, and of a con­

straint, viewed as abstract syntax trees. Check that the size of Jt : TK is linear

in the sum of the sizes of t and T. 2

10.4.3 Exercise [Recommended, «, 3]: Compute and simplify, as best as you can,

the constraint Jlet f = λz.z in f f : TK. 2

We now state several properties of constraint generation. We begin with

soundness, whose statement was explained above.

10.4.4 Theorem [Soundness]: let Γ in Jt : TK, Γ ` t : T. 2

The following lemmas are used in the proof of the completeness property

and in a number of other occasions. The first two state that Jt : TK is covari­

ant with respect to T. Roughly speaking, this means that enough subtyping

constraints are generated to achieve completeness with respect to hmd­Sub.

10.4.5 Lemma: Jt : TK∧ T ≤ T′ ð Jt : T′K. 2

10.4.6 Lemma: X 6∈ ftv(T) implies ∃X.(Jt : XK∧ X ≤ T) ≡ Jt : TK. 2

The next lemma gives a simplified version of the second constraint genera­

tion rule, in the specific case where the expected type is an arrow type. Thus,

fresh type variables need not be generated; one may directly use the arrow’s

domain and codomain instead.

10.4.7 Lemma: Jλz.t : T1 → T2K is equivalent to let z : T1 in Jt : T2K. 2

We conclude with the completeness property. The theorem states that if,

within HM(X), t has type T under assumptions C and Γ , then C must be at
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least as specific as let Γ in Jt : TK. The statement requires C and Γ to have

no free program identifiers, which is natural, since they are part of an HM(X)

judgment. The hypothesis C ð ∃Γ excludes the somewhat pathological situa­

tion where Γ contains constraints not apparent in C. This hypothesis vanishes

when Γ is the initial environment; see Definition 10.5.2.

10.4.8 Theorem [Completeness]: Let C ð ∃Γ . Assume fpi(C, Γ) = �. If C, Γ ` t : T

holds in HM(X), then C entails let Γ in Jt : TK. 2

10.5 Type Soundness

We are now ready to establish type soundness for our type system. The

statement that we wish to prove is sometimes known as Milner’s slogan:

“Well­typed programs do not go wrong” (Milner, 1978). Below, we define well­

typedness in terms of our constraint generation rules, for the sake of con­

venience, and establish type soundness with respect to that particular def­

inition. Theorems 10.3.6 and 10.4.8 imply that type soundness also holds

when well­typedness is defined with respect to the typing judgments of DM

or HM(X). We establish type soundness by following Wright and Felleisen’s

so­called syntactic approach (1994). The approach consists of isolating two in­

dependent properties. Subject reduction, whose exact statement will be given

below, implies that well­typedness is preserved by reduction. Progress states

that no stuck configuration is well­typed. It is immediate to check that, if both

properties hold, then no well­typed program can reduce to a stuck configu­

ration. Subject reduction itself depends on a key lemma, usually known as a

(term) substitution lemma. Here is a version of this lemma, stated in terms of

the constraint generation rules.

10.5.1 Lemma: let z : ∀X̄[Jt2 : T2K].T2 in Jt1 : T1K entails J[z , t2]t1 : T1K. 2

Before going on, let us give a few definitions and formulate several re­

quirements. First, we must define an initial environment Γ0, which assigns a

type scheme to every constant. A couple of requirements must be established

to ensure that Γ0 is consistent with the semantics of constants, as specified

by
δ
-→. Second, we must extend constraint generation and well­typedness to

configurations, as opposed to programs, since reduction operates on configu­

rations. Last, we must formulate a restriction to tame the interaction between

side effects and let­polymorphism, which is unsound if unrestricted.

10.5.2 Definition: Let Γ0 be an environment whose domain is the set of constants

Q. We require ftv(Γ0) = �, fpi(Γ0) = �, and ∃Γ0 ≡ true. We refer to Γ0 as the

initial typing environment. 2
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10.5.3 Definition: Let ref be an isolated, invariant type constructor of signature

?⇒ ?. A store typeM is a finite mapping from memory locations to types. We

write ref M for the environment that maps every m ∈ dom(M) to ref M(m).

Assuming dom(µ) and dom(M) coincide, the constraint Jµ : MK is defined

as the conjunction of the constraints Jµ(m) : M(m)K, where m ranges over

dom(µ). Under the same assumption, the constraint Jt/µ : T/MK is defined

as Jt : TK ∧ Jµ : MK. A closed configuration t/µ is well­typed if and only if

there exist a type T and a store type M such that dom(µ) = dom(M) and the

constraint let Γ0; refM in Jt/µ : T/MK is satisfiable. 2

The type ref T is the type of references (that is, memory locations) that

store data of type T (TAPL, Chapter 13). It must be invariant in its parameter,

reflecting the fact that references may be both read and written.

A store is a complex object: it may contain values that indirectly refer to

each other via memory locations. In fact, it is a representation of the graph

formed by objects and pointers in memory, which may contain cycles. We rely

on store types to deal with such cycles. In the definition of well­typedness,

the store typeM imposes a constraint on the contents of the store—the value

µ(m)must have type M(m)—but also plays the role of a hypothesis: by plac­

ing the constraint Jt/µ : T/MK within the context let ref M in [], we give

meaning to free occurrences of memory locations within Jt/µ : T/MK, and

stipulate that it is valid to assume that m has type M(m). In other words, we

essentially view the store as a large, mutually recursive binding of locations

to values. The context let Γ0 in [] gives meaning to occurrences of constants

within Jt/µ : T/MK.

We now define a relation between configurations that plays a key role in the

statement of the subject reduction property. The point of subject reduction is

to guarantee that well­typedness is preserved by reduction. However, such a

simple statement is too weak to be amenable to inductive proof. Thus, for the

purposes of the proof, we must be more specific. To begin, let us consider the

simpler case of a pure semantics, that is, a semantics without stores. Then,

we must state that if an expression t has type T under a certain constraint,

then its reduct t′ has type T under the same constraint. In terms of generated

constraints, this statement becomes: let Γ0 in Jt : TK entails let Γ0 in Jt′ : TK.

Let us now return to the general case, where a store is present. The state­

ment of well­typedness for a configuration t/µ now involves a store type

M whose domain is that of µ. So, the statement of well­typedness for its

reduct t′/µ′ must involve a store type M′ whose domain is that of µ′, which

is larger if allocation occurred. The types of existing memory locations must

not change: we must request that M and M′ agree on dom(M), that is, M′

must extend M . Furthermore, the types assigned to new memory locations in
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dom(M′)\dom(M)might involve new type variables, that is, variables that do

not appear free in M or T. We must allow these variables to be hidden—that

is, existentially quantified—otherwise the entailment assertion cannot hold.

These considerations lead us to the following definition:

10.5.4 Definition: t/µ v t′/µ′ holds if and only if, for every type T and for every

store type M such that dom(µ) = dom(M), there exist a set of type variables

Ȳ and a store type M′ such that Ȳ # ftv(T,M) and ftv(M′) ⊆ Ȳ ∪ ftv(M) and

dom(M′) = dom(µ′) and M′ extends M and

let Γ0; refM in Jt /µ : T/M K

ð ∃Ȳ.let Γ0; refM′ in Jt′/µ′ : T/M′K.

The relation v is intended to express a connection between a configuration

and its reduct. Thus, subject reduction may be stated as: (−−ñ) ⊆ (v), that

is, v is indeed a conservative description of reduction. 2

We have introduced an initial environment Γ0 and used it in the definition

of well­typedness, but we haven’t yet ensured that the type schemes assigned

to constants are an adequate description of their semantics. We now for­

mulate two requirements that relate Γ0 with
δ
-→. They are specializations of

the subject reduction and progress properties to configurations that involve

an application of a constant. They represent proof obligations that must be

discharged when concrete definitions of Q,
δ
-→, and Γ0 are given.

10.5.5 Definition: We require (i) (
δ
-→) ⊆ (v); and (ii) if the configuration c v1 . . .

vk/µ (where k ≥ 0) is well­typed, then either it is reducible, or c v1 . . . vk is a

value. 2

The last point that remains to be settled before proving type soundness

is the interaction between side effects and let­polymorphism. The following

example illustrates the problem:

let r = ref λz.z in let = (r := λz.(z +̂ 1̂)) in !r true

This expression reduces to true +̂ 1̂, so it must not be well­typed. Yet, if

natural type schemes are assigned to ref, !, and := (see Example 10.7.5), then

it is well­typed with respect to the rules given so far, because r receives the

polymorphic type scheme ∀X.ref (X → X), which allows writing a function of

type int → int into r and reading it back with type bool → bool. The problem

is that let­polymorphism simulates a textual duplication of the let­bound

expression ref λz.z, while the semantics first reduces it to a valuem, causing

a new bindingm , λz.z to appear in the store, then duplicates the addressm.
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The new store binding is not duplicated: both copies of m refer to the same

memory cell. For this reason, generalization is unsound in this case, and must

be restricted. Many authors have attempted to come up with a sound type

system that accepts all pure programs and remains flexible enough in the

presence of side effects (Tofte, 1988; Leroy, 1992). These proposals are often

complex, which is why they have been abandoned in favor of an extremely

simple syntactic restriction, known as the value restriction (Wright, 1995).

10.5.6 Definition: A program satisfies the value restriction if and only if all subex­

pressions of the form let z = t1 in t2 are in fact of the form let z = v1 in

t2. In the following, we assume that either all constants have pure semantics,

or all programs satisfy the value restriction. 2

Put slightly differently, the value restriction states that only values may be

generalized. This eliminates the problem altogether, since duplicating values

does not affect a program’s semantics. Note that any program that does not

satisfy the value restriction can be turned into one that does and has the

same semantics: it suffices to change let z = t1 in t2 into (λz.t2) t1 when

t1 is not a value. Of course, such a transformation may cause the program to

become ill­typed. In other words, the value restriction causes some perfectly

safe programs to be rejected. In particular, in its above form, it prevents gen­

eralizing applications of the form c v1 . . . vk, where c is a destructor of arity

k. This is excessive, because many destructors have pure semantics; only a

few, such as ref, allocate new mutable storage. Furthermore, we use pure

destructors to encode numerous language features (§10.7). Fortunately, it is

easy to relax the restriction to allow generalizing not only values, but also

a more general class of nonexpansive expressions, whose syntax guarantees

that such expressions cannot allocate new mutable storage (that is, expand

the domain of the store). The term nonexpansive was coined by Tofte (1988).

Nonexpansive expressions may include applications of the form c t1 . . . tk,

where c is a pure destructor of arity k and t1, . . . ,tk are nonexpansive. Ex­

perience shows that this slightly relaxed restriction is acceptable in practice.

Some limitations remain: for instance, constructor functions (that is, func­

tions that do not allocate mutable storage and build a value) are regarded

as ordinary functions, so their applications are considered potentially expan­

sive, even though a naked constructor application would be a value and thus

considered nonexpansive. For instance, in the expression let f = c v in

let z = f w in t, where c is a constructor of arity 2, the partial application

c v, to which the name f is bound, is a constructor function (of arity 1). The

program variable z cannot receive a polymorphic type scheme, because f w

is not a value, even though it has the same semantic meaning as c v w, which

is a value. A recent improvement to the value restriction (Garrigue, 2004)
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provides a partial remedy. Technically, the effect of the value restriction (as

stated in Definition 10.5.6) is summarized by the following result.

10.5.7 Lemma: Under the value restriction, the production E ::= let z = E in t

may be suppressed from the grammar of evaluation contexts (Figure 10­1)

without altering the operational semantics. 2

We are finished with definitions and requirements. Let us now turn to the

type soundness results.

10.5.8 Theorem [Subject reduction]: (−−ñ) ⊆ (v). 2

Subject reduction ensures that well­typedness is preserved by reduction.

10.5.9 Corollary: Let t/µ −−ñ t′/µ′. If t/µ is well­typed, then so is t′/µ′. 2

Let us now state the progress property.

10.5.10 Theorem [Progress]: If t/µ is well­typed, then either it is reducible, or t is

a value. 2

We may now conclude:

10.5.11 Theorem [Type Soundness]: Well­typed source programs do not go wrong. 2

Recall that this result holds only if the requirements of Definition 10.5.5 are

met. In other words, some proof obligations remain to be discharged when

concrete definitions of Q,
δ
-→, and Γ0 are given. This is illustrated by several

examples in §10.7 and §10.8.

10.6 Constraint Solving

We have introduced a parameterized constraint language, given equivalence

laws describing the interaction between its logical connectives, and exploited

them to prove theorems about type inference and type soundness, which

are valid independently of the nature of primitive constraints—the so­called

predicate applications. However, there would be little point in proposing a

parameterized constraint solver, because much of the difficulty of design­

ing an efficient constraint solver lies precisely in the treatment of primitive

constraints and in its interaction with let­polymorphism. In this section, we

focus on constraint solving in the setting of an equality­only free tree model.

Thus, the constraint solver developed here allows performing type inference

for HM(=) (that is, for Damas and Milner’s type system) and for its extension

with recursive types. Of course, some of its mechanisms may be useful in

other settings. The program analysis and type inference literature abounds
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with constraint­based systems of all kinds; a short list of papers that put par­

ticular emphasis on constraint solving is Aiken and Wimmers (1992), Hen­

glein (1993), Niehren, Müller, and Podelski (1997), Fähndrich (1999), Melski

and Reps (2000), Müller, Niehren, and Treinen (2001), Pottier (2001b), Niel­

son, Nielson, and Seidl (2002), McAllester (2002; 2003), and Simonet (2003).

We begin with a rule­based presentation of a standard, efficient first­order

unification algorithm. This yields a constraint solver for a subset of the con­

straint language, except for the type scheme introduction and instantiation

forms. On top of it, we build a full constraint solver, which corresponds to

the code that accompanies this chapter.

Unification

Unification is the process of solving equations between terms. It was first

introduced by Robinson (1971), but his original algorithm could be very in­

efficient. Efficient algorithms, which perform unification in quasi­linear time,

were independently proposed by Martelli and Montanari (1976; 1982) and by

Huet (1976, Chapter 5). Both algorithms rely on a data structure that effi­

ciently solves the union­find problem (Tarjan, 1975). Martelli and Montanari’s

algorithm performs unification in topological (top­down) order, and is thus

restricted to the acyclic case, that is, to the case where equations are inter­

preted in a syntactic model. In this specific case, unification may actually be

performed in truly linear time (Paterson and Wegman, 1978). On the other

hand, Huet’s algorithm is able to deal with cyclic structures. The acyclicity

check is postponed until the very end of the solving process if equations are

interpreted within a syntactic model, or omitted altogether if working within

a regular tree model. Except for the final acyclicity check, Huet’s algorithm is

incremental. Furthermore, it is simple; we present a version of it here. Knight

(1989) and Baader and Siekmann (1994) also describe Huet’s algorithm, and

provide further historical background and references.

Following Jouannaud and Kirchner (1991), we specify the algorithm as a

(nondeterministic) system of constraint rewriting rules. As suggested above,

it is almost the same for finite and regular tree models; only one rule, which

implements the occurs check, must be removed in the latter case. In other

words, the algorithm works with possibly cyclic data structures and does

not rely in an essential way on the occurs check. In order to more closely

reflect the behavior of the actual algorithm, and in particular the union­find

data structure, we modify the syntax of constraints by replacing equations

with multi­equations—equations involving an arbitrary number of types, as

opposed to exactly two.
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10.6.1 Definition: Let there be, for every kind κ and for every n ≥ 1, a predicate

=nκ , of signature κn ⇒ ·, whose interpretation is (n­ary) equality. The predicate

constraint =nκ T1 . . . Tn is written T1 = . . . = Tn, and called a multi­equation.

We consider the constraint true as a multi­equation of length 0 and let ε

range over all multi­equations. In the following, we identify multi­equations

up to permutations of their members, so a multi­equation ε of kind κ may

be viewed as a finite multiset of types of kind κ. We write ε = ε′ for the

multi­equation obtained by concatenating ε and ε′. 2

Thus, we are interested in the following subset of the constraint language:

U ::= true | false | ε | U ∧U | ∃X̄.U

Equations are replaced with multi­equations; no other predicates are avail­

able. Type scheme introduction and instantiation forms are absent.

10.6.2 Definition: A multi­equation is standard if and only if its variable mem­

bers are distinct and it has at most one nonvariable member. A constraint

U is standard if and only if every multi­equation inside U is standard and

every variable that occurs (free or bound) in U is a member of at most one

multi­equation inside U . (Note that to be a member of ε implies, but is not

equivalent to, to occur free in ε.) 2

A union­find algorithm maintains equivalence classes (that is, disjoint sets)

of variables, and associates with each class a descriptor, which in our case is

either absent or a nonvariable term. Thus, a standard constraint represents

a state of the union­find algorithm. A constraint that is not standard may be

viewed as a superposition of a state of the union­find algorithm, on the one

hand, and of control information, on the other hand. For instance, a multi­

equation of the form ε = T1 = T2, where ε is made up of distinct variables

and T1 and T2 are nonvariable terms, may be viewed, roughly speaking, as the

equivalence class ε = T1, together with a pending request to solve T1 = T2 and

to update the class’s descriptor accordingly. Because multi­equations encode

both state and control, our specification of the unification algorithm remains

rather abstract. It would be possible to give a lower­level description, where

state (standard conjunctions of multi­equations) and control (pending binary

equations) are distinguished.

10.6.3 Definition: Let U be a conjunction of multi­equations. Y is dominated by X

with respect to U (written: Y ≺U X) if and only if U contains a conjunct of the

form X = F ~T = ε, where Y ∈ ftv(T̄). U is cyclic if and only if the graph of ≺U
exhibits a cycle. 2
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(∃X̄.U1)∧U2 → ∃X̄.(U1 ∧U2) (S­ExAnd)

if X̄ # ftv(U2)

X = ε∧ X = ε′ → X = ε = ε′ (S­Fuse)

X = X = ε → X = ε (S­Stutter)

F ~X = F ~T = ε → ~X = ~T∧ F ~X = ε (S­Decompose)

F T1 . . . Ti . . . Tn = ε → ∃X.(X = Ti ∧ F T1 . . . X . . . Tn = ε) (S­Name­1)

if Ti 6∈ V ∧ X 6∈ ftv(T1, . . . ,Tn, ε)

F ~T = F ′ ~T′ = ε → false (S­Clash)

if F 6= F′

T → true (S­Single)

U ∧ true → U (S­True)

U → false (S­Cycle)

if the model is syntactic and U is cyclic

U[false] → false (S­Fail)

if U 6= []

Figure 10­10: Unification

The specification of the unification algorithm consists of a set of constraint

rewriting rules, given in Figure 10­10. Rewriting is performed modulo α­

conversion, modulo permutations of the members of a multi­equation, mod­

ulo commutativity and associativity of conjunction, and under an arbitrary

context. The specification is nondeterministic: several rule instances may be

simultaneously applicable.

S­ExAnd is a directed version of C­ExAnd, whose effect is to float up all

existential quantifiers. In the process, all multi­equations become part of a

single conjunction, possibly causing rules whose left­hand side is a conjunc­

tion of multi­equations, namely S­Fuse and S­Cycle, to become applicable.

S­Fuse identifies two multi­equations that share a common variable X, and

fuses them. The new multi­equation is not necessarily standard, even if the

two original multi­equations were. Indeed, it may have repeated variables or

contain two nonvariable terms. The purpose of the next few rules, whose

left­hand side consists of a single multi­equation, is to deal with these sit­

uations. S­Stutter eliminates redundant variables. It only deals with vari­
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ables, as opposed to terms of arbitrary size, so as to have constant time cost.

The comparison of nonvariable terms is implemented by S­Decompose and

S­Clash. S­Decompose decomposes an equation between two terms whose

head symbols match. It produces a conjunction of equations between their

subterms, namely ~X = ~T. Only one of the two terms remains in the original

multi­equation, which may thus become standard. The terms ~X are copied:

there are two occurrences of ~X on the right­hand side. For this reason, we

require them to be type variables, as opposed to terms of arbitrary size. (We

slightly abuse notation by using ~X to denote a vector of type variables whose

elements are not necessarily distinct.) By doing so, we allow explicit reasoning

about sharing: since a variable represents a pointer to an equivalence class,

we explicitly specify that only pointers, not whole terms, are copied. As a

result of this decision, S­Decompose is not applicable when both terms at

hand have a nonvariable subterm. S­Name­1 remedies this problem by intro­

ducing a fresh variable that stands for one such subterm. When repeatedly

applied, S­Name­1 yields a unification problem composed of so­called small

terms only—that is, where sharing has been made fully explicit. S­Clash com­

plements S­Decompose by dealing with the case where two terms with differ­

ent head symbols are equated; in a free tree model, such an equation is false,

so failure is signaled. S­Single and S­True suppress multi­equations of size

1 and 0, respectively, which are tautologies. S­Cycle is the occurs check: it

signals failure if the constraint is cyclic. It is applicable only in the case of

syntactic unification, that is, when ground types are finite trees. It is a global

check: its left­hand side is an entire conjunction of multi­equations. S­Fail

propagates failure; U ranges over unification constraint contexts.

The constraint rewriting system in Figure 10­10 enjoys the following prop­

erties. First, rewriting is strongly normalizing, so the rules define a (nonde­

terministic) algorithm. Second, rewriting is meaning­preserving. Third, every

normal form is either false or of the form ∃X̄.U , where U is satisfiable. The

latter two properties indicate that the algorithm is indeed a constraint solver.

10.6.4 Lemma: The rewriting system → is strongly normalizing. 2

10.6.5 Lemma: U1 → U2 implies U1 ≡ U2. 2

10.6.6 Lemma: Every normal form is either false or of the form X[U], where X is an

existential constraint context, U is a standard conjunction of multi­equations

and, if the model is syntactic, U is acyclic. These conditions imply that U is

satisfiable. 2
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A Constraint Solver

On top of the unification algorithm, we now define a constraint solver. Its

specification is independent of the rules and strategy employed by the uni­

fication algorithm. However, the structure of the unification algorithm’s nor­

mal forms as well as the logical properties of multi­equations are exploited

when performing generalization, that is, when creating and simplifying type

schemes. Like the unification algorithm, the constraint solver is specified in

terms of a reduction system. However, the objects that are subject to rewrit­

ing are not just constraints: they have more complex structure. Working

with such richer states allows distinguishing the solver’s external language—

namely, the full constraint language, which is used to express the problem

that one wishes to solve—and an internal language, introduced below, which

is used to describe the solver’s private data structures. In the following, C

and D range over external constraints, that is, constraints that were part of

the solver’s input. External constraints are to be viewed as abstract syntax

trees, subject to no implicit laws other than α­conversion. As a simplifying

assumption, we require external constraints not to contain any occurrence of

false—otherwise the problem at hand is clearly false. Internal data structures

include unification constraints U , as previously studied, and stacks, whose

syntax is as follows:

S ::= [] | S[[]∧ C] | S[∃X̄.[]] | S[let x : ∀X̄[[]].T in C] | S[let x : σ in []]

In the second and fourth productions, C is an external constraint. In the last

production, we require σ to be of the form ∀X̄[U].X, and we demand ∃σ ≡

true. Every stack may be viewed as a one­hole constraint context (page 410);

indeed, one may interpret [] as the empty context and ·[·] as context com­

position, which replaces the hole of its first context argument with its second

context argument. A stack may also be viewed, literally, as a list of frames.

Frames may be added and deleted at the inner end of a stack, that is, near the

hole of the constraint context that it represents. We refer to the four kinds of

frames as conjunction, existential, let, and environment frames, respectively.

A state of the constraint solver is a triple S;U ;C where S is a stack, U is a

unification constraint, and C is an external constraint. The state S;U ;C is to

be understood as a representation of the constraint S[U ∧ C], that is, the

constraint obtained by placing both U and C within the hole of the constraint

context S. The notion of α­equivalence between states is defined accordingly.

In particular, one may rename type variables in dtv(S), provided U and C are

renamed as well. In brief, the three components of a state play the following

roles. C is an external constraint that the solver intends to examine next. U



444 10 The Essence of ML Type Inference

is the internal state of the underlying unification algorithm; one might think

of it as the knowledge that has been obtained so far. S tells where the type

variables that occur free in U and C are bound, associates type schemes with

the program variables that occur free in C, and records what should be done

after C is solved. The solver’s initial state is usually of the form []; true;C,

where C is the external constraint that one wishes to solve, that is, whose

satisfiability one wishes to determine. If the constraint to be solved is of the

form let Γ0 in C, and if the type schemes that appear within Γ0 meet the

requirements that bear on environment frames, as defined above, then it is

possible to pick let Γ0 in []; true;C as an initial state. For simplicity, we make

the (unessential) assumption that states have no free type variables.

The solver consists of a (nondeterministic) state rewriting system, given in

Figure 10­11. Rewriting is performed modulo α­conversion. S­Unify makes

the unification algorithm a component of the constraint solver, and allows the

current unification problem U to be solved at any time. Rules S­Ex­1 to S­Ex­4

float existential quantifiers out of the unification problem into the stack and

through the stack up to the nearest enclosing let frame, if there is any, or to

the outermost level, otherwise. Their side­conditions prevent capture of type

variables, and can always be satisfied by suitable α­conversion of the left­

hand state. If S;U ;C is a normal form with respect to these five rules, then U

must be either false or a conjunction of standard multi­equations, and every

type variable in dtv(S) must be either universally quantified at a let frame or

existentially bound at the outermost level. (Recall that, by assumption, states

have no free type variables.) In other words, provided these rules are applied

in an eager fashion, there is no need for existential frames to appear in the

machine representation of stacks. Instead, it suffices to maintain, at every let

frame and at the outermost level, a list of the type variables that are bound

at this point and, conversely, to annotate every type variable in dtv(S) with

an integer rank, which allows telling, in constant time, where the variable is

bound: type variables of rank 0 are bound at the outermost level, and type

variables of rank k ≥ 1 are bound at the kth let frame down in the stack S.

The code that accompanies this chapter adopts this convention. Ranks were

initially described in Rémy (1992a) and have also been studied by McAllester

(2003).

Rules S­Solve­Eq to S­Solve­Let encode an analysis of the structure of the

third component of the current state. There is one rule for each possible case,

except false, which by assumption cannot arise, and true, which is dealt with

further on. S­Solve­Eq discovers an equation and makes it available to the

unification algorithm. S­Solve­Id discovers an instantiation constraint x � T

and replaces it with σ � T, where the type scheme σ = S(x) is the type
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S;U ;C → S;U ′;C (S­Unify)

if U → U ′

S;∃X̄.U ;C → S[∃X̄.[]];U ;C (S­Ex­1)

if X̄ # ftv(C)

S[(∃X̄.S′)∧D];U ;C → S[∃X̄.(S′ ∧D)];U ;C (S­Ex­2)

if X̄ # ftv(D)

S[let x : ∀X̄[∃Ȳ.S′].T in D];U ;C → S[let x : ∀X̄Ȳ[S].′T in D];U ;C (S­Ex­3)

if Ȳ # ftv(T)

S[let x : σ in ∃X̄.S′];U ;C → S[∃X̄.let x : σ in S′];U ;C (S­Ex­4)

if X̄ # ftv(σ)

S;U ;T1 = T2 → S;U ∧ T1 = T2; true (S­Solve­Eq)

S;U ;x � T → S;U ;S(x) � T (S­Solve­Id)

S;U ;C1 ∧ C2 → S[[]∧ C2];U ;C1 (S­Solve­And)

S;U ;∃X̄.C → S[∃X̄.[]];U ;C (S­Solve­Ex)

if X̄ # ftv(U)

S;U ; let x : ∀X̄[D].T in C → S[let x : ∀X̄[[]].T in C];U ;D (S­Solve­Let)

if X̄ # ftv(U)

S[[]∧ C];U ; true → S;U ;C (S­Pop­And)

S[let x : ∀X̄[[]].T in C];U ; true → S[let x : ∀X̄X[[]].X in C];

U ∧ X = T; true (S­Name­2)

if X 6∈ ftv(U,T)∧ T 6∈ V

S[let x : ∀X̄Y[[]].X in C];Y = Z = ε∧U ; true → S[let x : ∀X̄Y[[]].θ(X) in C];

Y∧ Z = θ(ε)∧ θ(U); true (S­Compress)

if Y 6= Z∧ θ = [Y, Z]

S[let x : ∀X̄Y[[]].X in C];Y = ε∧U ; true → S[let x : ∀X̄[[]].X in C]; ε∧U ; true (S­UnName)

if Y 6∈ X∪ ftv(ε,U)

S[let x : ∀X̄Ȳ[[]].X in C];U ; true → S[∃Ȳ.let x : ∀X̄[[]].X in C];U ; true (S­LetAll)

if Ȳ # ftv(C)∧ ∃X̄.U determines Ȳ

S[let x : ∀X̄[[]].X in C];U1 ∧U2; true → S[let x : ∀X̄[U2].X in []];U1;C (S­Pop­Let)

if X̄ # ftv(U1)∧ ∃X̄.U2 ≡ true

S[let x : σ in []];U ; true → S;U ; true (S­Pop­Env)

Figure 10­11: A constraint solver
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scheme carried by the nearest environment frame that defines x in the stack

S. It is defined as follows:

S[[]∧ C](x) = S(x)

S[∃X̄.[]](x) = S(x) if X̄ # ftv(S(x))

S[let y : ∀X̄[[]].T in C](x) = S(x) if X̄ # ftv(S(x))

S[let y : σ in []](x) = S(x) if x 6= y

S[let x : σ in []](x) = σ

If x ∈ dpi(S) does not hold, then S(x) is undefined and the rule is not appli­

cable. If it does hold, then the rule may always be made applicable by suitable

α­conversion of the left­hand state. Recall that, if σ is of the form ∀X̄[U].X,

where X̄ # ftv(T), then σ � T stands for ∃X̄.(U ∧ X = T). The process of

constructing this constraint is informally referred to as “taking an instance

of σ .” In the worst case, it is just as inefficient as textually expanding the

corresponding let construct in the program’s source code, and leads to ex­

ponential time complexity. In practice, however, the unification constraint

U is often compact because it was simplified before the environment frame

let x : σ in [] was created, which explains why the solver usually performs

well. (The creation of environment frames, performed by S­Pop­Let, is dis­

cussed below.) S­Solve­And discovers a conjunction. It arbitrarily chooses to

explore the left branch first, and pushes a conjunction frame onto the stack,

so as to record that the right branch should be explored afterwards. S­Solve­

Ex discovers an existential quantifier and enters it, creating a new existential

frame to record its existence. Similarly, S­Solve­Let discovers a let form and

enters its left­hand side, creating a new let frame to record its existence. The

choice of examining the left­hand side first is not arbitrary. Indeed, examin­

ing the right­hand side first would require creating an environment frame—

but environment frames must contain simplified type schemes of the form

∀X̄[U].X, whereas the type scheme ∀X̄[D].T is arbitrary. In other words, our

strategy is to simplify type schemes prior to allowing them to be copied by

S­Solve­Id, so as to avoid any duplication of effort. The side­conditions of S­

Solve­Ex and S­Solve­Let may always be satisfied by suitable α­conversion

of the left­hand state.

Rules S­Solve­Eq to S­Solve­Let may be referred to as forward rules, be­

cause they “move down into” the external constraint, causing the stack to

grow. This process stops when the external constraint at hand becomes true.

Then part of the work has been finished, and the solver must examine the

stack in order to determine what to do next. This task is performed by the

last series of rules, which may be referred to as backward rules, because they

“move back out,” causing the stack to shrink and possibly scheduling new

external constraints for examination. These rules encode an analysis of the
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structure of the innermost stack frame. There are three cases, correspond­

ing to conjunction, let, and environment frames. The case of existential stack

frames need not be considered, because rules S­Ex­2 to S­Ex­4 allow either

fusing them with let frames or floating them up to the outermost level, where

they shall remain inert. S­Pop­And deals with conjunction frames. The frame

is popped, and the external constraint that it carries is scheduled for exam­

ination. S­Pop­Env deals with environment frames. Because the right­hand

side of the let construct at hand has been solved—that is, turned into a uni­

fication constraint U—it cannot contain an occurrence of x. Furthermore, by

assumption, ∃σ is true. Thus, this environment frame is no longer useful: it

is destroyed. The remaining rules deal with let frames. Roughly speaking,

their purpose is to change the state S[let x : ∀X̄[[]].T in C];U ; true into

S[let x : ∀X̄[U].T in []]; true;C, that is, to turn the current unification con­

straint U into a type scheme, turn the let frame into an environment frame,

and schedule the right­hand side of the let construct (that is, the external

constraint C) for examination. In fact, the process is more complex, because

the type scheme ∀X̄[U].T must be simplified before becoming part of an en­

vironment frame. The simplification process is described by rules S­Name­2

to S­Pop­Let. In the following, we refer to type variables in X̄ as young and

to type variables in dtv(S) \ X̄ as old. The former are the universal quanti­

fiers of the type scheme that is being created; the latter contain its free type

variables.

S­Name­2 ensures that the body T of the type scheme that is being created

is a type variable, as opposed to an arbitrary term. If it isn’t, then it is re­

placed with a fresh variable X, and the equation X = T is added so as to recall

that X stands for T. Thus, the rule moves the term T into the current unifica­

tion problem, where it potentially becomes subject to S­Name­1. This ensures

that sharing is made explicit everywhere. S­Compress determines that the

(young) type variable Y is an alias for the type variable Z. Then, every free

occurrence of Y other than its defining occurrence is replaced with Z. In an

actual implementation, this occurs transparently when the union­find algo­

rithm performs path compression (Tarjan, 1975, 1979). We note that the rule

does not allow substituting a younger type variable for an older one; indeed,

that would make no sense, since the younger variable could then possibly

escape its scope. In other words, in implementation terms, the union­find al­

gorithm must be slightly modified so that, in each equivalence class, the rep­

resentative element is always a type variable with minimum rank. S­UnName

determines that the (young) type variable Y has no occurrences other than its

defining occurrence in the current type scheme. (This occurs, in particular,

when S­Compress has just been applied.) Then, Y is suppressed altogether.

In the particular case where the remaining multi­equation ε has cardinal 1,
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it may then be suppressed by S­Single. In other words, the combination of

S­UnName and S­Single is able to suppress young unused type variables as

well as the term that they stand for. This may, in turn, cause new type vari­

ables to become eligible for elimination by S­UnName. In fact, assuming the

current unification constraint is acyclic, an inductive argument shows that

every young type variable may be suppressed unless it is dominated either

by X or by an old type variable. (In the setting of a regular tree model, it is

possible to extend the rule so that young cycles that are not dominated either

by X or by an old type variable are suppressed as well.) S­LetAll is a directed

version of C­LetAll. It turns the young type variables Ȳ into old variables.

How to tell whether ∃X̄.U determines Ȳ is discussed later (see Lemma 10.6.7).

Why S­LetAll is an interesting and important rule will be explained shortly.

S­Pop­Let is meant to be applied when the current state has become a nor­

mal form with respect to S­Unify, S­Name­2, S­Compress, S­UnName, and

S­LetAll, that is, when the type scheme that is about to be created is fully

simplified. It splits the current unification constraint into two components

U1 and U2, where U1 is made up entirely of old variables, as expressed by

the side­condition X̄ # ftv(U1), and U2 constrains young variables only, as

expressed by the side­condition ∃X̄.U2 ≡ true. Note that U2 may still con­

tain free occurrences of old type variables, so the type scheme ∀X̄[U2].X that

appears on the right­hand side is not necessarily closed. It is not obvious

why such a decomposition must exist; Lemma 10.6.10 proves that it does.

Let us say for now that S­LetAll plays a role in guaranteeing its existence,

whence comes part of its importance. Once the decomposition U1 ∧ U2 is

obtained, the behavior of S­Pop­Let is simple. The unification constraint U1

concerns old variables only, that is, variables that are not quantified in the

current let frame; thus, it need not become part of the new type scheme and

may instead remain part of the current unification constraint. This is justi­

fied by C­LetAnd and C­InAnd* and corresponds to the difference between

hmx­Gen’ and hmx­Gen discussed in §10.3. The unification constraint U2, on

the other hand, becomes part of the newly built type scheme ∀X̄[U2].X. The

property ∃X̄.U2 ≡ true guarantees that the newly created environment frame

meets the requirements imposed on such frames. Note that the more type

variables are considered old, the larger U1 may become, and the smaller U2.

This is another reason why S­LetAll is interesting: by allowing more vari­

ables to be considered old, it decreases the size of the type scheme∀X̄[U2].X,

making it cheaper to instantiate.

To complete our description of the constraint solver, there remains to ex­

plain how to decide when ∃X̄.U determines Ȳ, since this predicate occurs in

the side­condition of S­LetAll. The following lemma describes two important

situations where, by examining the structure of an equation, it is possible to
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discover that a constraint C determines some of its free type variables Ȳ (Def­

inition 10.2.14). In the first situation, the type variables Ȳ are equated with or

dominated by a distinct type variable X that occurs free in C. In that case,

because the model is a free tree model, the values of the type variables Ȳ

are determined by the value of X: they are subtrees of it at specific positions.

For instance, X = Y1 → Y2 determines Y1Y2, while ∃Y1.(X = Y1 → Y2) deter­

mines Y2. In the second situation, the type variables Ȳ are equated with a

term T, all of whose type variables are free in C. Again, the value of the type

variables Ȳ is then determined by the values of the type variables ftv(T). For

instance, X = Y1 → Y2 determines X, while ∃Y1.(X = Y1 → Y2) does not. In the

second situation, no assumption is in fact made about the model. (Note that

X = Y1 → Y2 determines Y1Y2 and determines X, but does not simultaneously

determine XY1Y2.)

10.6.7 Lemma: Let X̄ # Ȳ. Assume either ε is X = ε′, where X 6∈ X̄Ȳ and Ȳ ⊆ ftv(ε′), or

ε is Ȳ = T = ε′, where ftv(T) # X̄Ȳ. Then, ∃X̄.(C ∧ ε) determines Ȳ. 2

Thanks to Lemma 10.6.7, an efficient implementation of S­LetAll comes

to mind. The problem is, given a constraint ∃X̄.U , where U is a standard con­

junction of multi­equations, to determine the greatest subset Ȳ of X̄ such that

∃(X̄ \ Ȳ).U determines Ȳ. By the first part of the lemma, it is safe for Ȳ to in­

clude all members of X̄ that are directly or indirectly dominated (with respect

to U) by some free variable of ∃X̄.U . Those can be found, in time linear in

the size of U , by a top­down traversal of the graph of ≺U . By the second part

of the lemma, it is safe to close Ȳ under the closure law X ∈ X̄ ∧ (∀Y Y ≺U
X ⇒ Y ∈ Ȳ) ⇒ X ∈ Ȳ. That is, it is safe to also include all members of X̄

whose descendants (with respect to U) have already been found to be mem­

bers of Ȳ. This closure computation may be performed, again in linear time,

by a bottom­up traversal of the graph of ≺U . When U is acyclic, it is possible

to show that this procedure is complete, that is, does compute the greatest

subset Ȳ that meets our requirement.

The above discussion has shown that when Y and Z are equated, if Y is

young and Z is old, then S­LetAll allows making Y old as well. If binding

information is encoded in terms of integer ranks, as suggested earlier, then

this remark may be formulated as follows: when Y and Z are equated, if the

rank of Y exceeds that of Z, then it may be decreased so that both ranks

match. As a result, it is possible to attach ranks with multi­equations, rather

than with variables. When two multi­equations are fused, the smaller rank is

kept. This treatment of ranks is inspired by Rémy (1992a); see the resolution

rule Fuse, as well as the simplification rules Propagate and Realize, in that

paper.
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Let us now state the properties of the constraint solver. First, the reduction

system is terminating, so it defines an algorithm.

10.6.8 Lemma: The reduction system → is strongly normalizing. 2

Second, every rewriting step preserves the meaning of the constraint that

the current state represents. We recall that the state S;U ;C is meant to rep­

resent the constraint S[U ∧ C].

10.6.9 Lemma: S;U ;C → S′;U ′;C′ implies S[U ∧ C] ≡ S′[U ′ ∧ C′]. 2

Last, we classify the normal forms of the reduction system:

10.6.10 Lemma: A normal form for the reduction system → is one of (i) S;U ;x � T,

where x 6∈ dpi(S); (ii) S; false; true; or (iii) X ;U ; true, where X is an existential

constraint context and U a satisfiable conjunction of multi­equations. 2

In case (i), the constraint S[U ∧C] has a free program identifier x. In other

words, the source program contains an unbound program identifier. Such an

error could of course be detected prior to constraint solving, if desired. In

case (ii), the unification algorithm failed. By Lemma 10.2.17, the constraint

S[U ∧ C] is then false. In case (iii), the constraint S[U ∧ C] is equivalent to

X[U], where U is satisfiable, so it is satisfiable as well. If the initial constraint

is closed, case (i) cannot arise, while cases (ii) and (iii) respectively denote

failure and success. Thus, Lemmas 10.6.9 and 10.6.10 indeed prove that the

algorithm is a constraint solver.

10.6.11 Remark: Type inference for ML­the­calculus is dexptime­complete (Kfoury,

Tiuryn, and Urzyczyn, 1990; Mairson, Kanellakis, and Mitchell, 1991). Thus,

our constraint solver cannot run any faster, asymptotically. This cost is es­

sentially due to let­polymorphism, which requires a constraint to be du­

plicated at every occurrence of a let­bound variable (S­Solve­Id). In order

to limit the amount of duplication to a bare minimum, it is important that

rule S­LetAll be applied before S­Pop­Let, allowing variables and constraints

that need not be duplicated to be shared. We have observed that algorithms

based on this strategy behave remarkably well in practice (Rémy, 1992a). In

fact, McAllester (2003) has proved that they have linear time complexity, pro­

vided the size of type schemes and the (left­) nesting depth of let constructs

are bounded. Unfortunately, many implementations of type inference for ML­

the­programming­language do not behave as efficiently as the algorithm pre­

sented here. Some spend an excessive amount of time in computing the set

of nongeneralizable type variables; some do not treat types as dags, thus los­

ing precious sharing information; others perform the expensive occurs check

after every unification step, rather than only once at every let construct, as

suggested here (S­Pop­Let). 2
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10.7 From ML­the­Calculus to ML­the­Language

In this section, we explain how to extend the framework developed so far

to accommodate operations on values of base type (such as integers), pairs,

sums, references, and recursive function definitions. Then, we describe alge­

braic data type definitions. Last, the issues associated with recursive types

are briefly discussed. For space reasons, exceptions are not discussed; the

reader is referred to (TAPL, Chapter 14).

Simple Extensions

Introducing new constants and extending
δ
-→ and Γ0 appropriately allows

adding many features of ML­the­programming­language to ML­the­calculus. In

each case, it is necessary to check that the requirements of Definition 10.5.5

are met, that is, to ensure that the new initial environment faithfully reflects

the nature of the new constants as well as the behavior of the new reduc­

tion rules. Below, we describe several such extensions in isolation. The first

exercise establishes a technical result that is useful in the next exercises.

10.7.1 Exercise [Recommended, «]: Let Γ0 contain the binding c : ∀X̄.T1 → . . . →

Tn → T. Prove let Γ0 in Jc t1 . . . tn : T′K equivalent to let Γ0 in ∃X̄.(
∧n
i=1Jti :

TiK∧ T ≤ T′). 2

10.7.2 Exercise [Integers, Recommended, ««]: Integer literals and integer addition

have been introduced and given an operational semantics in Examples 10.1.1,

10.1.2, and 10.1.4. Let us now introduce an isolated type constructor int of

signature ? and extend the initial environment Γ0 with the bindings n̂ : int,

for every integer n, and +̂ : int → int → int. Check that these definitions meet

the requirements of Definition 10.5.5. 2

10.7.3 Exercise [Pairs, ««, 3]: Pairs and pair projections have been introduced and

given an operational semantics in Examples 10.1.3 and 10.1.5. Let us now in­

troduce an isolated type constructor × of signature ? ⊗ ? ⇒ ?, covariant in

both of its parameters, and extend the initial environment Γ0 with the follow­

ing bindings:

(·, ·) : ∀XY.X→ Y→ X× Y

π1 : ∀XY.X× Y→ X

π2 : ∀XY.X× Y→ Y

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.4 Exercise [Sums, ««, 3]: Sums have been introduced and given an operational

semantics in Example 10.1.7. Let us now introduce an isolated type construc­

tor + of signature ?⊗? ⇒ ?, covariant in both of its parameters, and extend
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the initial environment Γ0 with the following bindings:

inj1 : ∀XY.X→ X+ Y

inj2 : ∀XY.Y→ X+ Y

case : ∀XYZ.(X+ Y)→ (X→ Z)→ (Y→ Z)→ Z

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.5 Exercise [References, «««]: References have been introduced and given an

operational semantics in Example 10.1.9. The type constructor ref has been

introduced in Definition 10.5.3. Let us now extend the initial environment Γ0

with the following bindings:

ref : ∀X.X→ ref X

! : ∀X.ref X→ X

:= : ∀X.ref X→ X→ X

Check that these definitions meet the requirements of Definition 10.5.5. 2

10.7.6 Exercise [Recursion, Recommended, «««, 3]: The fixpoint combinator fix

has been introduced and given an operational semantics in Example 10.1.10.

Let us now extend the initial environment Γ0 with the following binding:

fix : ∀XY.((X→ Y)→ (X→ Y)) → X→ Y

Check that these definitions meet the requirements of Definition 10.5.5. Re­

call how the letrec syntactic sugar was defined in Example 10.1.10, and

check that this gives rise to the following constraint generation rule:

let Γ0 in Jletrec f = λz.t1 in t2 : TK

≡ let Γ0 in let f : ∀XY[let f : X→ Y;z : X in Jt1 : YK].X→ Y in Jt2 : TK

Note the somewhat peculiar structure of this constraint: the program variable

f is bound twice in it, with different type schemes. The constraint requires

all occurrences of f within t1 to be assigned the monomorphic type X→ Y.

This type is generalized and turned into a type scheme before inspecting t2,

however, so every occurrence of f within t2 may receive a different type, as

usual with let­polymorphism. A more powerful way of typechecking recur­

sive function definitions, proposed by (Mycroft, 1984) and known as polymor­

phic recursion, allows the types of occurrences of f within t1 to be possibly

distinct instances of a single type scheme. However, type inference for this

extension is equivalent to semi­unification (Henglein, 1993), which has been

proved undecidable (Kfoury, Tiuryn, and Urzyczyn, 1993). Hence, type infer­

ence must either require type annotations or rely on a semi­algorithm. 2
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In the exercises above, we have considered a number of extensions (inte­

gers, booleans, pairs, etc.) in isolation. We have checked that each of them

preserves type soundness. Unfortunately, this does not in general imply that

their combination preserves type soundness. In fact, it is possible to prove

that these extensions are independent in a suitable sense and that indepen­

dent extensions may be safely combined. Unfortunately, we lack space to

further explain these notions.

Algebraic Data Types

Exercises 10.7.3 and 10.7.4 have shown how to extend the language with bi­

nary, anonymous products and sums. These constructs are quite general but

still have several shortcomings. First, they are only binary, while we would

like to have k­ary products and sums, for arbitrary k ≥ 0. Such a general­

ization is of course straightforward. Second, more interestingly, their compo­

nents must be referred to by numeric index (as in “extract the second com­

ponent of the pair”), rather than by name (“extract the component named y”).

In practice, it is crucial to use names, because they make programs more

readable and more robust in the face of changes. One could introduce a

mechanism that allows defining names as syntactic sugar for numeric in­

dices. That would help a little, but not much, because these names would

not appear in types, which would still be made of anonymous products and

sums. Third, in the absence of recursive types, products and sums do not

have sufficient expressiveness to allow defining unbounded data structures,

such as lists. Indeed, it is easy to see that every value whose type T is com­

posed of base types (int, bool, etc.), products, and sums must have bounded

size, where the bound |T | is a function of T. More precisely, up to a con­

stant factor, we have | int | = |bool | = 1, |T1 × T2 | = 1 + |T1 | + |T2 |, and

|T1 + T2 | = 1 + max(|T1 |, |T2 |). The following example describes another

facet of the same problem.

10.7.7 Example: A list is either empty, or a pair of an element and another list. So,

it seems natural to try and encode the type of lists as a sum of some arbitrary

type (say, unit) on the one hand, and of a product of some element type and of

the type of lists itself on the other hand. With this encoding in mind, we can

go ahead and write code—for instance, a function that computes the length

of a list:

letrec length = λl.case l (λ .0̂) (λz.1̂ +̂ length (π2 z))

We have used integers, pairs, sums, and the letrec construct introduced in

the previous section. The code analyzes the list l using a case construct.
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If the left branch is taken, the list is empty, so 0 is returned. If the right

branch is taken, then z becomes bound to a pair of some element and the

tail of the list. The latter is obtained using the projection operator π2. Its

length is computed using a recursive call to length and incremented by 1.

This code makes perfect sense. However, applying the constraint generation

and constraint solving algorithms eventually leads to an equation of the form

X = Y+ (Z× X), where X stands for the type of l. This equation accurately re­

flects our encoding of the type of lists. However, in a syntactic model, it has

no solution, so our definition of length is ill­typed. It is possible to adopt

a free regular tree model, thus introducing equirecursive types into the sys­

tem (TAPL, Chapter 20); however, there are good reasons not to do so (see

the section on Recursive Types on p. 459). 2

To work around this problem, ML­the­programming­language offers alge­

braic data type definitions, whose elegance lies in the fact that, while repre­

senting only a modest theoretical extension, they do solve the three problems

mentioned above. An algebraic data type may be viewed as an abstract type

that is declared to be isomorphic to a (k­ary) product or sum type with named

components. The type of each component is declared, as well, and may refer

to the algebraic data type that is being defined: thus, algebraic data types are

isorecursive (TAPL, Chapter 20). In order to allow sufficient flexibility when

declaring the type of each component, algebraic data type definitions may be

parameterized by a number of type variables. Last, in order to allow the de­

scription of complex data structures, it is necessary to allow several algebraic

data types to be defined at once; the definitions may then be mutually recur­

sive. In fact, in order to simplify this formal presentation, we assume that

all algebraic data types are defined at once at the beginning of the program.

This decision is, of course, at odds with modular programming but will not

otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data

types form a subset of type constructors. We require each of them to be iso­

lated and to have image kind ?. Furthermore, ` ranges over a set L of labels,

which we use both as data constructors and as record labels. An algebraic

data type definition is either a variant type definition or a record type defini­

tion, whose respective forms are

D~X ≈
k∑

i=1

`i : Ti and D~X ≈
k∏

i=1

`i : Ti .

In either case, k must be nonnegative. If D has signature ~κ ⇒ ?, then the type

variables ~X must have kind ~κ. Every Ti must have kind ?. We refer to X̄ as

the parameters and to ~T (the vector formed by T1, . . . ,Tk) as the components
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of the definition. The parameters are bound within the components, and the

definition must be closed, that is, ftv(~T) ⊆ X̄ must hold. Last, for an algebraic

data type definition to be valid, the behavior of the type constructor D with

respect to subtyping must match its definition. This requirement is clarified

below.

10.7.8 Definition: Consider an algebraic data type definition whose parameters

and components are respectively ~X and ~T. Let ~X′ and ~T′ be their images under

an arbitrary renaming. Then, D~X ≤ D~X′ ð ~T ≤ ~T′ must hold. 2

Because it is stated in terms of an entailment assertion, the above require­

ment bears on the interpretation of subtyping. The idea is, since D~X is de­

clared to be isomorphic to (a sum or a product of) ~T, whenever two types

built with D are comparable, their unfoldings should be comparable as well.

The reverse entailment assertion is not required for type soundness, and it

is sometimes useful to declare algebraic data types that do not validate it—

so­called phantom types (Fluet and Pucella, 2002). Note that the requirement

may always be satisfied by making the type constructor D invariant in all of

its parameters. Indeed, in that case, D~X ≤ D~X′ entails ~X = ~X′, which must en­

tail ~T = ~T′ since ~T′ is precisely [~X, ~X′]~T. In an equality free tree model, every

type constructor is naturally invariant, so the requirement is trivially satis­

fied. In other settings, however, it is often possible to satisfy the requirement

of Definition 10.7.8 while assigning D a less restrictive variance. The following

example illustrates such a case.

10.7.9 Example: Let list be a data type of signature ?⇒ ?. Let Nil and Cons be data

constructors. Then, the following is a definition of list as a variant type:

listX ≈ Σ (Nil : unit;Cons : X× listX)

Because data types form a subset of type constructors, it is valid to form the

type listX in the right­hand side of the definition, even though we are still in

the process of defining the meaning of list. In other words, data type defini­

tions may be recursive. However, because ≈ is not interpreted as equality, the

type listX is not a recursive type: it is nothing but an application of the unary

type constructor list to the type variable X. To check that the definition of list

satisfies the requirement of Definition 10.7.8, we must ensure that

listX ≤ listX′ ð unit ≤ unit∧ X× listX ≤ X′ × listX′

holds. This assertion is equivalent to listX ≤ listX′ ð X ≤ X′. To satisfy the

requirement, it is sufficient to make list a covariant type constructor, that is,

to define subtyping in the model so that listX ≤ listX′ ≡ X ≤ X′ holds.
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Let tree be a data type of signature ? ⇒ ?. Let root and sons be record

labels. Then, the following is a definition of tree as a record type:

treeX ≈ Π (root : X;sons : list (treeX))

This definition is again recursive, and relies on the previous definition. Be­

cause list is covariant, it is straightforward to check that the definition of tree

is valid if tree is made a covariant type constructor as well. 2

A prologue is a set of algebraic data type definitions, where each data type

is defined at most once and where each data constructor or record label ap­

pears at most once. A program is a pair of a prologue and an expression.

The effect of a prologue is to enrich the programming language with new

constants. That is, a variant type definition extends the operational seman­

tics with several injections and a case construct, as in Example 10.1.7. A

record type definition extends it with a record formation construct and sev­

eral projections, as in Examples 10.1.3 and 10.1.5. In either case, the initial

typing environment Γ0 is extended with information about these new con­

stants. Thus, algebraic data type definitions might be viewed as a simple

configuration language that allows specifying in which instance of ML­the­

calculus the expression that follows the prologue should be typechecked and

interpreted. Let us now give a precise account of this phenomenon.

To begin, suppose the prologue contains the definition D~X ≈
∑k
i=1 `i : Ti .

Then, for each i ∈ {1, . . . , k}, a constructor of arity 1, named `i , is introduced.

Furthermore, a destructor of arity k + 1, named caseD, is introduced. When

k > 0, it is common to write case t [`i : ti]
k
i=1 for the application caseD t t1

. . . tn. The operational semantics is extended with the following reduction

rules, for i ∈ {1, . . . , k}:

case (`i v) [`j : vj]
k
j=1

δ
-→ vi v (R­Alg­Case)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding

`i : ∀X̄.Ti → D~X. It is further extended with the binding caseD : ∀X̄Z.D~X →

(T1 → Z)→ . . . (Tk → Z)→ Z.

Now, suppose the prologue contains the definition D~X ≈
∏k
i=1 `i : Ti . Then,

for each i ∈ {1, . . . , k}, a destructor of arity 1, named `i , is introduced. Fur­

thermore, a constructor of arity k, named makeD, is introduced. It is common

to write t.` for the application ` t and, when k > 0, to write {`i = ti}
k
i=1 for

the application makeD t1 . . . tk. The operational semantics is extended with

the following reduction rules, for i ∈ {1, . . . , k}:

({`j = vj}
k
j=1).`i

δ
-→ vi (R­Alg­Proj)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding

`i : ∀X̄.D~X→ Ti . It is further extended with the binding makeD : ∀X̄.T1 → . . . →

Tk → D~X.
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10.7.10 Example: The effect of defining list (Example 10.7.9) is to make Nil and Cons

data constructors of arity 1 and to introduce a binary destructor caselist. The

definition also extends the initial environment as follows:

Nil : ∀X.unit→ listX

Cons : ∀X.X× listX→ listX

caselist : ∀XZ.listX→ (unit→ Z)→ (X× listX→ Z)→ Z

Thus, the value Cons(0̂,Nil()), an integer list of length 1, has type list int. A

function that computes the length of a list may now be written as follows:

letrec length = λl.case l [Nil : λ .0̂ | Cons : λz.1̂ +̂ length (π2 z) ]

Recall that this notation is syntactic sugar for

letrec length = λl.caselist l (λ .0̂) (λz.1̂ +̂ length (π2 z))

The difference with the code in Example 10.7.7 appears minimal: the case

construct is now annotated with the data type list. As a result, the type infer­

ence algorithm employs the type scheme assigned to caselist, which is derived

from the definition of list, instead of the type scheme assigned to the anony­

mous case construct, given in Exercise 10.7.4. This is good for a couple of

reasons. First, the former is more informative than the latter, because it con­

tains the type Ti associated with the data constructor `i . Here, for instance,

the generated constraint requires the type of z to be X× listX for some X, so

a good error message would be given if a mistake was made in the second

branch, such as omitting the use of π2. Second, and more fundamentally,

the code is now well­typed, even in the absence of recursive types. In Exam­

ple 10.7.7, a cyclic equation was produced because case required the type of

l to be a sum type and because a sum type carries the types of its left and

right branches as subterms. Here, caselist requires l to have type listX for

some X. This is an abstract type: it does not explicitly contain the types of

the branches. As a result, the generated constraint no longer involves a cyclic

equation. It is, in fact, satisfiable; the reader may check that length has type

∀X.listX→ int, as expected. 2

Example 10.7.10 stresses the importance of using declared, abstract types,

as opposed to anonymous, concrete sum or product types, in order to obviate

the need for recursive types. The essence of the trick lies in the fact that the

type schemes associated with operations on algebraic data types implicitly

fold and unfold the data type’s definition. More precisely, let us recall the type

scheme assigned to the ith injection in the setting of (k­ary) anonymous sums:

it is ∀X1 . . .Xk.Xi → X1 + . . . + Xk, or, more concisely, ∀X1 . . .Xk.Xi →
∑k
i=1 Xi .
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By instantiating each Xi with Ti and generalizing again, we find that a more

specific type scheme is ∀X̄.Ti →
∑k
i=1 Ti . Perhaps this could have been the

type scheme assigned to `i? Instead, however, it is ∀X̄.Ti → D~X. We now re­

alize that the latter type scheme not only reflects the operational behavior

of the ith injection but also folds the definition of the algebraic data type D

by turning the anonymous sum
∑k
i=1 Ti—which forms the definition’s right­

hand side—into the parameterized abstract type D~X—which is the definition’s

left­hand side. Conversely, the type scheme assigned to caseD unfolds the

definition. The situation is identical in the case of record types: in either case,

constructors fold, destructors unfold. In other words, occurrences of data

constructors and record labels in the code may be viewed as explicit instruc­

tions for the typechecker to fold or unfold an algebraic data type definition.

This mechanism is characteristic of isorecursive types.

10.7.11 Exercise [«, 3]: For a fixed k, check that all of the machinery associated

with k­ary anonymous products—that is, constructors, destructors, reduction

rules, and extensions to the initial typing environment—may be viewed as the

result of a single algebraic data type definition. Conduct a similar check in the

case of k­ary anonymous sums. 2

10.7.12 Exercise [«««, 3]: Check that the above definitions meet the requirements

of Definition 10.5.5. 2

10.7.13 Exercise [«««, 3]: For the sake of simplicity, we have assumed that all data

constructors have arity one. If desired, it is possible to accept variant data

type definitions of the form D~X ≈
∑k
i=1 `i : ~Ti , where the arity of the data con­

structor `i is the length of the vector ~Ti , and may be an arbitrary nonnegative

integer. This allows, for instance, altering the definition of list so that the

data constructors Nil and Cons are respectively nullary and binary. Make the

necessary changes in the above definitions and check that the requirements

of Definition 10.5.5 are still met. 2

One significant drawback of algebraic data type definitions resides in the

fact that a label ` cannot be shared by two distinct variant or record type

definitions. Indeed, every algebraic data type definition extends the calculus

with new constants. Strictly speaking, our presentation does not allow a sin­

gle constant c to be associated with two distinct definitions. Even if we did

allow such a collision, the initial environment would contain two bindings

for c, one of which would then hide the other. This phenomenon arises in

actual implementations of ML­the­programming­language, where a new alge­

braic data type definition may hide some of the data constructors or record

labels introduced by a previous definition. An elegant solution to this lack of

expressiveness is discussed in §10.8.
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Recursive Types

We have shown that specializing HM(X)with an equality­only syntactic model

yields HM(=), a constraint­based formulation of Damas and Milner’s type

system. Similarly, it is possible to specialize HM(X) with an equality­only

free regular tree model, yielding a constraint­based type system that may be

viewed as an extension of Damas and Milner’s type discipline with recursive

types. This flavor of recursive types is sometimes known as equirecursive,

since cyclic equations, such as X = X → X, are then satisfiable. Our theo­

rems about type inference and type soundness, which are independent of the

model, remain valid. The constraint solver described in §10.6 may be used

in the setting of an equality­only free regular tree model; the only difference

with the syntactic case is that the occurs check is no longer performed.

Note that, although ground types are regular, types remain finite objects:

their syntax is unchanged. The µ notation commonly employed to describe

recursive types may be emulated using type equations: for instance, the no­

tation µX.X → X corresponds, in our constraint­based approach, to the type

scheme ∀X[X = X→ X].X.

Although recursive types come for free, as explained above, they have not

been adopted in mainstream programming languages based on ML­the­type­

system. The reason is pragmatic: experience shows that many nonsensical

expressions are well­typed in the presence of recursive types, whereas they

are not in their absence. Thus, the gain in expressiveness is offset by the fact

that many programming mistakes are detected later than otherwise possible.

Consider, for instance, the following OCaml session:

ocaml ­rectypes

# let rec map f = function

| [] → []

| x :: l → (map f x) :: (map f l);;

val map : ’a → (’b list as ’b) → (’c list as ’c) = <fun>

This nonsensical version of map is essentially useless, yet well­typed. Its prin­

cipal type scheme, in our notation, is ∀XYZ[Y = listY ∧ Z = listZ].X → Y → Z.

In the absence of recursive types, it is ill­typed, since the constraint Y =

listY∧ Z = listZ is then false.

The need for equirecursive types is usually suppressed by the presence of

algebraic data types, which offer isorecursive types, in the language. Yet, they

are still necessary in some situations, such as in Objective Caml’s extensions

with objects (Rémy and Vouillon, 1998) or polymorphic variants (Garrigue,

1998, 2000, 2002), where recursive object or variant types are commonly in­

ferred. In order to allow recursive object or variant types while still rejecting

the above version of map, Objective Caml’s constraint solver implements a
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selective occurs check, which forbids cycles unless they involve the type con­

structors 〈·〉 or [·] respectively associated with objects and variants. The

corresponding model is a tree model where every infinite path down a tree

must encounter the type constructor 〈·〉 or [·] infinitely often.

10.8 Rows

In §10.7, we have shown how to extend ML­the­programming­language with

algebraic data types, that is, variant and record type definitions, which we

now refer to as simple. This mechanism has a severe limitation: two distinct

definitions must define incompatible types. As a result, one cannot hope

to write code that uniformly operates over variants or records of different

shapes, because the type of such code is not even expressible.

For instance, it is impossible to express the type of the polymorphic record

access operation, which retrieves the value stored at a particular field ` inside

a record, regardless of which other fields are present. Indeed, if the label

` appears with type T in the definition of the simple record type D~X, then

the associated record access operation has type ∀X̄.D~X → T. If ` appears

with type T′ in the definition of another simple record type, say D′ ~X′, then

the associated record access operation has type ∀X̄
′
.D′ ~X′ → T′; and so on.

The most precise type scheme that subsumes all of these incomparable type

schemes is ∀XY.X→ Y. It is, however, not a sound type scheme for the record

access operation. Another powerful operation whose type is currently not

expressible is polymorphic record extension, which copies a record and stores

a value at field ` in the copy, possibly creating the field if it did not previously

exist, again regardless of which other fields are present. (If ` was known to

previously exist, the operation is known as polymorphic record update.)

In order to assign types to polymorphic record operations, we must do

away with record type definitions: we must replace named record types, such

as D~X, with structural record types that provide a direct description of the

record’s domain and contents. (Following the analogy between a record and

a partial function from labels to values, we use the word domain to refer to

the set of fields that are defined in a record.) For instance, a product type is

structural: the type T1 × T2 is the (undeclared) type of pairs whose first com­

ponent has type T1 and whose second component has type T2. Thus, we wish

to design record types that behave very much like product types. In doing so,

we face two orthogonal difficulties. First, as opposed to pairs, records may

have different domains. Because the type system must statically ensure that

no undefined field is accessed, information about a record’s domain must be

made part of its type. Second, because we suppress record type definitions,
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labels must now be predefined. However, for efficiency and modularity rea­

sons, it is impossible to explicitly list every label in existence in every record

type.

In what follows, we explain how to address the first difficulty in the simple

setting of a finite set of labels. Then we introduce rows, which allow dealing

with an infinite set of labels, and address the second difficulty. We define the

syntax and logical interpretation of rows, study the new constraint equiva­

lence laws that arise in their presence, and extend the first­order unification

algorithm with support for rows. Then we review several applications of rows,

including polymorphic operations on records, variants, and objects, and dis­

cuss alternatives to rows.

Because our interest is in typechecking and type inference issues, we do

not address the compilation issue: how does one efficiently compile poly­

morphic records or polymorphic variants? A few relevant papers are Pugh

and Weddell (1990), Ohori (1995), and Garrigue (1998). The problem of op­

timizing message dispatch in object­oriented languages, which has received

considerable attention in the literature, is related.

Records with Finite Carrier

Let us temporarily assume that L is finite. In fact, for the sake of definiteness,

let us assume that L is the three­element set {`a, `b, `c}.

To begin, let us consider only full records, whose domain is exactly L—in

other words, tuples indexed by L. To describe them, it is natural to introduce

a type constructor Π of signature ? ⊗ ? ⊗ ? ⇒ ?. The type Π Ta Tb Tc rep­

resents all records where the field `a (respectively `b, `c ) contains a value

of type Ta (respectively Tb, Tc ). Note that Π is nothing but a product type

constructor of arity 3. The basic operations on records, namely creation of

a record out of a default value, which is stored into every field, update of

a particular field (say, `b), and access to a particular field (say, `b), may be

assigned the following type schemes:

{·} : ∀X.X→ Π X X X

{· with `b = ·} : ∀XaXbX
′
bXc .Π Xa Xb Xc → X′b → Π Xa X

′
b Xc

·.{`b} : ∀XaXbXc .Π Xa Xb Xc → Xb

Here, polymorphism allows updating or accessing a field without knowledge

of the types of the other fields. This flexibility stems from the key property

that all record types are formed using a single Π type constructor.

This is fine, but in general, the domain of a record is not necessarily L: it

may be a subset of L. How may we deal with this fact while maintaining the

above key property? A naive approach consists of encoding arbitrary records
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in terms of full records, using the standard algebraic data type option, whose

definition is optionX ≈ pre X+abs.We use pre for present and abs for absent:

indeed, a field that is defined with value v is encoded as a field with value pre

v, while an undefined field is encoded as a field with value abs. Thus, an arbi­

trary record whose fields, if present, have types Ta, Tb, and Tc , respectively,

may be encoded as a full record of type Π (option Ta) (option Tb) (option

Tc). This naive approach suffers from a serious drawback: record types still

contain no domain information. As a result, field access must involve a dy­

namic check, so as to determine whether the desired field is present; in our

encoding, this corresponds to the use of caseoption.

To avoid this overhead and increase programming safety, we must move

this check from runtime to compile time. In other words, we must make the

type system aware of the difference between pre and abs. To do so, we re­

place the definition of option by two separate algebraic data type definitions,

namely preX ≈ pre X and abs ≈ abs. In other words, we introduce a unary

type constructor pre, whose only associated data constructor is pre, and a

nullary type constructor abs, whose only associated data constructor is abs.

Record types now contain domain information; for instance, a record of type

Π abs (pre Tb) (pre Tc) must have domain {`b, `c}. Thus, the type of a field

tells whether it is defined. Since the type pre has no data constructors other

than pre, the accessor pre−1, whose type is ∀X.pre X → X, and which allows

retrieving the value stored in a field, cannot fail. Thus, the dynamic check has

been eliminated.

To complete the definition of our encoding, we now define operations on

arbitrary records in terms of operations on full records. To distinguish be­

tween the two, we write the former with angle braces, instead of curly braces.

The empty record 〈〉, where all fields are undefined, may be defined as {abs}.

Extension at a particular field (say, `b) 〈· with `b = ·〉 is defined as λr.λz.

{r with `b = pre z}. Access at a particular field (say, `b) ·.〈`b〉 is defined as

λz.pre−1z.{`b}. It is straightforward to check that these operations have the

following principal type schemes:

〈〉 : Π abs abs abs

〈· with `b = ·〉 : ∀XaXbX
′
bXc .Π Xa Xb Xc → X′b → Π Xa (pre X′b) Xc

·.〈`b〉 : ∀XaXbXc .Π Xa (pre Xb) Xc → Xb

It is important to notice that the type schemes associated with extension

and access at `b are polymorphic in Xa and Xc , which now means that these

operations are insensitive, not only to the type, but also to the presence or

absence of the fields `a and `c . Furthermore, extension is polymorphic in Xb,

which means that it is insensitive to the presence or absence of the field `b
in its argument. The subterm pre X′b in its result type reflects the fact that
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`b is defined in the extended record. Conversely, the subterm pre Xb in the

type of the access operation reflects the requirement that `b be defined in its

argument.

Our encoding of arbitrary records in terms of full records was carried out

for pedagogical purposes. In practice, no such encoding is necessary: the data

constructors pre and abs have no machine representation, and the compiler

is free to lay out records in memory in an efficient manner. The encoding

is interesting, however, because it provides a natural way of introducing the

type constructors pre and abs, which play an important role in our treatment

of polymorphic record operations.

Once we forget about the encoding, the arguments of the type constructor

Π are expected to be either type variables or formed with pre or abs, while,

conversely, the type constructors pre and abs are not intended to appear

anywhere else. It is possible to enforce this invariant using kinds. In addition

to ?, let us introduce the kind ◦ of field types. Then, let us adopt the following

signatures: pre: ?⇒ ◦, abs : ◦, and Π : ◦ ⊗ ◦ ⊗ ◦ ⇒ ?.

10.8.1 Exercise [Recommended, «, 3]: Check that the three type schemes given

above are well­kinded. What is the kind of each type variable? 2

10.8.2 Exercise [Recommended, ««]: Our Π types contain information about every

field, regardless of whether it is defined: we encode definedness informa­

tion within the type of each field, using the type constructors pre and abs.

A perhaps more natural approach would be to introduce a family of record

type constructors, indexed by the subsets of L, so that the types of records

with different domains are formed with different constructors. For instance,

the empty record would have type {}; a record that defines the field `a only

would have a type of the form {`a : Ta}; a record that defines the fields

`b and `c only would have a type of the form {`b : Tb;`c : Tc}; and so on.

Assuming that the type discipline is Damas and Milner’s (that is, assuming

an equality­only syntactic model), would it be possible to assign satisfactory

type schemes to polymorphic record access and extension? Would it help to

equip record types with a nontrivial subtyping relation? 2

Records with Infinite Carrier

The treatment of records described above is not quite satisfactory, from prac­

tical and theoretical points of view. First, in practice, the set L of all record

labels that appear within a program could be very large. Because every record

type is just as large as L itself, even if the record that it describes only has a

few fields, this is unpleasant. Furthermore, in a modular setting, the set of all

record labels that appear within a program cannot be determined until link
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time, so it is still unknown at compile time, when each compilation unit is

separately typechecked. As a result, it may only be assumed to be a subset of

the infinite set of all syntactically valid record labels. Resolving these issues

requires coming up with a treatment of records that does not become more

costly as L grows and that, in fact, allows L to be infinite. Thus, from here

on, let us assume that L is infinite.

As in the previous section, we first concentrate on full records, whose do­

main is exactly L. The case of arbitrary records, whose domain is a subset of

L, will then follow in the same manner, by using the type constructors pre

and abs to encode domain information.

Of course, even though we have assumed that L is infinite, we must ensure

that every record has a finite representation. We choose to restrict our atten­

tion to records that are almost constant, that is, records where all fields but

a finite number contain the same value. Every such record may be defined in

terms of two primitive operations, namely (i) creation of a constant record

out of a value; for instance, {false} is the record where every field contains

the value false; and (ii) update of a record at a particular field; for instance,

{{false} with ` = 1} carries the value 1 at field ` and the value false at

every other field. As usual, an access operation allows retrieving the contents

of a field. Thus, the three primitive operations are the same as in the previous

subsection, only in the setting of an infinite number of fields.

If we were to continue as before, we would now introduce a type construc­

tor Π, equipped with an infinite family of type parameters. Because types

must remain finite objects, we cannot do so. Instead, we must find a finite

(and economical) representation of such an infinite family of types. This is

precisely the role played by rows.

A row is a type that denotes a function from labels to types or, equiva­

lently, a family of types indexed by labels. Its domain is L—the row is then

complete—or a cofinite subset of L—the row is then incomplete. (A subset of

L is cofinite if and only if its complement is finite. Incomplete rows are used

only as building blocks for complete rows.) Because rows must admit a finite

representation, we build them out of two syntactic constructions, namely (i)

construction of a constant row out of a type; for instance, the notation ∂bool

denotes a row that maps every label in its domain to bool; and (ii) strict ex­

tension of an incomplete row; for instance, (` : int ; ∂bool) denotes a row

that maps ` to int and every other field in its domain to bool. Formally, ∂ is

a unary type constructor, while, for every label `, (` : · ; ·) is a binary type

constructor. These two constructions are reminiscent of the two operations

used above to build records. There are, however, a couple of subtle but im­

portant differences. First, ∂T may be a complete or incomplete row. Second,

(` : T ; T′) is defined only if ` is not in the domain of the row T′, so this
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construction is strict extension, not update. These aspects are made clear by

a kinding discipline, to be introduced later on.

It is possible for two syntactically distinct rows to denote the same func­

tion from labels to types. For instance, according to the intuitive interpreta­

tion of rows given above, the three complete rows (` : int ; ∂bool), (` : int ;

(`′ : bool ; ∂bool)), and (`′ :bool ; (` : int ; ∂bool)) denote the same total func­

tion from labels to types. In the following, we define the logical interpretation

of types in such a way that the interpretations of these three rows in the

model are indeed equal.

We may now make the record type constructor Π a unary type constructor,

whose parameter is a row. Then, (say) Π (` : int ; ∂bool) is a record type, and

we intend it to be a valid type for the record {{false} with ` = 1}. The basic

operations on records may be assigned the following type schemes:

{·} : ∀X.X→ Π (∂X)

{· with ` = ·} : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : X′ ; Y)

·.{`} : ∀XY.Π (` : X ; Y)→ X

These type schemes are reminiscent of those given above. However, in the

previous section, the size of the type schemes was linear in the cardinal of L,

whereas here it is constant, even though L is infinite. This is made possible

by the fact that record types no longer list all labels in existence; instead, they

use rows. In the type scheme assigned to record creation, the constant row

∂X is used to indicate that all fields have the same type in the newly created

record. In the next two type schemes, the row (` : X` ; X) is used to separate

the type X`, which describes the contents of the field `, and the row X, which

collectively describes the contents of all other fields. Here, the type variable X

stands for an arbitrary row; it is often referred to as a row variable. The ability

of quantifying over row and type variables alike confers great expressiveness

to the type system.

We have explained, in an informal manner, how rows allow typechecking

operations on full records, in the setting of an infinite set of labels. We return

to this issue in Example 10.8.25. To deal with the case of arbitrary records,

whose domain is finite, we rely on the field type constructors pre and abs, as

explained previously. We return to this point in Example 10.8.30. In the fol­

lowing, we give a formal exposition of rows. We begin with their syntax and

logical interpretation. Then we give some new constraint equivalence laws,

which characterize rows, and allow extending our first­order unification al­

gorithm with support for rows. We conclude with several illustrations of the

use of rows and some pointers to related work.



466 10 The Essence of ML Type Inference

Syntax of Rows

In the following, the set of labels L is considered denumerable. We let L range

over finite subsets of L. When ` ∉ L holds, we write `.L for {`} ] L. Before

explaining how the syntax of types is enriched with rows, we introduce row

kinds, whose grammar is as follows:

s ::= Type | Row(L)

Row kinds help distinguish between three kinds of types, namely ordinary

types, complete rows, and incomplete rows. While ordinary types are used to

describe expressions, complete or incomplete rows are used only as building

blocks for ordinary types. For instance, the record type Π (` : int ; ∂bool),

which was informally introduced above, is intended to be an ordinary type,

that is, a type of row kind Type. Its subterm (` : int ; ∂bool) is a complete row,

that is, a type of row kind Row(�). Its subterm ∂bool is an incomplete row,

whose row kind is Row({`}). Intuitively, a row of kind Row(L) denotes a fam­

ily of types whose domain is L\L. In other words, L is the set of labels that the

row does not define. The purpose of row kinds is to outlaw meaningless types,

such as Π (int), which makes no sense because the argument to the record

type constructor Π should be a (complete) row, or (` :T1 ; ` : T2 ; ∂bool), which

makes no sense because no label may occur twice within a row.

Let us now define the syntax of types in the presence of rows. As usual, it

is given by a signature S (Definition 10.1.14), which lists all type constructors

together with their signatures. Here, for the sake of generality, we do not wish

to give a fixed signature S. Instead, we give a procedure that builds S out of

two simpler signatures, referred to as S0 and S1. The input signature S0 lists

the type constructors that have nothing to do with rows, such as →, ×, int,

etc. The input signature S1 lists the type constructors that allow a row to be a

subterm of an ordinary type, such as the record type constructor Π. In a type

system equipped with extensible variant types or with object types, there

might be several such type constructors; see the sections on Polymorphic

Variants (p. 483) and Other Applications of Rows (p. 486). Without loss of

generality, we assume that all type constructors in S1 are unary. The point of

parameterizing the definition of S over S0 and S1 is to make the construction

more general: instead of defining a fixed type grammar featuring rows, we

wish to explain how to enrich an arbitrary type grammar with rows.

In the following, we let G (respectively H) range over the type constructors

in S0 (respectively S1). We let κ range over the kinds involved in the defini­

tion of S0 and S1, and refer to them as basic kinds. We let F range over the

type constructors in S. The kinds involved in the definition of S are com­

posite kinds, that is, pairs of a basic kind κ and a row kind s, written κ.s.
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This allows the kind discipline enforced by S to reflect that enforced by S0

and S1 and also to impose restrictions on the structure and use of rows,

as suggested above. For the sake of conciseness, we write K.s for the map­

ping (d , K(d).s)d∈dom(K) and (K ⇒ κ).s for the (composite) kind signature

K.s ⇒ κ.s. (In other words, we let .s distribute over basic signatures.) We use

symmetric notations to build a composite kind signature out of a basic kind

and a row kind signature.

10.8.3 Definition: The signature S is defined as follows:

F ∈ dom(S) Signature Conditions

Gs (K ⇒ κ).s (G : K ⇒ κ) ∈ S0

H K.Row(�) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

∂κ,L κ.(Type⇒ Row(L))

`κ,L κ.(Type⊗ Row(`.L)⇒ Row(L)) ` ∉ L

We sometimes refer to S as the row extension of S0 with S1. 2

Examples 10.8.7 and 10.8.8 suggest common choices of S0 and S1 and give a

perhaps more concrete­looking definition of the grammar of types that they

determine. First, however, let us explain the definition. The type constructors

that populate S come in four varieties: they may be (i) taken from S0, (ii)

taken from S1, (iii) a unary row constructor ∂, or (iv) a binary row constructor

(` : · ; ·). Let us review and explain each case.

Let us first consider case (i) and assume, for the time being, that s is Type.

Then, for every type constructor G in S0, there is a corresponding type con­

structor GType in S. For instance, S0 must contain an arrow type constructor

→, whose signature is {domain , ?, codomain , ?} ⇒ ?. Then, S contains

a type constructor →Type, whose signature is {domain , ?.Type, codomain ,

?.Type} ⇒ ?.Type. Thus, →Type is a binary type constructor whose parame­

ters and result must have basic kind ? and must have row kind Type; in other

words, they must be ordinary types, as opposed to complete or incomplete

rows. The family of all type constructors of the form GType, where G ranges

over S0, forms a copy of S0 at row kind Type: one might say, roughly speak­

ing, that S contains S0. This is not surprising, since our purpose is to enrich

the existing signature S0 with syntax for rows.

Perhaps more surprising is the existence of the type constructor Gs , for

every G in S0, and for every row kind s. For instance, for every L, S contains a

type constructor →Row(L), whose signature is {domain , ?.Row(L), codomain

, ?.Row(L)} ⇒ ?.Row(L). Thus, →Row(L) is a binary type constructor whose

parameters and result must have basic kind? and must have row kind Row(L).

In other words, this type constructor maps a pair of rows that have a common

domain to a row with the same domain. Recall that a row is to be interpreted
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as a family of types. Our intention is that →Row(L) maps two families of types

to a family of arrow types. This is made precise in the next subsection. One

should point out that the type constructors Gs , with s 6= Type, are required

only in some advanced applications of rows; Examples 10.8.28 and 10.8.39

provide illustrations. They are not used when assigning types to the usual

primitive operations on records, namely creation, update, and access (Exam­

ples 10.8.25 and 10.8.30).

Case (ii) is simple: it simply means that S contains S1. It is only worth

noting that every type constructor H maps a parameter of row kind Row(�)

to a result of row kind Type, that is, a complete row to an ordinary type.

Thanks to this design choice, the type Π (intType) is invalid: indeed, intType

has row kind Type, while Π expects a parameter of row kind Row(�).

Cases (iii) and (iv) introduce new type constructors that were not present

in S0 or S1 and allow forming rows. They were informally described in the

previous subsection. First, for every κ and L, there is a constant row construc­

tor ∂κ,L. Its parameter must have row kind Type, while its result has row kind

Row(L); in other words, this type constructor maps an ordinary type to a row.

It is worth noting that the row thus built may be complete or incomplete; for

instance, ∂?,� bool is a complete row, and may be used, for example, to build

the type Π (∂?,� bool), while ∂?,{`} bool is an incomplete row, and may be

used, for example, to build the type Π (` : int ; ∂?,{`} bool). Second, for every

κ, L, and ` ∉ L, there is a row extension constructor `κ,L. We usually write

`κ,L : T1 ; T2 for `κ,L T1 T2 and let this symbol be right associative so as to

recover the familiar list notation for rows. According to the definition of S,

if T2 has row kind Row(`.L), then `κ,L : T1 ; T2 has row kind Row(L). Thanks

to this design choice, the type (`?,L : T1 ; `?,L : T2 ; ∂?,`.L bool) is invalid; in­

deed, the outer ` expects a parameter of row kind Row(`.L), while the inner

` produces a type of row kind Row(L).

The superscripts carried by the type constructors G, `, and ∂ in the signa­

ture S make all kind information explicit, obviating the need for assigning

several kinds to a single type constructor. In practice, however, we often

drop the superscripts and use unannotated types. No ambiguity arises be­

cause, given a type expression T of known kind, it is possible to reconstruct

all superscripts in a unique manner. This is the topic of the next example and

exercises.

10.8.4 Example [Ill­kinded types]: Assume that S0 contains type constructors int

and →, whose signatures are respectively ? and ? ⊗ ? ⇒ ?, and that S1

contains a type constructor Π, whose signature is ? ⇒ ?.

The unannotated type X → Π(X) is invalid. Indeed, because Π’s image row

kind is Type, the arrow must be →Type. Thus, the leftmost occurrence of X
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must have row kind Type. On the other hand, because Π expects a parameter

of row kind Row(�), its rightmost occurrence must have row kind Row(�)—a

contradiction. The unannotated type X → Π(∂X) is, however, valid, provided

X has kind ?.Type. In fact, it is the type of the primitive record creation oper­

ation.

The unannotated type (` : T ; ` : T ; T′′) is also invalid: there is no way

of reconstructing the missing superscripts so as to make it valid. Indeed,

the row (` : T′ ; T′′) must have row kind Row(L) for some L that does not

contain `. However, the context where it occurs requires it to also have row

kind Row(L) for some L that does contain `. This makes it impossible to

reconstruct consistent superscripts.

Any type of the form Π(Π(T)) is invalid, because the outer Π expects a pa­

rameter of row kind Row(�), while the inner Π constructs a type of row kind

Type. This is an intentional limitation: unlike those of S0, the type construc­

tors of S1 are not lifted to every row kind s. (If they were, we would be led to

work not only with rows of ordinary types, but also with rows of rows, rows

of rows of rows, and so on. Rémy (1990) explores this avenue.) 2

10.8.5 Exercise [Recommended, «]: Consider the unannotated type

X→ Π(` : int ; (Y→ ∂X)).

Can you guess the kind of the type variables X and Y, as well as the missing

superscripts, so as to ensure that this type has kind ?.Type? 2

10.8.6 Exercise [«««, 3]: Propose a kind checking algorithm that, given an unan­

notated type T, given the kind of T, and given the kind of all type variables that

appear within T, ensures that T is well­kinded, and reconstructs the missing

superscripts within T. Next, propose a kind inference algorithm that, given an

unannotated type T, discovers the kind of T and the kind of all type variables

that appear within T so as to ensure that T is well­kinded. 2

We have given a very general definition of the syntax of types. In this view,

types, ranged over by the meta­variable T, encompass both “ordinary” types

and rows: the distinction between the two is established only via the kind

system. In the literature, however, it is common to establish this distinction

by letting distinct meta­variables, say T and R, range over ordinary types and

rows, respectively, so as to give the syntax a more concrete aspect. The next

two examples illustrate this style and suggest common choices for S0 and S1.

10.8.7 Example: Assume that there is a single basic kind ?, that S0 consists of the

arrow type constructor →, whose signature is ?⊗? ⇒ ?, and that S1 consists
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of the record type constructor Π, whose signature is ? ⇒ ?. Then, the com­

posite kinds are ?.Type and ?.Row(L), where L ranges over the finite subsets

of L. Let us employ T (respectively R) to range over types of the former (re­

spectively latter) kind, and refer to them as ordinary types (respectively rows).

Then, the syntax of types, as defined by the signature S, may be presented

under the following form:

T ::= X | T→ T | Π R

R ::= X | R→ R | (` : T ; R) | ∂T

Ordinary types T include ordinary type variables (that is, type variables of

kind ?.Type), arrow types (where the type constructor → is really →Type), and

record types, which are formed by applying the record type constructor Π to

a row. Rows R include row variables (that is, type variables of kind ?.Row(L)

for some L), arrow rows (where the row constructor → is really →Row(L) for

some L), row extension (whereby a row R is extended with an ordinary type T

at a certain label `), and constant rows (formed out of an ordinary type T). It

would be possible to also introduce a syntactic distinction between ordinary

type variables and row variables, if desired.

Such a presentation is rather pleasant, because the syntactic segregation

between ordinary types and rows makes the syntax less ambiguous. It does

not allow getting rid of the kind system, however: (row) kinds are still neces­

sary to keep track of the domain of every row. 2

10.8.8 Example: Assume that there are two basic kinds ? and ◦, that S0 consists

of the type constructors →, abs, and pre, whose respective signatures are

?⊗?⇒ ?, ◦, and ?⇒ ◦, and that S1 consists of the record type constructor Π,

whose signature is ◦ ⇒ ?. Then, the composite kinds are ?.Type, ?.Row(L),

◦.Type, and ◦.Row(L), where L ranges over the finite subsets of L. Let us em­

ploy T?, R?, T◦, and R◦, respectively, to range over types of these four kinds.

Then, the syntax of types, as defined by the signature S, may be presented

under the following form:

T? ::= X | T? → T? | Π R◦

R? ::= X | R? → R? | (` : T? ; R?) | ∂T?

T◦ ::= X | abs | pre T?

R◦ ::= X | abs | pre R? | (` : T◦ ; R◦) | ∂T◦

Ordinary types T? are as in the previous example, except the record type

constructor Π must now be applied to a row of field types R◦. Rows R? are

unchanged. Field types T◦ include field type variables (that is, type variables

of kind ◦.Type) and applications of the type constructors abs and pre (which

are really absType and preType). Field rows R◦ include field row variables (that
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is, type variables of kind ◦.Row(L) for some L), applications of the row con­

structors abs and pre (which are really absRow(L) and preRow(L) for some L),

row extension, and constant rows, where row components are field types T◦.

In many basic applications of rows, absRow(L) and preRow(L) are never re­

quired: that is, they do not appear in the type schemes that populate the

initial environment. (Applications where they are required appear in Pot­

tier [2000].) In that case, they may be removed from the syntax. Then, the

nonterminal R? becomes unreachable from the nonterminal T?, which is the

grammar’s natural entry point, so it may be removed as well. In that simpli­

fied setting, the syntax of types and rows becomes:

T? ::= X | T? → T? | Π R◦

T◦ ::= X | abs | pre T?

R◦ ::= X | (` : T◦ ; R◦) | ∂T◦

This is the syntax found in some introductory accounts of rows (Rémy, 1989;

Pottier, 2000). 2

Meaning of Rows

We now give meaning to the type grammar defined in the previous section

by interpreting it within a model. We choose to define a regular tree model,

but alternatives exist; see Remark 10.8.12 below. In this model, every type

constructor whose image row kind is Type (that is, every type constructor of

the form GType or H) is interpreted as itself, as in a free tree model. However,

every application of a type constructor whose image row kind is Row(L) for

some L receives special treatment: it is interpreted as a family of types in­

dexed by L \ L, which we encode as an infinitely branching tree. To serve as

the root label of this tree, we introduce, for every κ and for every L, a symbol

Lκ , whose arity is L \ L. More precisely,

10.8.9 Definition: The model, which consists of a setMκ.s for every κ and s, is the

regular tree algebra that arises out the following signature:

Symbol Signature Conditions

G (K ⇒ κ).Type (G : K ⇒ κ) ∈ S0

H K.Row(�) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

Lκ κ.(TypeL\L ⇒ Row(L))

The first two lines in this signature coincide with the definitions of GType

and H in the signature S. Indeed, as stated above, we intend to interpret
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these type constructors in a syntactic manner, so each of them must have a

counterpart in the model. The third line introduces the symbols Lκ hinted at

above.

According to this signature, if t is a ground type of kind κ.Type (that is, an

element of Mκ.Type), then its head symbol t(ε) must be of the form G or H.

If t is a ground type of kind κ.Row(L), then its head symbol must be Lκ , and

its immediate subtrees, which are indexed by L \ L, are ground types of kind

κ.Type; in other words, the ground row t is effectively a family of ordinary

ground types indexed by L \ L. Thus, our intuition that rows denote infinite

families of types is made literally true.

We have defined the model; there remains to explain how types are mapped

to elements of the model.

10.8.10 Definition: The interpretation of the type constructors that populate S is

defined as follows.

1. Let (G : K ⇒ κ) ∈ S0. Then, GType is interpreted as the function that maps

T ∈ MK.Type to the ground type t ∈ Mκ.Type defined by t(ε) = G and

t/d = T(d) for every d ∈ dom(K). This is a syntactic interpretation.

2. Let (H : K ⇒ κ) ∈ S1. Then, H is interpreted as the function that maps

T ∈ MK.Row(�) to the ground type t ∈ Mκ.Type defined by t(ε) = H and

t/d = T(d) for every d ∈ dom(K). (Because H is unary, there is exactly

one such d.) This is also a syntactic interpretation.

3. Let (G : K ⇒ κ) ∈ S0. Then, GRow(L) is interpreted as the function that

maps T ∈ MK.Row(L) to the ground type t ∈ Mκ.Row(L) defined by t(ε) =

Lκ and t(`) = G and t/(` · d) = T(d)/` for every ` ∈ L \ L and d ∈

dom(K). Thus, when applied to a family of rows, the type constructor

GRow(L) produces a row where every component has head symbol G. This

definition may sound quite technical; its effect is summed up in a simpler

fashion by the equations C­Row­GD and C­Row­GL in the next section.

4. Interpret ∂κ,L as the function that maps t1 ∈ Mκ.Type to the ground type

t ∈ Mκ.Row(L) defined by t(ε) = Lκ and t/` = t1 for every ` ∈ L \ L. Note

that t/` does not depend on `: t is a constant ground row.

5. Let ` ∉ L. Then, `κ,L is interpreted as the function that maps (t1, t2) ∈

Mκ.Type×Mκ.Row(`.L) to the ground type t ∈Mκ.Row(L) defined by t(ε) = Lκ

and t/` = t1 and t/`′ = t2(`′) for every `′ ∈ L \ `.L. This definition

is precisely row extension; indeed, the ground row t maps ` to t1 and

coincides with the ground row t2 at every other label `′. 2
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Defining a model and an interpretation allows our presentation of rows to fit

within the formalism proposed earlier in this chapter (§10.2). It also provides

a basis for the intuition that rows denote infinite families of types. From a

formal point of view, the model and its interpretation allow proving several

constraint equivalence laws concerning rows, which are given and discussed

in the next subsection. Of course, it is also possible to accept these equiv­

alence laws as axioms and give a purely syntactic account of rows without

relying on a model; this is how rows were historically dealt with (Rémy, 1993).

10.8.11 Remark: We have not defined the interpretation of the subtyping predicate,

because much of the material that follows is independent of it. One common

approach is to adopt a nonstructural definition of subtyping (Example 10.2.9),

where every Lκ is considered covariant in every direction, and where the vari­

ances and relative ordering of all other symbols (G and H) are chosen at will,

subject to the restrictions associated with nonstructural subtyping and to the

conditions necessary to ensure type soundness.

Recall that the arrow type constructor → is contravariant in its domain and

covariant in its codomain. The record type constructor Π is usually covariant.

These properties are exploited in proofs of the subject reduction theorem.

The type constructors → and Π are usually incompatible. This property is

exploited in proofs of the progress theorem. In the case of Example 10.8.7,

because no type constructors other than → and Π are present, these condi­

tions imply that there is no sensible way of interpreting subtyping other than

equality. In the case of Example 10.8.8, two sensible interpretations of sub­

typing exist: one is equality, while the other is the nonstructural subtyping

order obtained by letting pre à abs. In the former interpretation, abs means

“definitely absent,” while in the latter, it means “possibly absent.” 2

10.8.12 Remark: The model proposed above is a regular tree model. Of course, it

is possible to adopt a finite tree model instead. Furthermore, other interpre­

tations of rows are possible: for instance, Fähndrich (1999) extends the set

constraints formalism with rows. In his model, an ordinary type is interpreted

as a set of values, while a row is interpreted as a set of functions from labels

to values. While the definition of the model may vary, the key point is that

the characteristic laws of rows, which we discuss next, hold in the model. 2

Reasoning with Rows

The interpretation presented in the previous section was designed to support

the intuition that a row denotes an infinite family of types, indexed by labels,

that the row constructor ` : · ; · denotes row extension, and that the row

constructor ∂ denotes the creation of a constant row. From a formal point of
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(`1 : T1 ; `2 : T2 ; T3) = (`2 : T2 ; `1 : T1 ; T3) (C­Row­LL)

∂T = (` : T ; ∂T) (C­Row­DL)

G ∂T1 . . . ∂Tn = ∂(G T1 . . . Tn) (C­Row­GD)

G (` : T1 ; T′1) . . . (` : Tn ; T′n) = (` :G T1 . . . Tn ; G T′1 . . . T
′
n) (C­Row­GL)

Figure 10­12: Equational reasoning with rows

view, the definition of the model and interpretation may be exploited to es­

tablish some reasoning principles concerning rows. These principles take the

form of equations between types (Figure 10­12) and constraint equivalence

laws (Figure 10­13), which we now explain and prove.

10.8.13 Remark: As stated earlier, we omit the superscripts of row constructors. We

also omit the side conditions that concern the kind of the type variables (X)

and type meta­variables (T) involved. Thus, each equation in Figure 10­12

really stands for the (infinite) family of equations obtained by reconstructing

the missing kind information in a consistent way. For instance, the second

equation may be read ∂`.LT = (`κ,L : T ; ∂LT), where ` ∉ L and T has kind

κ.Type. 2

10.8.14 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor­

mation in the equations of Figure 10­12. 2

10.8.15 Remark: There is a slight catch with the unannotated version of the second

equation in Figure 10­12: its left­hand side admits strictly more kinds than its

right­hand side, because the former has row kind Row(L) for every L, while

the latter has row kind Row(L) for every L such that ` ∉ L holds. As a result,

while replacing the unannotated term (` : T ; ∂T) with ∂T is always valid, the

converse is not: replacing the unannotated term ∂T with (` : T ; ∂T) is valid

only if it does not result in an ill­kinded term. 2

The first equation in Figure 10­12 states that rows are equal up to commu­

tation of labels. For the equation to be well­kinded, the labels `1 and `2 must

be distinct. The equation holds under our interpretation because extension

of a ground row at `1 and extension of a ground row at `2 commute. The

second equation states that ∂T maps every label within its domain to T, that

is, ∂LT maps every label ` 6∈ L to T. This equation holds because ∂T is inter­

preted as a constant row. The last two equations deal with the relationship

between the row constructors G and the ordinary type constructor G. Indeed,

notice that their left­hand sides involve GRow(L) for some L, while their right­

hand sides involve GType. Both equations state that it is equivalent to apply
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(`1 : T1 ; T′1) = (`2 : T2 ; T′2) ≡ ∃X.(T′1 = (`2 : T2 ; X)∧ T′2 = (`1 : T1 ; X)) (C­Mutate­LL)

if X # ftv(T1,T
′
1,T2,T

′
2)∧ `1 6= `2

∂T = (` : T′ ; T′′) ≡ T = T′ ∧ ∂T = T′′ (C­Mutate­DL)

G T1 . . . Tn = ∂T ≡ ∃X1 . . .Xn.(G X1 . . . Xn = T∧
∧n
i=1(Ti = ∂Xi)) (C­Mutate­GD)

if X1 . . .Xn # ftv(T1, . . . ,Tn ,T)

G T1 . . . Tn = (` : T ; T′) ≡ ∃X1 . . .Xn,X
′
1 . . .X

′
n.(G X1 . . . Xn = T ∧

G X′1 . . . X
′
n = T′ ∧∧n

i=1(Ti = (` : Xi ; X′i)))

if X1 . . .Xn ,X
′
1 . . .X

′
n # ftv(T1, . . . ,Tn,T,T

′) (C­Mutate­GL)

Figure 10­13: Constraint equivalence laws involving rows

GRow(L) at the level of rows or to apply GType at the level of types. Our inter­

pretation of GRow(L) was designed to give rise to these equations; indeed, the

application of GRow(L) to n ground rows (where n is the arity of G) is inter­

preted as a pointwise application of GType to the rows’ components (item 3 of

Definition 10.8.10). Their use is illustrated in Examples 10.8.28 and 10.8.39.

10.8.16 Lemma: Each of the equations in Figure 10­12 is equivalent to true. 2

The four equations in Figure 10­12 show that two types with distinct head

symbols may denote the same element of the model. In other words, in the

presence of rows, the interpretation of types is no longer free: an equation of

the form T1 = T2, where T1 and T2 have distinct head symbols, is not necessar­

ily equivalent to false. In Figure 10­13, we give several constraint equivalence

laws, known as mutation laws, that concern such “heterogeneous” equations,

and, when viewed as rewriting rules, allow solving them. To each equation

in Figure 10­12 corresponds a mutation law. The soundness of the mutation

law, that is, the fact that its right­hand side entails its left­hand side, follows

from the corresponding equation. The completeness of the mutation law, that

is, the fact that its left­hand side entails its right­hand side, holds by design

of the model.

10.8.17 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor­

mation in the laws of Figure 10­13. 2

Let us now review the four mutation laws. For the sake of brevity, in the

following informal explanation, we assume that a ground assignment φ that
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satisfies the left­hand equation is fixed, and write “the ground type T” for “the

ground type φ(T).” C­Mutate­LL concerns an equation between two rows,

which are both given by extension but exhibit distinct head labels `1 and `2.

When this equation is satisfied, both of its members must denote the same

ground row. Thus, the ground row T′1 must map `2 to the ground type T2,

while, symmetrically, the ground row T′2 must map `1 to the ground type

T1. This may be expressed by two equations of the form T′1 = (`2 : T2 ; . . .)

and T′2 = (`1 : T1 ; . . .). Furthermore, because the ground rows T′1 and T′2
must agree on their common labels, the ellipses in these two equations must

denote the same ground row. This is expressed by letting the two equations

share a fresh, existentially quantified row variable X. C­Mutate­DL concerns

an equation between two rows, one of which is given as a constant row, the

other of which is given by extension. Then, because the ground row ∂T maps

every label to the ground type T, the ground type T′ must coincide with the

ground type T, while the ground row T′′ must map every label in its domain

to the ground type T. This is expressed by the equations T = T′ and ∂T = T′′.

C­Mutate­GD and C­Mutate­GL concern an equation between two rows, one

of which is given as an application of a row constructor G, the other of which

is given either as a constant row or by extension. Again, the laws exploit

the fact that the ground row G T1 . . . Tn is obtained by applying the type

constructor G, pointwise, to the ground rows T1, . . . ,Tn. If, as in C­Mutate­

GD, it coincides with the constant ground row ∂T, then every Ti must itself be

a constant ground row, of the form ∂Xi , and T must coincide with G X1 . . . Xn.

C­Mutate­GL is obtained in a similar manner.

10.8.18 Lemma: Each of the equivalence laws in Figure 10­13 holds. 2

Solving Equality Constraints in the Presence of Rows

We now extend the unification algorithm given in §10.6 with support for rows.

The extended algorithm is intended to solve unification problems where the

syntax and interpretation of types are as defined in the discussions above of

the syntax (p. 466) and meaning (p. 471) of rows. Its specification consists

of the original rewriting rules of Figure 10­10, minus S­Clash, which is re­

moved and replaced with the rules given in Figure 10­14. Indeed, S­Clash is

no longer valid in the presence of rows: not all distinct type constructors are

incompatible.

The extended algorithm features four mutation rules, which are in direct

correspondence with the mutation laws of Figure 10­13, as well as a weak­

ened version of S­Clash, dubbed S­Clash’, which applies when neither S­

Decompose nor the mutation rules are applicable. (Let us point out that, in
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(`1 : X1 ; X′1) = (`2 : T2 ; T′2) = ε → ∃X.(X′1 = (`2 : T2 ; X)∧ T′2 = (`1 : X1 ; X))

∧ (`1 : X1 ; X′1) = ε (S­Mutate­LL)

if `1 6= `2

∂X = (` : T ; T′) = ε → X = T∧ ∂X = T′ ∧ ∂X = ε (S­Mutate­DL)

G T1 . . . Tn = ∂X = ε → ∃X1 . . .Xn.(G X1 . . . Xn = X∧
∧n
i=1(Ti = ∂Xi))

∧ ∂X = ε (S­Mutate­GD)

G T1 . . . Tn = (` : X ; X′) = ε → ∃X1 . . .Xn,X
′
1 . . .X

′
n.(G X1 . . . Xn = X ∧

G X′1 . . . X
′
n = X′ ∧∧n

i=1(Ti = (` : Xi ; X′i)))

∧ (` : X ; X′) = ε (S­Mutate­GL)

F ~T = F ′ ~T′ = ε → false (S­Clash’)

if F 6= F′ and none of the four rules above applies

Figure 10­14: Row unification (changes to Figure 10­10)

S­Decompose, the meta­variable F ranges over all type constructors in the sig­

nature S, so that S­Decompose is applicable to multi­equations of the form

∂X = ∂T = ε or (` : X ; X′) = (` : T ; T′) = ε.) Three of the mutation rules

may allocate fresh type variables, which must be chosen fresh for the rule’s

left­hand side. The four mutation rules paraphrase the four mutation laws

very closely. Two minor differences are (i) the mutation rules deal with multi­

equations, as opposed to equations; and (ii) any subterm that appears more

than once on the right­hand side of a rule is required to be a type variable,

as opposed to an arbitrary type. Neither of these features is specific to rows:

both may be found in the definition of the standard unification algorithm

(Figure 10­10), where they help reason about sharing.

10.8.19 Exercise [«, 3]: Check that the rewriting rules in Figure 10­14 preserve well­

kindedness. Conclude that, provided its input constraint is well­kinded, the

unification algorithm needs not keep track of kinds. 2

The properties of the unification algorithm are preserved by this extension,

as witnessed by the next three lemmas. Note that the termination of reduction

is ensured only when the initial unification problem is well­kinded. The ill­

kinded unification problem X = (`1 : T ; Y)∧ X = (`2 : T ; Y), where `1 and `2

are distinct, illustrates this point.

10.8.20 Lemma: The rewriting system → is strongly normalizing. 2
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10.8.21 Lemma: U1 → U2 implies U1 ≡ U2. 2

10.8.22 Lemma: Every normal form is either false or of the form X[U], where X is an

existential constraint context, U is a standard conjunction of multi­equations

and, if the model is syntactic, U is acyclic. These conditions imply that U is

satisfiable. 2

The time complexity of standard first­order unification is quasi­linear. What

is, then, the time complexity of row unification? Only a partial answer is

known. In practice, the algorithm given in this chapter is extremely efficient

and appears to behave just as well as standard unification. In theory, the com­

plexity of row unification remains unexplored and forms an interesting open

issue.

10.8.23 Exercise [«««, 3]: The unification algorithm presented above, although very

efficient in practice, does not have linear or quasi­linear time complexity. Find

a family of unification problems Un such that the size of Un is linear with re­

spect to n and the number of steps required to reach its normal form is

quadratic with respect to n. 2

10.8.24 Remark: Mutation is a common technique for solving equations in a large

class of non­free algebras that are described by syntactic theories (Kirchner

and Klay, 1990). The equations of Figure 10­12 happen to form a syntactic

presentation of an equational theory. Thus, it is possible to derive a unifica­

tion algorithm out of these equations in a systematic way (Rémy, 1993). Here,

we have presented the same algorithm in a direct manner, without relying on

the apparatus of syntactic theories. 2

Operations on Records

We now illustrate the use of rows for typechecking operations on records. We

begin with full records; our treatment follows Rémy (1992b).

10.8.25 Example [Full records]: As before, let us begin with full records, whose do­

main is exactly L. The primitive operations are record creation {·}, update

{· with ` = ·}, and access ·.{`}.

Let < denote a fixed strict total order on row labels. For every set of labels

L of cardinal n, let us introduce a (n+ 1)­ary constructor {}L. We use the fol­

lowing syntactic sugar: we write {`1 = t1; . . . ;`n = tn;t} for the application

{}L ti1 . . . tin t, where L = {`1, . . . , `n} = {`i1 , . . . , `in} and `i1 < . . . < `in
holds. The use of the total order < makes the meaning of record expressions

independent of the order in which fields are defined; in particular, it allows

fixing the order in which t1, . . . ,tn are evaluated. We abbreviate the record



10.8 Rows 479

value {`1 = v1; . . . ;`n = vn;v} as {V;v}, where V is the finite function that

maps `i to vi for every i ∈ {1, . . . , n}.

The operational semantics of the above three operations may now be de­

fined in the following straightforward manner. First, record creation {·} is

precisely the unary constructor {}�. Second, for every ` ∈ L, let update

{· with ` = ·} and access ·.{`} be destructors of arity 1 and 2, respectively,

equipped with the following reduction rules:

{{V;v} with ` = v′}
δ
-→ {V[` , v′];v} (R­Update)

{V;v}.{`}
δ
-→ V(`) (` ∈ dom(V)) (R­Access­1)

{V;v}.{`}
δ
-→ v (` ∉ dom(V)) (R­Access­2)

In these rules, V[` , v] stands for the function that maps ` to v and coincides

with V at every other label, while V(`) stands for the image of ` through V.

Because these rules make use of the syntactic sugar defined above, they are,

strictly speaking, rule schemes: each of them really stands for the infinite

family of rules that would be obtained if the syntactic sugar was eliminated.

Let us now define the syntax of types as in Example 10.8.7. Let the initial

environment Γ0 contain the following bindings:

{}{`1,...,`n} : ∀X1 . . .XnX.X1 → . . . → Xn → X→ Π (`1 : X1; . . . ;`n : Xn; ∂X)

where `1 < . . . < `n
{· with ` = ·} : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : X′ ; Y)

·.{`} : ∀XY.Π (` : X ; Y)→ X

Note that, in particular, the type scheme assigned to record creation {·} is

∀X.X→ Π (∂X). As a result, these bindings are exactly as stated in the discus­

sion of records with infinite carrier (p. 463).

To illustrate how these definitions work together, let us consider the pro­

gram {{0} with `1 = true}.{`2}, which builds a record, extends it at `1, then

accesses it at `2. Can we build an HM(X) type derivation for it, under the

constraint true and the initial environment Γ0? To begin, by looking up Γ0

and using hmx­Inst, we find that {·} has type int → Π (∂int). Thus, assum­

ing that 0 has type int, the expression {0} has type Π (∂int). Indeed, this

expression denotes a record all of whose fields hold an integer value. Then,

by looking up Γ0 and using hmx­Inst, we find that {· with `1 = ·} has type

Π (`1 : int ; ∂int) → bool → Π (`1 : bool ; ∂int). May we immediately use hmx­

App to typecheck the application of {· with `1 = ·} to {0}? Unfortunately,

no, because there is an apparent mismatch between the expected type Π

(`1 :int ; ∂int) and the effective type Π (∂int). To work around this problem, let

us recall that, by C­Row­DL, the equation Π (∂int) = Π (`1 : int ; ∂int) is equiv­

alent to true. Thus, hmx­Sub allows proving that {0} has type Π (`1 :int ; ∂int).
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Assuming that true has type bool, we may now apply hmx­App and deduce

true, Γ0 ` {{0} with `1 = true} : Π (`1 : bool ; ∂int).

We let the reader check that, in a similar manner involving C­Row­DL, C­Row­

LL, and hmx­Sub, one may prove that {{0} with `1 = true}.{`2} has type int,

provided `1 and `2 are distinct. 2

10.8.26 Exercise [««, 3]: Unfold the definition of the constraint let Γ0 in J{{0} with

`1 = true}.{`2} : XK, which states that X is a valid type for the above program.

Assuming that subtyping is interpreted as equality, simulate a run of the

constraint solver (§10.6), extended with support for rows, so as to solve this

constraint. Check that the solved form is equivalent to X = int. 2

10.8.27 Exercise [«««]: Check that the definitions of Example 10.8.25 meet the re­

quirements of Definition 10.5.5. 2

10.8.28 Example [Record application]: Let us now introduce a more unusual prim­

itive operation on full records. This operation accepts two records, the first of

which is expected to hold a function in every field and produces a new record,

whose contents are obtained by applying, pointwise, the functions in the first

record to the values in the second record. In other words, this new primitive

operation lifts the standard application combinator (which may be defined as

λf.λz.f z), pointwise, to the level of records. For this reason, we refer to it as

rapply. Its operational semantics is defined by making it a binary destructor

and equipping it with the following reduction rules:

rapply {V;v} {V′;v′}
δ
-→ {V V′;v v′} (R­Apply­1)

rapply {V;v} {V′;v′}
δ
-→ rapply {V;v} {V′[` , v′];v′} (R­Apply­2)

if ` ∈ dom(V) \ dom(V′)

rapply {V;v} {V′;v′}
δ
-→ rapply {V[`′ , v];v} {V′;v′} (R­Apply­3)

if `′ ∈ dom(V′) \ dom(V)

In the first rule, V V′ is defined only if V and V′ have a common domain; it is

then defined as the function that maps ` to the expression V(`) V′(`). The

second and third rules, which are symmetric, deal with the case where some

field is explicitly defined in one input record but not in the other; in that case,

the field is made explicit by creating a copy of the record’s default value.

The syntax of types remains as in Example 10.8.25. We extend the initial

environment Γ0 with the following binding:

rapply : ∀XY.Π (X→ Y)→ Π X→ Π Y
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To understand this type scheme, recall that the principal type scheme of

the standard application combinator (which may be defined as λf.λz.f z) is

∀XY.(X→ Y)→ X→ Y. The type scheme assigned to rapply is very similar; the

most visible difference is that both arguments, as well as the result, are now

wrapped within the record type constructor Π. A more subtle, yet essential

change is that X and Y are now row variables: their kind is ?.Row(�). As

a result, the leftmost occurrence of the arrow constructor is really →Row(�).

Thus, we are exploiting the presence of type constructors of the form Gs ,

with s 6= Type, in the signature S.

To illustrate how these definitions work together, let us consider the pro­

gram rapply {` = not;succ} {` = true; 0}, where the terms not and succ

are assumed to have types bool → bool and int → int, respectively. Can

we build an HM(X) type derivation for it, under the constraint true and

the initial environment Γ0? To begin, it is straightforward to derive that the

record {` = not;succ} has type Π (` : bool → bool ; ∂(int→ int)) (1). In or­

der to use rapply, however, we must prove that this record has a type of

the form Π (R1 → R2), where R1 and R2 are rows. This is where C­Row­GD

and C­Row­GL (Figure 10­12) come into play. Indeed, by C­Row­GD, the type

∂(int→ int) may be written ∂int → ∂int. So, (1) may be written Π (` : bool →

bool ; ∂int→ ∂int) (2), which by C­Row­GL may be written Π ((` : bool ;

∂int) → (` : bool ; ∂int)) (3). Thus, hmx­Sub allows deriving that the record

{` = not;succ} has type (3). We let the reader continue and conclude that the

program has type Π (` : bool ; ∂int) under the constraint true and the initial

environment Γ0.

This example illustrates a very important use of rows, namely to lift an

operation on ordinary values so as to turn it into a pointwise operation on

records. Here, we have chosen to lift the standard application combinator,

giving rise to rapply on records. The point is that, thanks to the expres­

sive power of rows, we were also able to lift the standard combinator’s type

scheme in the most straightforward manner, giving rise to a suitable type

scheme for rapply. 2

10.8.29 Exercise [«««, 3]: Check that the definitions of Example 10.8.28 meet the

requirements of Definition 10.5.5. 2

The previous examples have illustrated the use of rows to typecheck op­

erations on full records. Let us now move to records with finite domain. As

explained in the discussion above of records with finite carrier (p. 461), they

may be either encoded in terms of full records, or given a direct definition.

The latter approach is illustrated below.

10.8.30 Example [Finite records]: For every set of labels L of cardinal n, let us in­

troduce a n­ary constructor 〈〉L. We define the notations 〈`1 = t1; . . . ;`n = tn〉
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and 〈V〉, where V is a finite mapping of labels to values, in a manner similar

to that of Example 10.8.25.

The three primitive operations on finite records, namely the empty record

〈〉, extension 〈· with ` = ·〉, and access ·.〈`〉, may be defined as follows. First,

the empty record 〈〉 is precisely the nullary constructor 〈〉�. Second, for every

` ∈ L, let extension 〈· with ` = ·〉 and access ·.〈`〉 be destructors of arity 1

and 2, respectively, equipped with the following reduction rules:

〈〈V〉 with ` = v〉
δ
-→ 〈V[` , v]〉 (R­Extend)

〈V〉.〈`〉
δ
-→ V(`) (` ∈ dom(V)) (R­Access)

Let us now define the syntax of types as in Example 10.8.8. Let the initial

environment Γ0 contain the following bindings:

〈〉{`1 ,...,`n} : ∀X1 . . .Xn.X1 → . . .→ Xn → Π (`1 : pre X1; . . . ;`n : pre Xn; ∂abs)

where `1 < . . . < `n
〈· with ` = ·〉 : ∀XX′Y.Π (` : X ; Y)→ X′ → Π (` : pre X′ ; Y)

·.〈`〉 : ∀XY.Π(` : pre X ; Y)→ X

Note that, in particular, the type scheme assigned to the empty record 〈〉 is

Π (∂abs). 2

10.8.31 Exercise [Recommended, «, 3]: Reconstruct all of the missing kind infor­

mation in the type schemes given in Example 10.8.30. 2

10.8.32 Exercise [Recommended, ««, 3]: Give an encoding of finite records in terms

of full records, along the lines of the discussion of records with finite carrier

(p. 461). Check that the principal type schemes associated, via the encod­

ing, with the three operations on finite records are precisely those given in

Example 10.8.30. 2

10.8.33 Exercise [Recommended, «]: The extension operation, as defined above, may

either change the value of an existing field or create a new field, depending

on whether the field ` is or isn’t present in the input record. This flavor is

known as free extension. Can you define a strict flavor of extension that is

not applicable when the field ` already exists? Can you define (free and strict

flavors of) a restriction operation that removes a field from a record? 2

10.8.34 Exercise [Recommended, «]: Explain why, when pre à abs holds, subsump­

tion allows a record with more fields to be supplied in a context where a

record with fewer fields is expected. This phenomenon is often known as

width subtyping. Explain why such is not the case when subtyping is inter­

preted as equality. 2

10.8.35 Exercise [«««, 3]: Check that the definitions of Example 10.8.30 meet the

requirements of Definition 10.5.5. 2
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Polymorphic Variants

So far, we have emphasized the use of rows for flexible typechecking of opera­

tions on records. The record type constructor Π expects one parameter, which

is a row; informally speaking, one might say that it is a product constructor of

infinite arity. It appears natural to also define sums of infinite arity. This may

be done by introducing a new unary type constructor Σ, whose parameter is

a row.

As in the case of records, we use a nullary type constructor abs and a

unary type constructor pre in order to associate information with every row

label. Thus, for instance, the type Σ (`1 :pre T1 ; `2 : pre T2 ; ∂abs) is intended

to contain values of the form `1 v1, where v1 has type T1, or of the form

`2 v2, where v2 has type T2. The type constructors abs and pre are not the

same type constructors as in the case of records. In particular, their subtyping

relationship, if there is one, is reversed. Indeed, the type Σ (`1 : pre T1 ;

`2 : abs ; ∂abs) is intended to contain only values of the form `1 v1, where

v1 has type T1, so it is safe to make it a subtype of the above type; in other

words, it is safe to allow abs ≤ pre T2. In spite of this, we keep the names abs

and pre by tradition.

The advantages of this approach over algebraic data types are the same as

in the case of records. The namespace of data constructors becomes global,

so it becomes possible for two distinct sum types to share data constructors.

Also, the expressiveness afforded by rows allows assigning types to new op­

erations, such as filtering (see below), which allows functions that perform

case analysis to be incrementally extended with new cases. One disadvantage

is that it becomes more difficult to understand what it means for a function

defined by pattern matching to be exhaustive; this issue is, however, out of

the scope of this chapter.

10.8.36 Example [Polymorphic variants]: For every label ` ∈ L, let us introduce a

unary constructor ` and a ternary destructor [ ` : · | · ] ·. We refer to the for­

mer as a data constructor, and to the latter as a filter. Let us also introduce a

unary destructor []. We equip these destructors with the following reduction

rules:

[ ` : v | v′ ] (` w)
δ
-→ v w (R­Filter­1)

[ ` : v | v′ ] (`′ w)
δ
-→ v′ (`′ w) if ` 6= `′ (R­Filter­2)

Let us define the syntax of types as follows. Let there be two basic kinds ?

and •. Let S0 consist of the type constructors →, abs, and pre, whose respec­

tive signatures are ?⊗?⇒ ?, •, and ?⇒ •. Let S1 consist of the record type

constructor Σ, whose signature is • ⇒ ?. Note the similarity with the case of

records (Example 10.8.8).
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Subtyping is typically interpreted in one of two ways. One is equality. The

other is the nonstructural subtyping order obtained by letting → be con­

travariant in its domain and covariant in its codomain, Σ be covariant, →

and Σ be incompatible, and letting abs à pre. Compare this definition with

the case of records (Remark 10.8.11).

To complete the setup, let the initial environment Γ0 contain the following

bindings:

` · : ∀XY.X→ Σ (` : pre X ; Y)

[ ` : · | · ] · : ∀XX′YY′.(X→ Y)→ (Σ (` : X′ ; Y′)→ Y)→ Σ (` : pre X ; Y′)→ Y

[] : ∀X.Σ (∂abs)→ X

The first binding means, in particular, that if v has type T, then a value of the

form ` v has type Σ (` : pre T ; ∂abs). This is a sum type with only one branch

labeled `, hence a very precise type for this value. However, it is possible to

instantiate the row variable Y with rows other than ∂abs. For instance, the

value ` v also has type Σ (` : pre T ; `′ : pre T′ ; ∂abs). This is a sum type with

two branches, hence a somewhat less precise type, but still a valid one for

this value. It is clear that, through this mechanism, the value ` v admits an

infinite number of types. The point is that, if v has type T and v′ has type T′,

then both ` v and `′ v′ have type Σ (` : pre T ; `′ : pre T′ ; ∂abs), so they may

be stored together in a homogeneous data structure, such as a list.

Filters are used to perform case analysis on variants, that is, on values of

a sum type. According to R­Filter­1 and R­Filter­2, a filter [ ` : v | v′ ] is a

function that expects an argument of the form `′ w and reduces to v w if `′ is

` and to v′ (`′ w) otherwise. Thus, a filter defines a two­way branch, where the

label of the data constructor at hand determines which branch is taken. The

expressive power of filters stems from the fact that they may be organized

in a sequence, so as to define a multi­way branch. The inert filter [], which

does not have a reduction rule, serves as a terminator for such sequences. For

instance, the composite filter [ ` : v | [ `′ : v′ | [] ] ], which may be abbreviated

as [ ` : v | `′ : v′ ], may be applied either to a value of the form ` w, yielding

v w, or to a value of the form `′ w′, yielding v′ w′. Applying it to a value w

whose head symbol is not ` or `′ would lead to the term [] w, which is stuck,

since [] does not have a reduction rule.

For the type system to be sound, we must ensure that every application

of the form [] w is ill­typed. This is achieved by the third binding above: the

domain type of [] is Σ (∂abs), a sum type with zero branches, which contains

no values. The return type of [] may be chosen at will, which is fine; since it

can never be invoked, it can never return. The second binding above means

that, if v accepts values of type T and v′ accepts values of type Σ (` : T′′ ; T′),

then the filter [ ` : v | v′ ] accepts values of type Σ (` : pre T ; T′). Note that
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any choice of T′′ will do, including, in particular, abs. In other words, it is

okay if v′ does not accept values of the form ` w. Indeed, by definition of the

semantics of filters, it will never be passed such a value. 2

10.8.37 Exercise [«««, 3]: Check that the definitions of Example 10.8.36 meet the

requirements of Definition 10.5.5. 2

10.8.38 Remark: It is interesting to study the similarity between the type schemes

assigned to the primitive operations on polymorphic variants and those as­

signed to the primitive operations on records (Example 10.8.30). The type of

[] involves the complete row ∂abs, just like the empty record 〈〉. The type

of [ ` : · | · ] · is pretty much identical to the type of record extension

〈· with ` = ·〉, provided the three continuation arrows → Y are dropped.

Last, the type of the data constructor ` is strongly reminiscent of the type

of record access ·.〈`〉. With some thought, this is hardly a surprise. Indeed,

records and variants are dual: it is possible to encode the latter in terms of

the former and vice­versa. For instance, in the encoding of variants in terms

of records, a function defined by cases is encoded as a record of ordinary

functions, in continuation­passing style. Thus, the encoding of [] is λf.f 〈〉,

the encoding of [ ` : v | v′ ] is λf.f 〈v′ with ` = v〉, and the encoding of

` v is λr.r.〈`〉 v. The reader is encouraged to study the type schemes that

arise out of this encoding and how they relate to the type schemes given in

Example 10.8.36. 2

10.8.39 Example [First­class messages]: In a programming language equipped with

both records and variants, it is possible to make the duality between these

two forms of data explicit by extending the language with a primitive opera­

tion # that turns a record of ordinary functions into a single function, defined

by cases. More precisely, # may be introduced as a binary destructor, whose

reduction rule is

# v (` w)
δ
-→ v.〈`〉 w (R­Send)

What type may we assign to such an operation? In order to simplify the an­

swer, let us assume that we are dealing with full records (Example 10.8.25)

and full variants; that is, we have a single basic kind ?, and do not employ

abs and pre. Then, a suitable type scheme would be

∀XY.Π (X→ ∂Y)→ Σ X→ Y

In other words, this operation accepts a record of functions, all of which have

the same return type Y, but may have arbitrary domain types, which are given

by the row X. It produces a function that accepts a parameter of sum type Σ X
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and returns a result of type Y. The fact that the row X appears both in the Σ

type and in the Π type reflects the operational semantics. Indeed, according

to R­Send, the label ` carried by the value ` w is used to extract, out of the

record v, a function, which is then applied to w. Thus, the domain type of

the function stored at ` within the record v should match the type of w. In

other words, at every label, the domain of the contents of the record and the

contents of the sum should be type compatible. This is encoded by letting

a single row variable X stand for both of these rows. Note that the arrow in

X → ∂Y is really →Row(�); once again, we are exploiting the presence of type

constructors of the form Gs , with s 6= Type, in the signature S.

If the record of functions v is viewed as an object , and if the variant ` w

is viewed as a message ` carrying a parameter w, then R­Send may be under­

stood as (first­class) message dispatch, a common feature of object­oriented

languages. (The first­class qualifier refers to the fact that the message name

` is not statically fixed, but is discovered at runtime.) The issue of type infer­

ence in the presence of such a feature has been studied by Nishimura (1998),

Müller and Nishimura (1998), and Pottier (2000). These papers address two is­

sues that are not dealt with in the above example, namely (i) accommodating

finite (as opposed to full) record and variants and (ii) allowing distinct meth­

ods to have distinct result types. This is achieved via the use of subtyping

and of some form of conditional constraints. 2

10.8.40 Exercise [«««, 3]: Check that the definitions of Example 10.8.39 meet the

requirements of Definition 10.5.5. 2

The name polymorphic variants stems from the highly polymorphic type

schemes assigned to the operations on variants (Example 10.8.36). A row­

based type system for polymorphic variants was first proposed by Rémy

(1989). A somewhat similar, constraint­based type system for polymorphic

variants was then studied by Garrigue (1998; 2000; 2002) and implemented

by him as part of the programming language Objective Caml.

Other Applications of Rows

Typechecking records and variants is the best­known application of rows.

Many variations of it are conceivable, some of which we have illustrated, such

as the choice between full and finite records and variants. However, rows may

also be put to other uses, of which we now list a few.

First, since objects may be viewed as records of functions, at least from a

typechecking point of view, rows may be used to typecheck object­oriented

languages in a structural style (Wand, 1994; Rémy, 1994). This is, in particu­

lar, the route followed in Objective Caml (Rémy and Vouillon, 1998). There,
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an object type consists of a row of method types, and gives the object’s inter­

face. Such a style is considered structural, as opposed to the style adopted by

many popular object­oriented languages, such as C++, Java, and C#, where an

object type consists of the name of its class. Thanks to rows, method invo­

cation may be assigned a polymorphic type scheme, similar to that of record

access (Example 10.8.30), making it possible to invoke a specific method (say,

`) without knowing which class the receiver object belongs to.

Rows may also be used to encode sets of properties within types or to

encode type refinements, with applications in type­based program analysis.

Some instances worth mentioning are soft typing (Cartwright and Fagan,

1991; Wright and Cartwright, 1994), exception analysis (Leroy and Pessaux,

2000; Pottier and Simonet, 2003), and static enforcement of an access control

policy (Pottier, Skalka, and Smith, 2001). BANE (Fähndrich, 1999), a versatile

program analysis toolkit, also implements a form of rows.

Variations on Rows

A type system may be said to have rows, in a broad sense, if mappings from

labels to types may be (i) defined incrementally, via some syntax for extending

an existing mapping with information about a new label and (ii) abstracted by

a type variable. In this chapter, which follows Rémy’s ideas (1993; 1992a;

1992b), the former feature is provided by the row constructors (` : · ; ·),

while the latter is provided by the existence of row variables, that is, type

variables of row kind Row(L) for some L. There are, however, type systems

that provide (i) and (ii) while departing significantly from the one presented

here. These systems differ mainly in how they settle some important design

choices:

1. Does a row denote a finite or an infinite mapping from labels to types?

2. Is a row with duplicate labels considered well­formed? If not, by which

mechanism is it ruled out?

In Rémy’s approach, every row denotes an infinite (in fact, cofinite) mapping

from labels to types. The type constructors abs and pre are used to encode

domain information within field types. A row with duplicate labels, such as

(` : T1 ; ` : T2 ; T3), is ruled out by the kind system. Below, we mention a

number of type systems that make different design choices.

The first use of rows for typechecking operations on records, including

record extension, is due to Wand (1987a; 1988). In Wand’s approach, rows de­

note finite mappings. Furthermore, rows with duplicate labels are considered

legal; row extension is interpreted as function extension, so that, if a label oc­

curs twice, the later occurrence takes precedence. This leads to a difficulty in
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the constraint solving process: the constraint (` :T1 ; R1) = (` :T2 ; R2) entails

T1 = T2, but does not entail R1 = R2, because R1 and R2 may have different

domains—indeed, their domains may differ at `. Wand’s proposed solution

(1988) introduces a four­way disjunction, because each of R1 and R2 may or

may not define `. This gives type inference exponential time complexity.

Later work (Berthomieu, 1993; Berthomieu and le Moniès de Sagazan, 1995)

interprets rows as infinite mappings but sticks with Wand’s interpretation of

row extension as function extension, so that duplicate labels are allowed. The

constraint solving algorithm rewrites the problematic constraint (` :T1 ; R1) =

(` : T2 ; R2) to (T1 = T2) ∧ (R1 ={`} R2), where the new predicate =L is inter­

preted as row equality outside L. Of course, the entire constraint solver must

then be extended to deal with constraints of the form T1 =L T2. The advan­

tage of this approach over Wand’s lies in the fact that no disjunctions are

ever introduced, so that the time complexity of constraint solving apparently

remains polynomial.

Several other works make opposite choices, sticking with Wand’s interpre­

tation of rows as finite mappings but forbidding duplicate labels. No kind

discipline is imposed: some other mechanism is used to ensure that dupli­

cate labels do not arise. In Jategaonkar and Mitchell (1988) and Jategaonkar

(1989), somewhat ad hoc steps are taken to ensure that, if the row (` : T ; X)

appears anywhere within a type derivation, then X is never instantiated with

a row that defines `. In Gaster and Jones (1996), Gaster (1998), and Jones

and Peyton Jones (1999), explicit constraints prevent duplicate labels from

arising. This line of work uses qualified types (Jones, 1994), a constraint­

based type system that bears strong similarity with HM(X). For every label

`, a unary predicate · lacks ` is introduced; roughly speaking, the constraint

R lacks ` is considered to hold if the (finite) row R does not define the label `.

The constrained type scheme assigned to record access is

·.〈`〉 : ∀XY[Y lacks `].Π (` : X ; Y)→ X.

The constraint Y lacks ` ensures that the row (` : X ; Y) is well­formed. Al­

though interesting, this approach is not as expressive as that described in

this chapter. For instance, although it accommodates record update (where

the field being modified is known to exist in the initial record) and strict

record extension (where the field is known not to initially exist), it cannot ex­

press a suitable type scheme for free record extension, where it is not known

whether the field initially exists. This approach has been implemented as the

“Trex” extension to Hugs (Jones and Peterson, 1999).

It is worth mentioning a line of type systems (Ohori and Buneman, 1988,

1989; Ohori, 1995) that do not have rows, because they lack feature (i) above,

but are still able to assign a polymorphic type scheme to record access. One
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might explain their approach as follows. First, these systems are equipped

with ordinary, structural record types, of the form {`1 : T1; . . . ;`n : Tn}. Sec­

ond, for every label `, a binary predicate · has ` : · is available. The idea is

that the constraint T has ` : T′ holds if and only if T is a record type that

contains the field ` : T′. Then, record access may be assigned the constrained

type scheme

·.〈`〉 : ∀XY[X has ` : Y].X→ Y.

This technique also accommodates a restricted form of record update, where

the field being written must initially exist and must keep its initial type; it

does not, however, accommodate any form of record extension, because of

the absence of row extension in the syntax of types. Although the papers

cited above employ different terminology, we believe it is fair to view them as

constraint­based type systems. In fact, Odersky, Sulzmann, and Wehr (1999)

prove that Ohori’s system (1995) may be viewed as an instance of HM(X).

Sulzmann (2000) proposes several extensions of it, also presented as in­

stances of HM(X), which accommodate record extension and concatenation

using new, ad hoc constraint forms in addition to · has `.

In the label­selective λ­calculus (Garrigue and Aït­Kaci, 1994; Furuse and

Garrigue, 1995), the arrow type constructor carries a label, and arrows that

carry distinct labels may commute, so as to allow labeled function arguments

to be supplied in any order. Some of the ideas that underlie this type system

are closely related to rows.

Pottier (2003) describes an instance of HM(X) where rows are not part of

the syntax of types: equivalent expressive power is obtained via an exten­

sion of the constraint language. The idea is to work with constraints of the

form R1 ≤L R2, where L may be finite or cofinite, and to interpret such a

constraint as row subtyping inside L. In this approach, no new type variables

need be allocated during constraint solving; contrast this with S­Mutate­LL,

S­Mutate­GD, and S­Mutate­GL in Figure 10­14. One benefit is to simplify

the complexity analysis; another is to yield insights that lead to generaliza­

tions of rows.

Even though rows were originally invented with type inference in mind,

they are useful in explicitly typed languages as well; indeed, other approaches

to typechecking operations on records appear quite complex (Cardelli and

Mitchell, 1991).





A Solutions to Selected Exercises

1.1.4 Solution: The proof of each lemma proceeds by induction on the typing

derivation. Almost all cases follow directly from the induction hypothesis.

The base cases are straightforward as well, but some slight amount of work

is involved. For instance, in the base case for weakening we are given the judg­

ment Γ1, x:T, Γ2 ` x : T. and must prove that for arbitrary Γ3, Γ1, x:T, Γ2, Γ3 `

x : T. The latter judgment follows directly from the variable rule as the rule

schema allows the context Γ1, x:T, Γ2, Γ3. Notice, however, that if we were not

careful in the definition of the variable rule and had omitted Γ2 from the con­

text in the rule schema, we would be unable to prove this weakening lemma.

Hence, while simple, the rules for the variables and constants play an integral

role in defining the structural properties of a type system.

1.2.1 Solution: Since the variable may only appear on the extreme right­hand side

of the context, we will be unable to prove the exchange lemma. In the liter­

ature, you will see this formulation of the variable rule all the time because

authors often treat contexts as finite partial maps. In other words, contexts

that differ only in the order in which we write down their elements are treated

equally and are never distinguished from one another. In this chapter, we

choose not to take this perspective so that we may study the complete set of

structure rules directly.

1.2.13 Solution: No: the lemma is false. Fortunately, the preservation theorem for

our language only depends upon a substitution lemma involving variables:

Lemma [Linear Variable Substitution]: Let Γ3 = Γ1 ◦ Γ2. If Γ1, x:T ` t1 : T1

and Γ2 ` y : T then Γ3 ` [x, y]t1 : T1.

1.3.1 Solution: The type of linear trees with elements of type T follows.

type T tree = rec a.lin (unit + lin (T * a * a))

It will be convenient to define some constructors for trees of type T as well.
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fun nilT (nil:unit) : T tree =

roll (lin inl nil)

fun nodeT (arg : lin (T * T tree * T tree)) : TL =

roll (lin inr arg)

As we recurse into the tree structure, we must create a list of subtrees that

have yet to be processed. This list will be constructed from parts of the tree

itself. In ML, we could define the appropriate sort of list using the following

datatype.

datatype (T1,T2) TL =

done

| right of T2 * T1 tree * TL

| left of T2 * T2 tree * TL

Let us assume that our recursive tree map procedure takes a tree t and a

TL­list l as an argument. If l is the first constructor done, then all we have

to do is process t. If l is the second constructor (say right(elem,tr,l′))

then when we finish processing t, we have finished processing a left subtree,

but we still need to process the right subtree (tr) and glue the processed tree

element (elem) together with the results. We also need to recursively process

the rest of the list l′. If l is the last constructor (say left(elem,tl,l′)) then

when we finish processing t, we have just finished processing a right subtree

and we need to assemble the tree element (elem), the left subtree (tl) and the

recently finished right subtree, and recursively process the rest of the list.

In our linear lambda calculus, the ML type definition given above and its

associated constructors will be defined as follows. We will use in0, in1,...

inn−1 to inject into a n­ary sum when n is greater than two.

type TL =

mu a.

lin (unit + lin (T2 * T1 tree * a)

+ lin (T2 * T2 tree * a))

fun done (nil:unit) : TL = roll (lin in0 nil)

fun right (arg : lin (T2 * T1 tree * TL)) : TL =

roll (lin in2 arg)

fun left (arg : lin (T2 * T2 tree * TL)) : TL =

roll (lin in1 arg)

The algorithm is factored into a top­level function treeMap and two helpers.

The first processes a subtree we have not seen yet. The second determines

what to do next by looking at the TL stack.
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type FT = T1 → T2

fun treeMap(f:FT,t:T1 tree) : T2 tree =

procTree (f,t,done())

and procTree(f:FT,t:T1 tree,tl:TL) : T2 tree =

case unroll t (

inl nil ⇒ procTL (f,nilT2(),tl)

| inr tree ⇒

split tree as elem,t1,t2 in

procTree (f,t1,right lin <f elem,t2,tl>)

and procTL(f:FT,t:T2 tree,tl:TL): T2 tree =

case unroll tl (

in0 nil ⇒ t

| in1 arg ⇒

split arg as elem,t2,tl in

procTree (f,t2,left lin <elem,t,tl>)

| in2 arg ⇒

split arg as elem,t1,tl in

procTL (f,nodeT2 lin <elem,t1,t2>,tl)

1.3.4 Solution: If an unrestricted array can contain a linear object, the linear ob­

ject might never be used because the programmer might forget to use the en­

tire array. Due to our swapping operational semantics for arrays, even though

an unrestricted array (containing linear objects) can be used many times, the

linear objects themselves can never be used more than once. In short, the

supposedly linear objects would actually be affine.

1.4.1 Solution: Consider the following expression. If we generalized the syntax

to allow nested sub expressions but made no change to the typing rules, it

would type check despite the fact that booleans are confused with integers.

let x = ord <true,true> in

let y = ord <ord <3,2>,x> in

split y as z1,z2 in

split z2 as b1,b2 in

if b1 then ... (* using an int as if it was a bool *)

Can we change the typing rules in some way to solve the soundness problem?

1.4.2 Solution: Consider the following well­typed expression.

let x1 = ord true in

let f = ord λy:ord bool.ord <x1,y> in

let x2 = ord false in

f x2
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At the point of execution just before the function call, the stack will be or­

ganized with x1, which belongs to f’s closure, at the bottom of the stack, f

allocated immediately on top of x1, and x2 allocated immediately on top of f.

When the function f is called, f should be deallocated, since ordered ob­

jects are always deallocated when they are used. However, f is in the middle

of the stack rather than on top, so the ordered abstract machine gets stuck.

The main problem centers around checking ordered functions with ordered

arguments.

1.4.3 Solution: The previous problem demonstrates that the difficulty with or­

dered functions is that when the function has an ordered argument, the

function will appear in the middle of the stack when it is called. We cannot

deallocate the function at that point, but one thing we can do is substitute a

placeholder with type junk for the used function pointer. The only thing that

can be done with an object of type junk is to pop it off the stack. When the

code in the function body has used up the ordered function argument, the

junk item will appear at the top of the stack. At this point, programmer will

explicitly pop it off the stack and move on to using objects in the function’s

closure.

The typing rule for the specialized ordered abstraction with ordered argu­

ment appears below. We also give the typing rule for the command pop x; t,

which pops its argument (x) off the top of the stack and continues execution

with t below. It is up to you to define their operational rules.

Γ , f:ord junk, x:ord P1 ` t2 : T2

Γ ` ord λf x:(ord P1).t2 : ord (ord P1)→T2

(T­Abs)

Γ2 ` x : ord junk Γ1 ` t : T

Γ1 ◦ Γ2 ` pop x; t : T
(T­Pop)

2.1.1 Solution: We can introduce a type family for rectangular matrices thus:

Matrix :: Nat → Nat → ∗

idmatrix : Πn:Nat. Matrix n n

multmatrix : Πl:Nat. Πm:Nat. Πn:Nat.

Matrix l m → Matrix m n → Matrix l n

Suppose we have a dependent type for ranges of integers: {n...m} denotes

the type of integers between n and m inclusive, either n or m may be omitted.

A possible typing for dates is given by:

Year = {2003..} :: ∗

Month = {1..12} :: ∗

Day :: Month → ∗
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where

Day(n) = {1..31} if n ∈ {1,3,5,7,8,10,12}

Day(n) = {1..30} if n ∈ {4,6,9,11}

Day(2) = {1..29}

A date is then given by an element of the Σ­type (see page 48):

Date :: Σy:Year. Σm:Month. Day(m)

Of course, we could gain more accuracy by making the type of days also

depend on the year.

2.1.2 Solution: A type representing the constructive axiom of choice for a pred­

icate P is (Πa:A.Σb:B. P(a,b)) → (Σf:A→B. Πx:A. P(x, f x)). It can be

shown in Martin­Löf’s type theory that this type is inhabited (Martin­Löf,

1984).

2.1.3 Solution: Σa:A.Σb:B.Id(f a, g b)

2.1.4 Solution: Here are some terms representing β­reduction and its closure on

lambda terms:

Eval :: ΠA:Ty. Tm A → Tm A → ∗

evalAppAbs : ΠA:Ty. ΠB:Ty.

Πt1:(Tm A → Tm B).

Πt2:(Tm A) → Eval (app (lam t1) t2) (t1 t2)

evalLam : ΠA:Ty. ΠB:Ty.

Πft1,ft1’:(Tm A → Tm B).

(Πx: Tm A. Eval (ft1 x) (ft1’ x))

→ Eval (lam ft1) (lam ft2)

evalApp1 : ΠA:Ty. ΠB:Ty.

Πt1,t1’:(Tm (arrow A B)).

Πt2: Tm B. Eval t1 t1’

→ Eval (app t1 t2) (app t1’ t2)

evalApp2 : ΠA:Ty. ΠB:Ty.

Πt1: (Tm (arrow A B)).

Πt2,t2’: Tm B. Eval t2 t2’

→ Eval (app t1 t2) (app t1 t2’)

2.6.4 Solution: We give the solution in the syntax of the implementation.

eqSucc =

λx:Prf(nat).λy:Prf(nat).λh:Prf(eq nat x y).

h(λz:Prf(nat).eq nat (succ x) (succ z)) (eqRefl nat (succ x))

: Πx:Prf(nat).Πy:Prf(nat).Prf(eq nat x y) →

Prf(eq nat (succ x) (succ y));
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addAssoc = λx:Prf(nat).λy:Prf(nat).λz:Prf(nat).

eq nat (add x (add y z)) (add (add x y) z);

proofOfAddAssoc = λx:Prf(nat).λy:Prf(nat).λz:Prf(nat).

natInd (λx1:Prf(nat).addAssoc x1 y z)

(eqRefl nat (add y z))

(λx1:Prf(nat).λp:Prf(addAssoc x1 y z).

eqSucc (add x1 (add y z)) (add (add x1 y) z) p)

x

: Πx:Prf(nat).Πy:Prf(nat).Πz:Prf(nat).Prf(addAssoc x y z);

2.7.1 Solution: Let i : Syntax(λLF) → Syntax(λP) be the obvious mapping be­

tween the syntaxes, which collapses each λLF λ­construct to the single λP

λ­operator, etc. (Except that type and term variables have disoint images).

Then we would hope to show:

1. Γ `λLF t : T ⇐⇒ i(Γ) `λP i(t) : i(T)

2. Γ `λLF T :: K ⇐⇒ i(Γ) `λP i(T) : i(K)

3. Γ `λLF K ⇐⇒ i(Γ) `λP i(K) : 2

There are two difficulties in establishing this equivalence. First, the presenta­

tion of λLF includes Q­Eta, but η equalities are not included in the definition

of PTS we gave. If Q­Eta is removed from λLF, the left to right direction is

straightforward. The right to left direction raises the second difficulty: we

must show that the untyped conversion relation of PTS can be simulated

by the declarative equality in λLF. This requires showing the Church­Rosser

property for the PTS conversion.

2.8.1 Solution: To complete the definition, we must give a simultaneous definition

of the interpretation of index sorts, JIKη ⊆ Z, index terms, JiKη ∈ Z, and

satisfaction between environments and contexts, η |= Γ and environments

and propositions, η |= P. The definitions are given below.

η |= ∅

η |= Γ , x : I if η |= Γ and η(x) ∈ JIKη
η |= Γ , P if η |= P

η |= P1 ∧ P2 if η |= P1, η |= P2

η |= i1 <= i2 if Ji1Kη ≤ Ji2Kη

JxKη = η(x)

JqKη = q

JqiKη = q × JiKη
Ji1 + i2Kη = Ji1Kη+ Ji2Kη

JintKη = Z

J{x:I | P}Kη =

{ z ∈ Z | η[x, z] |= P }

Finally, Γ |= i : I is defined as ∀η. η |= Γ . =⇒ JiKη ∈ JIKη.
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3.2.7 Solution: All TL­typing rules are closed under arbitrary substitutions. Con­

sequently all substitutions of TL­typable closed terms yield typable terms. In

particular, S(t1) is TL­typable.

3.2.18 Solution:

1. That t ↑ implies ‖t‖ ↑ follows directly from the Conditional Correctness

Theorem, part 2. Assume now t ↓, that is t terminates. By the Soundness

Theorem t cannot terminate with a stuck state, so t
t
-→
∗
v for some value

v. By Conditional Correctness, part 1, this implies that ‖t‖ -→∗ ‖v‖. By

Lemma 3.2.9, part 1, ‖v‖ is also a value. Since all values are final (easy),

this shows that ‖t‖ ↓.

2. The implication from right to left follows directly from Conditional Cor­

rectness, part 1. As for the converse direction, assume ‖t‖ -→∗ ‖v‖. By

Soundness evaluation of t does not get stuck and by part 1 of the corollary

there exists a TL­value v′ such that t
t
-→
∗
v′. By Conditional Correctness,

part 1, we have ‖t‖ -→∗ ‖v′‖. Since -→ is deterministic and we also have

‖t‖ -→∗ ‖v‖ by assumption, we can conclude that ‖v′‖ = ‖v‖, and we are

done.

3.2.19 Solution: (Sketch) There is a better completion. The two occurrences of tt

can be given distinct labels.

3.4.2 Solution: Both of the two recursive calls would have to specify ρi , ρo as

actual parameters, and so all intermediate arguments and results would end

up in the same two regions; namely the two argument regions supplied to the

function at the outermost level.

3.4.3 Solution: An n­ary region abstraction can be converted into a stack of unary

ones, but one must decide where the intermediate region closures that the se­

mantics require are allocated. The following solution takes care not to cause

any net heap allocation in the translation of an n­ary application:

(λρ1, . . . , ρn.t) at ρ ⇒ (λρ′.(λρ1.· · · (λρn.t) at ρ′ · · ·) at ρ′) at ρ

f [[ρ1, . . . , ρn]]⇒ newρ′.f [[ρ′]] [[ρ1]] · · · [[ρn]]

3.4.4 Solution: When the region abstraction is applied (i.e., each time f is men­

tioned), a closure must be allocated to contain the region parameters and the

free variables of the function body, because the ordinary BL parameter may

not be supplied right away. The parameter ρ′ selects the region in which this

closure will be allocated. It is not part of the TT syntax for letrec because
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this closure allocation is implicit in the letrec construct; instead the original

syntax for applying the region abstraction is

t ::= f[ρ1, . . . , ρk] at ρ
′

which can be expressed as f [[ρ1, . . . , ρk, ρ′]] in RAL.

3.4.5 Solution: ρ is the region where a closure for the region abstraction is allo­

cated. This closure contains the values of the free variables of the lambda ex­

pression. The intention in TT was that this closure would be consulted when

the region abstraction is applied, such that the variables could be moved to

the final closure in ρ′. However, due to the syntactic requirement that the

region abstraction is applied whenever f is mentioned in t1 or t2, the free

variables will actually still be in scope at the application point. Since the body

of the region abstraction is also statically known, nothing actually needs to

be allocated in ρ, and indeed the ML Kit, a practical realization of TT (refer to

Section 3.8), does not allocate this closure. But this was not realized when TT

was first formulated.

3.4.6 Solution: By a simple induction over the derivation of the evaluation rela­

tion, we may prove that if t•
RAL
-→ t′• and t• � t, then there is a t′ such that

t
RAL
-→ t′ and t′• � t′.

Apply this lemma to each step of the reduction of the original t•. In the

case Y = bv, note that bv � t implies bv = t.

3.5.2 Solution: The only interesting issue in the proof is that the substitutions

substitute from sets of variables to another syntactic class (from region vari­

ables to places, for example). Observe, however, that everywhere in the typing

rules something is required to be a type, region, or effect variable (rather than,

say, a place or effect), it occurs in a binding context and so is unaffected by

substitution.

3.5.13 Solution: The reference operations would need a formal semantics, so we

would have to extend the evaluation and typing judgments with stores and

store typings as in Chapter 13 of TAPL. But that would break the lexical scop­

ing of region variables, on which the correct operation of rule (re­Dealloc)

depends critically. So the entire semantic treatment of region allocation and

deallocation needs to be reworked. How to do this can be seen in Calcagno,

Helsen, and Thiemann (2002).

3.6.1 Solution: No. It is typable (if and) only if the input program satisfies our

syntactic restriction on the use of the fix operator, and is typable in (region­

free) F with recursion, such that the type of the entire program is either bool
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or a type variable. If the input program is ill­typed, it can never be region

annotated; a derivation of ∅ ` t :ϕ T can be converted into a derivation of

∅ ` ‖t‖ : ‖T‖ in System F with recursion simply by erasing all of the region­

related syntax. (‖T‖, is of course, T with the region annotations removed, in

a way similar to ‖t‖.) Such an erasure transforms each RTL type rule into

either a well­known F rule or the identity rule that concludes any judgment

from itself.

3.6.3 Solution: The constraints collected during the analysis of that subexpres­

sion did not entail ρ5 being in ϕ at all. It was only when the two sides of the

m application were combined that ρ5 entered the picture. (The point here is

that construction of new must necessarily happen while each subterm is ana­

lyzed; the raw type tree plus constraints does not immediately show where it

is useful to insert new except at the root.)

3.6.4 Solution: Effect polymorphism serves to enforce relations between the effect

parts of different arrow constructions in the polymorphic variant of a type.

In a first­order program, there is at most one arrow in each type, so there is

no need for explicit effect polymorphism.

5.2.1 Solution: The assertion that x has type singleton for value v can be writ­

ten simply as x = v . The singleton type for the value v can be written

as {x | x = v} and correspondingly the assertion can also be written as x :

{x | x = v}

5.2.2 Solution: {x | x : ptr {{y | y = 0} ;int} ∨ x : ptr {{y | y = 1} ;int;int}}.

5.2.3 Solution: We assume that the same listinv formula constructor is used to

specify that the contents of the memory is well­typed. The function specifi­

cation is then:

Pre = r1 : ptr {int;int} ∧ r2 : list int ∧ listinv rM

Post = rR : list int ∧ listinv rM

5.2.4 Solution: The challenge here is to express the sequence property. We can do

that either by adding a new type constructor or simply by using a universal

quantifier.

Pre = listinv rM ∧ ∀i.(0 ≤ i ∧ i < r2)⇒ (r1 + 4∗ i) : ptr {list int}

Post = listinv rM

5.2.5 Solution: We show the solution for the more complicated case when the

array elements are structures. We must add the array S type constructor,
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where S is a structure type. We also add the (sizeof S N) formula to state

that the size of the structure S is N bytes.

In order to handle the sizeof formula constructor we add the following

two rules:

sizeofW 4

sizeof S N

sizeof (W ;S) (N + 4)

By indexing into an array we can obtain pointers to elements, provided that

the index is in the bounds of the array. For the purpose of bounds checking

we must fetch the length of the array from memory and hence we must add

a requirement that the memory contents is well­typed.

A : array S (sizeof S N) 0 ≤ I I < (sel M A) listinvM

(A+ 4+ I ∗N) : ptr {S}

5.3.1 Solution: For the first program fragment the symbolic state at the end is

σ = {ra = b + 1,rb = b,rc = (b + 1) + 2,rd = b + 1}. For the second

program fragment the resulting symbolic state is σ = {r1 = b + 1,r2 =

b,rc = (b + 1) + 2,rd = b + 1}. Notice that the symbolic state is the same,

considering the renaming of registers once we consider the

5.3.2 Solution: With the addition of the new instruction in the first code fragment,

the symbolic state at the end of the block becomes σ = {ra = 3,rb = b,rc =

(b+1)+2,rd = b+1}. The symbolic state of register ra is different from the

symbolic state of the corresponding register (r1) in the second code fragment.

5.3.4 Solution: The key observation is that the symbolic evaluator carries precise

information about the result of the load in line 6 in Figure 5­2. Everytime this

value is used, we have to prove that it has the right type. We have to ensure

that VCGen “forgets” the precise description of the result of the load, and

maintains only the fact that it is a value of type ptr {int}. We do this by

adding an invariant annotation immediately after the load:

...

6 LCons: rt := Mem[rx] ; Load the first data

7 INV rt : ptr {int} ∧ rx : ptr {maybepair;mp_list} ∧ listinv rM

8 ...

When encountering this invariant, the VCGen assumes fresh values for all reg­

isters and assumes that the invariant holds for these values. This effectively

means that the fact sel m1 x1 : ptr {int} is proved only once, when the

invariant is first encountered. Notice also that the invariant must preserve all

useful information about the live registers. For the rx register we know that

it is not equal to zero and has type mp_list, hence it is a pointer to a list cell.
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5.3.5 Solution: We assume that for each function staring at address L in the agent

we have a precondition PreL and a postcondition PostL. These can be speci­

fied by the agent producer using annotations. For example, in JVML they are

specified as types in a special table in the .class file that contains the agent.

Assume also that the set of registers is r1, . . . ,rn and that the callee­save

registers are r1, . . . ,rCS . Unlike in the original symbolic evaluator we must

identify for each return instruction to which function it belongs, and thus

what postcondition to use. This can be done by carrying an additional pa­

rameter in the symbolic evaluator to specify the postcondition to use for the

return instructions. Instead, we are going to assume that return instructions

are annotated with the starting address of the function to which they belong.

We also assume that each start of a function contains an invariant corre­

sponding to the precondition. Now we can extend the symbolic evaluator as

follows:

SE(i, σ) =




. . .

(σ PostL) if Πi = returnL

(σ PreL) ∧ if Πi = call L

∀xCS+1. . . . .xn.(σ ′ PostL)⇒ SE(i + 1, σ ′)

where σ ′ = σ[rCS+1 = xCS+1, . . . ,rn = xn]. Thus a function call first asserts

that the precondition holds, then modifies the symbolic state so that the non

callee­save registers are modified to have arbitrary values. The state σ ′ mod­

els the state after the call. In this state the postcondition is assumed to hold

and the symbolic evaluation continues.

5.3.6 Solution: We extend the symbolic evaluator as follows:

SE(i, σ) =

{
. . .

false if Πi = UNREACHABLE

Notice that indeed we stop the evaluation at that point, but we require that

the agent producer proves that this context is never reachable. The agent

producer can actually produce a proof of false if this program point follows

a function call to a function that never returns and whose postcondition is

false, as is the case with the myexit function in the problem statement. It

is also possible to prove false at a program point following a conditional

branch that can be proved to be always taken.

5.3.7 Solution: We shall consider that each label in the program also acts as a

nullary constructor in the logic, denoting the program counter where it is

placed. We extend the symbolic evaluator to read the annotation that follows

an indirect jump and to require a proof that the address being jumped to
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is equal to one of the declared destinations. Otherwise, the indirect jump is

handled as a conditional branch.

SE(i, σ) =




. . .

((σ e) = L1 ∨ (σ e) = L2) ∧ if Πi = jump at e

((σ e) = L1⇒ SE(L1, σ)) ∧ and Πi+1 = JUMPDEST(L1,L2)

((σ e) = L2⇒ SE(L2, σ))

5.4.1 Solution: We prove here only the soundness of the cons rule. We must

prove the following statement: |=M ∀E.∀W.(E : list W) ∧ (E ≠ 0) ⇒ E :

ptr {W ;list W}. Assuming that the left­hand side of the implication holds,

and using the definition of |=M (see page 200), we derive that (M(E) = W ∧

M(E+4) = listW). Now we can verify the right­hand side of the implication:

|=M E : ptr {W ;list W}.

5.4.6 Solution: Let ρ1 be a state such that |=M ρ1 Pre. We assume that Dom(M) ⊆

Addr and |=M VC. By convention the first instruction in the program (at

program counter 1) is an invariant INV Pre. Let σ1 = {r1 = x1, . . . ,rn = xn}

and τ1 = {x1 = ρ1 r1, . . . , xn = ρ1 rn}. This means that ρ1 = τ1 ◦ σ1. We also

know that SE(1, σ1) = σ1 Pre and therefore we know that |=M τ1 SE(1, σ1).

This allows us to establish that the induction hypothesis holds for the first

instruction: IH(1, ρ1, σ1, τ1).

We can prove by induction on the number of transition steps, that for any

(i, ρ) reachable from the initial state (1, ρ1), there exist σ and τ such that

IH(i, ρ,σ , τ). Furthermore, either i points to a return instruction or else we

can make further progress. The base case follows from the argument above

and the inductive step is proved using Theorem 5.4.4.

5.5.1 Solution:

all (λa : ι.

(imp (hastype a (ptr (seq1 int)))

(addr a)))

5.5.2 Solution: The proof of the predicate ∀a.a : ptr {int} ⇒ addr a is:

u
a : ptr {int}

ptraddr
addr a

impiu

a : ptr {int} ⇒ addr a
allia

∀a.a : ptr {int} ⇒ addr a

The LF representation of this proof is shown below. Notice how the parameter

a and the hypothesis u are properly scoped by using higher­order represen­

tation.
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alli (λa : ι.(imp (hastype a (ptr (seq1 int)))

(addr a)))

(impi (hastype a (ptr (seq1 int)))

(addr a)

(λu : pf (hastype a (ptr (seq1 int)))

(ptraddr a (seq1 int) u)))
In the above representation we used LF constants declared in Figure 5­11

along with the following declaration for ptraddr:

ptraddr : ΠA : ι.ΠS : s.pf (hastype A (ptr S))→ pf (addr A)

6.2.1 Solution: The if direction (s′ = t′ implies sa∗t) follows directly from sym­

metry and transitivity. For the only­if direction, suppose sa∗t. We claim

that s and t have a common reduct (that is, there exists u such that s⇒∗u

and t⇒∗u):

Proof: The proof is by induction on sa∗ t.

Base step:

Suppose sa∗t holds because s⇒t. Then let u be t.

Induction step: (Symmetry)

Suppose sa∗t holds because ta∗s. By induction, t and s have a common

reduct u.

Induction step: (Transitivity)

Suppose sa∗t holds because sa∗u′ and u′a∗t. By induction, s and u′ have

a common reduct s′′, and u′ and t have a common reduct t′′. Thus u′⇒∗s′′

and u′⇒∗t′′, so by confluence there exists u such that s′′⇒∗u and t′′⇒∗u.

Therefore u is a common reduct of s and t. 2

We have shown that s and t have a common reduct u. Observe that s⇒∗s′

and s⇒∗u. By confluence, there exists r such that s′⇒∗r and u⇒∗r. But s′ is

a normal form, so r = s′. Hence u⇒∗s′. Similarly u⇒∗t′. Then, by confluence,

s′ and t′ must have a common reduct, but again they are normal forms so

they must be equal.

6.2.2 Solution: By induction on derivations. We show the case for Q­Ext; the oth­

ers are straightforward. For Q­Ext, choose x so as not to be free in s or t.

By induction, s xa∗ t x. It is easy to show by induction that λx:T1.s xa
∗

λx:T1.t x (by repeatedly using QR­Abs). By QR­Eta, λx:T1.s x ⇒ s and

λx:T1.t x⇒ t. Therefore sa∗ t by symmetry and transitivity.

6.2.3 Solution: Let T and T′ be any two distinct types. Let t be λx:T.(λy:T′.y)x.

By QR­Abs and QR­Beta, t reduces to λx:T.x, and by QR­Eta, t reduces to
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λy:T′.y. These two terms are distinct normal forms, so they have no common

reduct.

6.3.1 Solution: s is λx:Unit.x and t is λx:Unit.unit.

6.6.3 Solution: The logical equivalence x:b ` x is x : b holds but ` x is x : b

does not.

6.6.4 Solution: The logical equivalence ` λx:b.x is λx:b.k : b→b holds, but

y:b ` λx:b.x is λx:b.k : b→b does not.

Proof: We begin by showing the former logical equivalence holds. Suppose

` s is t : b. We wish to show that ` (λx:b.x) s is (λx:b.k) t : b. It is

sufficient to show that: ` (λx:b.x) sa (λx:b.k) t : b. Since ` s is t : b,

we have that ` sa t : b. By inversion s ⇓ s′, t ⇓ t′, and ` s′ ↔ t′ : b. Since

the context is empty, and there exists only one constant, it is easy to verify

that s′ = t′ = k. Therefore ((λx:b.x) s) ⇓ k and ((λx:b.k) t) ⇓ k. The

desired conclusion follows.

Now we show that the latter logical equivalence does not hold. Let s =

t = y. Then certainly y:b ` s is t : b. However, ((λx:b.x) s) ⇓ y and

((λx:b.k) t) ⇓ k, and y and k are not path equivalent. Therefore (λx:b.x) s

and (λx:b.k) t are not algorithmically equivalent and hence not logically

equivalent at b. 2

6.9.2 Solution: By induction on T. The case T = Unit is trivial, and the case T = b

follows from algorithmic transitivity (Lemma 6.5.4).

Suppose T = T1→T2. Then Γ ` s is t : T1→T2 and Γ ` t is u : T1→T2. We

wish to show that Γ ` s is u : T1→T2. Suppose Γ ′ ⊇ Γ and Γ ′ ` s′ is u′ : T1.

Then we wish to show that Γ ′ ` s s′ is u u′ : T2.

By logical symmetry (Lemma 6.9.1), Γ ′ ` u′ is s′ : T1, and then by in­

duction, Γ ′ ` u′ is u′ : T1. By the definition of logical equivalence, we may

deduce Γ ′ ` s s′ is t u′ : T2 and also Γ ′ ` t u′ is u u′ : T2. By induction,

Γ ′ ` s s′ is u u′ : T2.

6.9.10 Solution:

Case T­Const: t = k

T = b

By the Main Lemma, Γ ′ ` k is k : b. Therefore Γ ′ ` γ(k) is δ(k) : b, since k

contains no free variables.

Case Q­Refl:

Immediate by the first clause of the induction hypothesis.
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Case Q­Symm:

Immediate from the induction hypothesis and logical symmetry.

Case Q­Trans:

By logical symmetry, Γ ′ ` δ is γ : Γ , so by logical transitivity, Γ ′ ` δ is δ : Γ .

Therefore, by induction (using γ and δ), Γ ′ ` γ(s) is δ(t) : T, and also

by induction (using δ and δ), Γ ′ ` δ(t) is δ(u) : T. By logical transitivity,

Γ
′ ` γ(s) is δ(u) : T.

Case Q­Abs: s = λx:T1.s2

t = λx:T1.t2

T = T1→T2

We wish to show that Γ ′ ` γ(λx:T1.s2) is δ(λx:T1.t2) : T1→T2. Suppose

Γ ′′ ⊇ Γ ′ and Γ ′′ ` s′ is t′ : T1. We wish to show that Γ ′′ ` (λx:T1.γ(s2))s′ is

(λx:T1.δ(t2))t′ : T2. By logical weak head closure, it is sufficient to show

that Γ ′′ ` [x, s′]γ(s2) is [x, t′]δ(t2) : T2.

By logical monotonicity, Γ ′′ ` γ is δ : Γ . Thus, Γ ′′ ` γ[x , s′] is

δ[x , t′] : (Γ ,x:T1). Therefore, by induction, Γ ′′ ` γ[x , s′](s2) is δ[x ,

t′](t2) : T2, which is equivalent to the desired conclusion.

Case Q­App: s = s1 s2

t = t1 t2

T = T12

By induction, Γ ′ ` γ(s1) is δ(t1) : T1→T2 and Γ ′ ` γ(s2) is δ(t2) : T1.

By the definition of the logical relation, since Γ ′ ⊇ Γ , we may conclude Γ ′ `

γ(s1)γ(s2) is δ(t1)δ(t2) : T2. That is, Γ ′ ` γ(s1 s2) is δ(t1 t2) : T2.

Case Q­Ext: s = s

t = t

T = T1→T2

We wish to show that Γ ′ ` γ(s) is δ(t) : T1→T2. Suppose Γ ′′ ⊇ Γ
′ and

Γ
′′ ` s′ is t′ : T1. We wish to show that Γ ′′ ` γ(s) s′ is δ(t) t′ : T2.

By logical monotonicity, Γ ′′ ` γ is δ : Γ . Thus, Γ ′′ ` γ[x , s′] is δ[x ,

t′] : (Γ ,x:T1). Therefore, by induction, Γ ′′ ` γ[x , s′](s x) is δ[x ,

t′](t x) : T2. That is, Γ ′′ ` γ(s) s′ is δ(t) t′ : T2, as desired.

6.9.12 Solution: By soundness, Γ ` s1 ≡ t1 : T1→T2 and Γ ` s2 ≡ t2 : T1. By Q­App,

Γ ` s1 s2 ≡ t1 t2 : T2. By completeness, Γ ` s1 s2 a t1 t2 : T2.

6.9.13 Solution: The key observation is that the left­ and right­hand sides of the

algorithm do not interact, except insofar as a failure to match in path equiva­

lence allows the algorithm to quit early. That is, except for early termination,

one can trace the execution of the algorithm ignoring the terms either to the
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left or to the right of the arrows. Therefore we can devise a termination metric

that takes each side into account independently.

Therefore, define the metric M(Γ ` sa t : T) to be the size of the deriva­

tion (if it exists) of Γ ` sa s : T plus the size of the derivation (if it exists) of

Γ ` ta t : T. Define the metric M(Γ ` p↔ q : T) similarly. It is straightfor­

ward to show that the metric decreases in each recursive call of the algorithm.

It is also straightforward to show that all normalizations terminate, since the

normalization derivations being sought already exist within the derivations

measured by the metric.

Thus, it remains to show only that the metric is actually defined, that is,

that there exist derivations of Γ ` sa s : T and Γ ` ta t : T. This follows

by the completeness of the algorithm from our assumptions that Γ ` s : T

and Γ ` t : T.

This strategy works precisely because the two sides of the algorithm do

not interact. It fails when the two sides do interact, such as in the algorithm

for full F≤ (TAPL, Chapter 28), wherein bounded universal types on the right­

hand side affect the context, which in turn affects the promotion of variables

on the left­hand side. On the other hand, in the algorithm for kernel F≤, the

bounds on the left­ and right­hand sides are required to be the same, so

the two sides do act independently (although the side being considered does

switch back and forth because of contravariance).

6.9.14 Solution: First, we extend the proofs of the basic algorithmic properties

(symmetry, transitivity, weak head closure, and monotonicity) to deal with

the new algorithm. These proofs are straightforward.

Second, we define logical equivalence as follows:

Γ ` s is t : T if and only if either:

T=Unit,

or T=b and Γ ` sa t : b,

or T=T1→T2 and, for all s′, t′ and all Γ ′ ⊇ Γ ,

if Γ ′ ` s′ is t′ : T1

then Γ ′ ` s s′ is t t′ : T2,

or T=T1×T2 and Γ ` s.1 is t.1 : T1 and

Γ ` s.2 is t.2 : T2.

Third, we extend the proofs of the basic logical properties (symmetry, tran­

sitivity, weak head closure, and monotonicity) to deal with the new definition

of logical equivalence. These proofs are also straightforward.

Fourth, we extend the Main Lemma to account for product types (the other

cases are unchanged):
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Case: T = T1×T2

1. Suppose Γ ` s is t : T1×T2. We wish to show that Γ ` sa t : T1×T2.

The definition of logical equivalence provides that Γ ` s.1 is t.1 : T1,

and so Γ ` s.1 a t.1 : T1 follows by induction. Similarly, Γ ` s.2 a

t.2 : T2. Therefore, Γ ` sa t : T1×T2.

2. Suppose Γ ` p ↔ q : T1×T2. We wish to show that Γ ` p is q : T1×T2.

The algorithm provides that Γ ` p.1 ↔ q.1 : T1, so Γ ` p.1 is q.1 : T1

follows by induction. Similarly, Γ ` p.2 is q.2 : T2. Therefore Γ ` p is

q : T1×T2.

Finally, we extend the proof of the Fundamental Theorem to cover the new

typing and equivalence cases:

Case T­Pair: t = 〈t1, t2〉

T = T1×T2

By induction, Γ ′ ` γ(t1) is δ(t1) : T1, so by logical weak head closure,

Γ
′ ` γ(〈t1,t2〉).1 is δ(〈t1,t2〉).1 : T1. Similarly, Γ ′ ` γ(〈t1,t2〉).2 is

δ(〈t1,t2〉).2 : T2. Therefore Γ ′ ` γ(〈t1,t2〉) is δ(〈t1,t2〉) : T1×T2.

Case T­Proj1: t = t1.1

T = T1

We wish to show that Γ ′ ` γ(t1.1) is δ(t1.1) : T1. By induction, Γ ′ `

γ(t1) is δ(t1) : T1×T2, and the desired follows by the definition of logical

equivalence.

Case T­Proj2:

Similar to the case for T­Proj1.

Case Q­Pair: s = 〈s1, s2〉

t = 〈t1, t2〉

T = T1×T2

By induction, Γ ′ ` γ(s1) is δ(t1) : T1, so by logical weak head closure,

Γ ′ ` γ(〈s1,s2〉).1 is δ(〈t1,t2〉).1 : T1. Similarly, Γ ′ ` γ(〈s1,s2〉).2 is

δ(〈t1,t2〉).2 : T2. Therefore Γ ′ ` γ(〈s1,s2〉) is δ(〈t1,t2〉) : T1×T2.

Case Q­Proj1: s = s1.1

t = t1.1

T = T1

We wish to show that Γ ′ ` γ(s1.1) is δ(t1.1) : T1. By induction, Γ ′ `

γ(s1) is δ(t1) : T1×T2, and the desired follows by the definition of logical

equivalence.

Case Q­Proj2:

Similar to the case for Q­Proj1.
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Case Q­Beta­Prod1: s = 〈s1,s2〉.1

t = t

T = T1

By induction, Γ ′ ` γ(s1) is δ(t) : T1. Therefore, by logical weak head clo­

sure, Γ ′ ` γ(〈s1,s2〉.1) is δ(t) : T1.

Case Q­Beta­Prod2: s = 〈s1,s2〉.2

t = t

T = T2

By induction, Γ ′ ` γ(s2) is δ(t) : T2. Therefore, by logical weak head clo­

sure, Γ ′ ` γ(〈s1,s2〉.2) is δ(t) : T2.

Case Q­Ext­Prod: s = s

t = t

T = T1×T2

We wish to show that Γ ′ ` γ(s) is δ(t) : T1×T2. It suffices to show that

Γ
′ ` γ(s.1) is δ(t.1) : T1 and Γ ′ ` γ(s.2) is δ(t.2) : T2, each of which

follows immediately by induction.

6.9.15 Solution: We must add a case for universal types to the definition of logical

equivalence. The most obvious definition is to quantify over all type argu­

ments and compare the type applications at the corresponding instantiated

type:

Γ ` s is t : ∀X.T if and only if

for all closed types T′, Γ ` s [T′] is t [T′] : [X, T′]T

Unfortunately, this is an invalid definition, because logical equivalence is

defined by induction on types, and there is no guarantee that the type [X ,

T′]T is smaller than ∀X.T.

The problem is tied to the issue of impredicativity (TAPL, §23.10). In both

∀X.T, the domain of the quantified type variable X includes the very type

being defined. This prevents the obvious definition from being well­founded.

For the simple definition attempt given above, the impredicativity prob­

lem is fatal. Sometimes we can save the simple definition by changing the

language to be predicative. However, for an impredicative language, a more

sophisticated definition is required.

The solution to the problem is Girard’s method of candidates (Girard, La­

font, and Taylor, 1989). An explanation of Girard’s method is beyond the

scope of this discussion, but informally the method works as follows: Instead

of quantifying over types, the definition of logical equivalence quantifies over

possible interpretations of types called candidates. Importantly, candidates
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come equipped with their own notion of logical equivalence that can be de­

fined independently (i.e., without reference to the general definition of logical

equivalence). Thus, the definition of logical equivalence may refer to arbitrary

candidates and remain well­founded.

7.4.2 Hint: First prove

〈S1,t1〉 -→ 〈S2,t2〉 ⇒ (∀S)(〈S@S2,t2〉 ↓ ⇒ 〈S@S1,t1〉 ↓)

by considering the different cases for -→. Deduce the ‘if’ part of (7.7) from

this. For the ‘only if’ part, show that

{(S,t) | (∃S1, S2,v) S = S1@S2 & 〈S2,t〉 -→
∗
〈Id,v〉 & 〈S1,v〉 ↓}

is closed under the axiom and rules in Figure 7­2 inductively defining the

termination relation.

7.5.4 Solution: For property (iii), assuming R is compatible, argue by induction on

the derivation of Γ ` t : T that this typing judgment implies that Γ ` t R t :

T holds. For property (v), if R =
⋃
i∈I Ri with I 6= ∅ and each Ri compatible,

first note that by (iii), R is reflexive since it contains at least one relation Ri .

For each of the compatibility properties in Figure 7­4 with a single hypothesis,

it is clear that R has this property because each of the Ri does. For compat­

ibility properties with multiple hypotheses, we can break them down into a

chain of single­hypothesis compatibilities and appeal to the transitivity of R

(which we are assuming). For example consider the compatibility property for

function application. It suffices to show that R satisfies

Γ ` v1 R v′1 : T1→T2 Γ ` v2 : T1

Γ ` v1 v2 R v′1 v2 : T2

(A.1)

and

Γ ` v1 : T1→T2 Γ ` v2 R v′2 : T1

Γ ` v1 v2 R v1 v
′
2 : T2

. (A.2)

For then if Γ ` v1 R v′1 : T1→T2 and Γ ` v2 R v′2 : T1, we get

Γ ` v1 v2 R v′1 v2 : T2 by (A.1), since Γ ` v2 : T1

Γ ` v′1 v2 R v′1 v
′
2 : T2 by (A.2), since Γ ` v′1 : T1→T2.

and hence Γ ` v1 v2 R v′1 v
′
2 : T2 by transitivity. Each of the single­hypothesis

properties (A.1) and (A.2) holds of R because they hold for each Ri : each is

a special case of the compatibility property for function application because

each Ri , being compatible, is also reflexive by (iii).
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7.5.10 Solution: Consider the frame stacks

S
def
= Id ◦ (x.(fun f(x′:Bool) = if x′ then true else f x′)x)

ST
def
= Id ◦ (x.(fun f(x′:T) = true)x)

Note that ∅ ` S : Bool Ç Bool and ∅ ` ST : T Ç Bool. It is not hard to see

for all ∅ ` b : Bool that

S[b]↓ iff 〈Id,b〉 -→∗ 〈Id,true〉 (A.3)

and for all ∅ ` t : T that

t ↓ iff 〈Id, ST[t]〉 -→
∗
〈Id,true〉 (A.4)

From (A.3) and the fact that =ctx is a congruence (so that∅ ` b =ctx b
′ : Bool

implies ∅ ` S[b] =ctx S[b′] : Bool) it follows that =ctx is true­adequate;

hence it is contained in =true
ctx . Similarly, (A.4) and the fact that =true

ctx is a

congruence implies that it is adequate and hence contained in =ctx.

7.6.7 Solution: Since (−)s t is inflationary we have r ⊆ r s t ; and since r only relates

values, this implies r ⊆ r s t v . Then since (−)s t is monotone, we have r s t ⊆

r s t v s t . Conversely, since (r ′)v ⊆ r ′ for any r ′, we have r s t v ⊆ r s t ; and then

since (−)s t is monotone and idempotent, r s t v s t ⊆ r s t s t = r s t .

7.6.14 Hint: The proof of (7.26) is just like the proof of (7.21), using the following

property of the termination relation:

(〈S,v.l〉 ↓a 〈S′,v′.l〉 ↓) iff (〈S ◦ (x.x.l),v〉 ↓a 〈S′ ◦ (x.x.l),v′〉 ↓).

Similarly, the proof of (7.27) follows from:

(〈S,v T〉 ↓a 〈S′,v′ T′〉 ↓) iff (〈S ◦ (x.x T),v〉 ↓a 〈S′ ◦ (x.x T′),v′〉 ↓).

7.6.18 Solution: It suffices to show

(∀n = 0,1, . . .) (Fn,F
′
n) ∈ fun(r1, r2) (A.5)

where Fn and F′n are the unwindings associated with F and F′ respectively, as

in Theorem 7.4.4. For if (A.5) holds, then using the fact that (−)s t is inflation­

ary

(Fn,F
′
n) ∈ fun(r1, r2) ⊆ fun(r1, r2)

s t

for each n; so by the Admissibility property in Lemma 7.6.8 we have (F,F′) ∈

fun(r1, r2)s t . Thus (F,F′) ∈ fun(r1, r2)s t v = fun(r1, r2) by Lemma 7.6.13,

since (r2)s t = r2. (A.5) is proved by induction on n:
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Base case n = 0: By definition of F0, 〈S,F0 v1〉 ↓ does not hold for any S ∈

Stack(T2) and v1 ∈ Val(T1); similarly for F′0. Hence for all (v1,v
′
1) ∈ (r1)

v ,

(F0 v1,F
′
0 v

′
1) ∈ s

t for any s ∈ SRel(T2,T
′
2) and hence in particular for

s = (r2)s . So (F0 v1,F
′
0 v

′
1) ∈ (r2)

s t = r2 for all (v1,v
′
1) ∈ (r1)

v . Therefore

(F0,F
′
0) ∈ fun(r1, r2).

Induction step: Suppose (Fn,F′n) ∈ fun(r1, r2). Then for any (v1,v
′
1) ∈ (r1)

v ,

from (7.29) we have

([f, Fn][x, v1]t, [f, F′n][x, v′1]t
′) ∈ r2.

By definition of Fn+1 and Corollary 7.5.8 we have ∅ ` Fn+1v1 =ctx [f ,

Fn][x , v1]t; and similarly, ∅ ` F′n+1v
′
1 =ctx [f , F′n][x , v′1]t

′. So

since r2 is closed, we can apply the Equivalence­respecting property in

Lemma 7.6.8 to conclude that (Fn+1v1,F
′
n+1v

′
1) ∈ r2. Since this holds for

any (v1,v
′
1) ∈ (r1)

v , we have (Fn+1,F
′
n+1) ∈ fun(r1, r2).

7.6.19 Solution: To show (v,v′) ∈ {li=ri i∈1..n} we must show (v.li ,v′.li) ∈ ri for

each i ∈ 1..n. Since each ri is closed, this is equivalent to showing (v.li ,v′.li) ∈

(ri)s t , i.e. that 〈S,v.li〉 ↓ a 〈S′,v′.li〉 ↓ holds for all (S, S′) in (ri)s . But by

definition of v, 〈S,v.li〉 ↓ a 〈S,vi〉 ↓; and similarly for v′. So it suffices to

show 〈S,vi〉 ↓ a 〈S′,v′i〉; and this holds because by assumption (vi ,v
′
i) ∈ ri

and (S, S′) ∈ (ri)s .

7.6.20 Solution: To show (λX.v, λX.v′) ∈ λr.R(r)we have to show for each T1,T
′
1 ∈

Typ and r ∈ TRel(T1,T
′
1) that ((λX.v)T,(λX.v′)T′) ∈ R(r) . Since each

R(r) is closed, this is equivalent to showing ((λX.v)T,(λX.v′)T′) ∈ R(r)s t ,

i.e. that 〈S,(λX.v)T〉 ↓ a 〈S′,(λX.v′)T′〉 ↓ holds for all (S, S′) ∈ R(r)s. But

〈S,(λX.v)T〉 ↓a 〈S, [X , T1]v〉 ↓; and similarly for v′. So it suffices to show

〈S, [X , T1]v〉 ↓ a 〈S, [X , T′1]v
′〉 ↓; and this holds because by assumption

([X, T1]v, [X, T1]v) ∈ R(r) and (S, S′) ∈ R(r)s.

7.6.21 Hint: To show (if v then t1 else t2,if v′ then t′1 else t
′
2) ∈ r = (r)

s t it

suffices to show for all (S, S′) ∈ (r)s that

〈S,if v then t1 else t2〉 ↓a 〈S′,if v′ then t′1 else t′2〉 ↓

or equivalently that

〈S ◦ (x.if x then t1 else t2),v〉 ↓a

〈S′ ◦ (x.if x then t′1 else t′2),v
′〉 ↓.

Do this by proving that

(S ◦ (x.if x then t1 else t2), S
′ ◦ (x.if x then t′1 else t′2) ∈ (IdBool)

s.
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7.6.22 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′ and

the definition of {∃r1,R(r1)} (Figure 7­5) that

(S ◦ (y.let {*X,x}=y in t), S′ ◦ (y.let {*X,x}=y in t′))

is in {∃r1,R(r1)}s . Hence if (v,v′) ∈ {∃r1,R(r1)}s t v ⊆ ({∃r1,R(r1)}s)t , then

〈S ◦ (y.let {*X,x}=y in t),v〉 ↓ a 〈S′ ◦ (y.let {*X,x}=y in t′),v′〉 ↓

and so 〈S,let {*X,x}=v in t〉 ↓ a 〈S,let {*X,x}=v′ in t′〉 ↓. Since this is

true for all (S, S′) ∈ (r2)s , we deduce that

(let {*X,x}=v in t,let {*X,x}=v in t) ∈ (r2)
s t = r2.

7.6.23 Solution: For any (S, S′) ∈ (r2)s it follows from the assumptions on t,t′

that (S ◦ (x.t2), S′ ◦ (x.t
′
2)) ∈ (r1)

v s . Since ((r1)v s)t = r1, if (t1,t
′
1) ∈ r1 then

we get 〈S ◦ (x.t2),t1〉 ↓a 〈S′ ◦ (x.t′2),t
′
1〉 ↓, and hence that

〈S,let x=t1 in t2〉 ↓ a 〈S′,let x=t′1 in t′2〉 ↓.

Since this holds for all (S, S′) ∈ (r2)s , we deduce that

(let x=t1 in t2,let x=t′1 in t′2) ∈ (r2)
s t = r2.

7.7.10 Solution: Since N has no closed values, neither does {∃X,N}. On the other

hand

val v = λY.fun f(x:∀X.N→Y) = (f x):Y

is a closed value of type ∀Y.(∀X.N→Y)→Y. If i and j were to exist with

the stated properties we could use them to construct from v a closed value

of type {∃X,N}, which is impossible. (For i(j v) and v are ciu­equivalent

(Theorem 7.5.7); so since v ↓, we also have i(j v) ↓. Hence by Exercise 7.4.2,

〈Id,j v〉 -→∗ 〈Id,v′〉 for some v′, which is a closed value of type {∃X,N}, by

Exercise 7.4.3.)

8.2.1 Solution: As of this writing, the question of how far nominal module sys­

tems can be pushed is wide open. A step in this direction was recently taken

by Odersky, Cremet, Rockl, and Zenger (2003).

8.5.3 Solution: Define m1 to be the module

module m1 = mod {

type X = Int

val c = 0

val f = succ

}
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and define m2 to be the module

module m2 = mod {

type X = Bool

val c = true

val f = not

}.

Define M to be the expression if flip() then m1 else m2, where the function

flip:unit→bool alternates between true and false on each call. Now con­

sider the term t = M.f(M.c). This is well­typed, because M.f : M.X→M.X and

M.c : M.X. But evaluation of t goes wrong by applying either succ to a value

of type Bool or not to a value of type Int.

8.5.4 Solution: In a call­by­name setting, variables may no longer be considered

determinate, because they stand for unevaluated module expressions. There­

fore we cannot “determinize” an indeterminate module expression by binding

it to a variable, with the result that there is no way to use its type components.

8.5.5 Solution: Consider the following declarations:

signature I = sig { type X val x : X }

module m = mod { type X = Int val x = 5 }

module n = mod { type X = Bool val x = true }

Then the term (λx : (m:>I).X ...)((m:>I).x) is well typed, but the term

(λx : (n:>I).X ...)((m:>I).x) is not.

8.5.6 Solution: For example, we might hash the same value in the two different

hash tables, producing two hash codes that, because they have the same type,

could be compared and (surprisingly) found to be different. Conversely, we

could get unlucky and hash two different values to the same hash code.

8.5.7 Solution: Consider the signature

signature INTDICT =

sig {

type T

val insert : T × Int → T

val lookup : T × Int → Bool

}

If M and N both implement INTDICT as a list of integers, but M requires that the

list be sorted while N does not, then interchanging N.lookup with M.lookup

could cause an inserted key not to be found.
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8.5.9 Solution: The signature

signature J = sig {

type X : *→*

type Y : * }

is a super­signature of I that avoids m. For each type A the signature

signature KA = sig {

type X : *→*

type Y = X(A) }

is also a super­signature of I that avoids m. But the signature J is a proper

super­signature of every signature KA, so it cannot be principal, and yet the

signatures KA and KB are incomparable whenever A and B are inequivalent

types.

For an example in System F≤, see Ghelli and Pierce (1992).

8.7.1 Solution: Because there would be no way to obtain instances of the com­

pletely abstract type (dict1:>Dict).X, and hence no way to ever put any­

thing into a dictionary.

8.7.2 Solution:

sig { CD1, ..., CDn } where m = M =

sig { CD1 where m=M, ..., CDn where m=M }

type X where m = M = type X

type X = T where m = M = type X = T

val x : T where m = M = val x : T

module m : I where m = M = module m : (I is M)

module n : I where m = M = module n : I (if m 6= n)

sig { CD1, ..., CDn } is M = sig { CD1 is M, ..., CDn is M }

type X is M = type X = M.X

type X = T is M = type X = T

val x : T is M = val x : T

module m : I is M = module m : (I is M.m)

8.8.1 Solution: A functor signature is an signature describing module­level func­

tions; a family of signatures is itself a function from modules to signatures.

The body of a functor signature is a family of signatures indexed by the

functor parameter. Or, in the slogan coined by Sannella, Sokolowski, and

Tarlecki (1992), parameterized (program specification) 6= (parameterized pro­

gram) specification.
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In a sense, in the case of first­order module systems, there is no real need

for functor signatures per se, because there are no variable functors. We could

just say that a family of modules has a family of signatures, each module in­

stance determining a corresponding signature instance. But for higher­order

or separate compilation purposes we need a notation meaning “F is a functor

implementing signature I.”

8.8.2 Solution: Yes, but we need to make sure that the dictFun functor includes

its parameter as a submodule of its result:

module dictFun =

λk:ordered.

mod {

module key = k

... (as before) ...

}

signature DictFun =

Πk:Ordered.

sig {

module key = k

type Dict : *→*

val new : ∀V. Dict V

val add : ∀V. Dict V → key.X → V → Dict V

val member : ∀V. Dict V → key.X → Bool

val lookup : ∀V. Dict V → key.X → V

}

Or, more concisely, DictFun = Πm:K. (D where k = m).

8.8.4 Solution: The compose8 functor will require 9 type parameters; compose16

will require 17. Note that, in this series of examples, the part of each functor

that is doing useful work is the same size as as its predecessor, while the

amount of “nuisance parameterization” increases exponentially.

8.8.5 Solution: Let HashFun be a generative hash table functor. If, by subsump­

tion, HashFun could be regarded as applicative, then two instances would

determine the same abstract type, permitting confusion of distinct hash ta­

bles.

8.10.1 Solution: A module in our sense corresponds to a “.c” file, which con­

tains procedure and function definitions, type definitions, and declarations

of global variables. Procedures, functions, and variables may be made private

by declaring them static; otherwise they are presumed to be exported. An
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signature in our sense corresponds to a “.h” file, which contains procedure

and function headers, type definitions, and declarations of global variables.

The compiled versions of modules correspond to “.o” files, which are linked

(e.g., using the ld command in Unix) into complete executable programs.

8.10.2 Solution: A rigorous comparison of Java’s modularity features with the ones

described in this chapter is actually quite difficult. Here are some observa­

tions, however.

A class in Java is a medium­scale program structuring device, and is often

a unit of abstraction, maintaining interesting invariants among its fields and

allowing access to the fields only through its own methods. In these ways, a

class is like a module. However, Java classes do not have type components.

Conversely, class instantiation (in the sense of saying new to a class to get

an object) is something that we don’t do with modules. Also, classes in Java

are not units of compilation—it is not generally possible to compile a class

separately from other classes that it refers to (e.g., because mutually recursive

references are allowed).

An object in Java is also something like a module, providing a collection

of named components; like classes, however, objects do not contain type

components1 —just methods (functions) and fields (reference cells holding

pointers to objects).

Both Java signatures and abstract classes (all of whose methods are virtual)

are something like signatures in the sense of this chapter, since they describe

the components of an object without providing implementations.

Signatures and abstract classes can be used to achieve separate compila­

tion in Java, but in a somewhat different style from the separate compilation

discussed here. One defines an signature I, then defines one class that im­

plements I and, separately, another that expects to be given an object imple­

menting I. These two classes can be compiled separately from each other.

Java’s packages are also useful in structuring and decomposing the names­

paces of large software systems, but they do not have many of the characteris­

tics of modules in our sense: packages are not units of separate compilation,

and there is no notion of an “signature of a package.” This suggests that

packages could be turned into something more like real modules by equip­

ping them with signatures. This extension has been explored by Bauer, Appel,

and Felten (1999).

9.1.4 Solution: The premise Γ ` T2 :: * in T­TLet ensures that the local variable X

appears only within the scope where it is defined and not in T2. Omitting the

1. . . . except in experimental extensions with virtual types (Thorup, 1997; Torgersen, 1998;

Igarashi and Pierce, 1999, etc.).
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side condition would allow not just ` (let X=Nat in λy:X.y+1) : Nat→Nat

but also ` (let X=Nat in λy:X.y+1) : X→Nat. Thus, code such as

(let X=Nat in λy:X.y+1) (let X=Nat×Nat in {5,4})

would type check because the function could be given type X→Nat and the

argument could be given type X. At run­time, however, this code would try to

increment a pair, and hence ought to be rejected.

9.1.5 Solution: If primitive definitions were added to the simply­typed lambda

calculus, we would probably want to allow type variables to appear in types

(requiring an extension of the syntax of types) and to allow type definitions to

appear in the context. In contrast to λlet, though, every type variable would

have a definition (and be of kind *, since the language lacks type operators).

These definitions would induce a context­sensitive type equivalence relation

based purely on definition expansion; thus adding the Fω rule T­Eq would be

appropriate.

Given the lack of type operators, a further extension might be to allow

parameterized type definitions with fixed arity, i.e., to allow definitions such

as X(Y1,Y2) = Y1→Y2 in the context and then to allow fully­applied uses of X

such as X(Nat,Bool→Bool) to appear in types. This leads to the possibility

of ill­formed types supplying the wrong number of arguments (e.g., X by itself

or X(Nat)) and so might require a type well­formedness judgment.

9.1.8 Solution: This logical relation satisfies the same properties as that in Chap­

ter 6 (being a monotone partial equivalence relation and closed under weak

head­expansion), for the same reasons.

A.1 Lemma:

1. If Γ ` S is T :: K and Γ ′ ⊇ Γ then Γ ′ ` S is T :: K

2. If Γ ` S is T :: K then Γ ` T is S :: K.

3. If Γ ` S is T :: K and Γ ` T is U :: K then Γ ` S is U :: K.

4. If Γ ` S is T :: K and Γ ñ̀ S′ ;∗ S and Γ ñ̀ T′ ;∗ T then Γ ` S′ is T′ :: K.

A corresponding version of the Main Lemma holds as well. It is no longer

true that all paths are weak head­normal, so we make this an explicit require­

ment in part 2:

A.2 Lemma [Main Lemma]: 1. If Γ ` S is T :: K then Γ ñ̀ Sa T :: K.

2. If Γ ñ̀ S↔ T :: K where S and T are paths (a variable applied zero or more

times) with Γ ñ̀ S ⇓ S and Γ ñ̀ T ⇓ T, then Γ ` S is T :: K. 2
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Proof: By simultaneous induction on K. 2

Because the definition of logical equivalence of substitutions has changed,

we need to recheck that it is an equivalence relation.

A.3 Lemma:

1. If Γ ′ ` γ is δ :: Γ then Γ ′ ` δ is γ :: Γ .

2. If Γ ′ ` γ is γ′ :: Γ and Γ ′ ` γ′ is γ′′ :: Γ then Γ ′ ` γ is γ′′ :: Γ . 2

Proof: 1. Follows from Lemma A.1(2).

2. Assume X::K ∈ Γ . Then by Lemma A.1(3) Γ ′ ` γ(X) is γ′′(X) :: K just as

before.

Alternatively, assume X::K=T ∈ Γ . Then among other consequences we

know that Γ ′ ` γ(X) is γ′(X) :: K, Γ ′ ` γ(T) is γ′(X) :: K, Γ ′ ` γ′(X) is

γ′′(X) :: K, and Γ ′ ` γ′(X) is γ′′(T) :: K. By Lemma A.1(2,3), then, Γ ′ `

γ(X) is γ′′(X) :: K, Γ ′ ` γ(T) is γ′′(X) :: K and Γ ′ ` γ(X) is γ′′(T) :: K

as required. 2

Finally, we have the Fundamental Theorem:

A.4 Theorem [Fundamental Theorem]:

1. If Γ ` T :: K and Γ ′ ` γ is δ :: Γ then Γ ′ ` γ(T) is δ(T) : K.

2. If Γ ` S ≡ T :: K and Γ ′ ` γ is δ :: Γ then Γ ′ ` γ(S) is δ(T) : K. 2

Proof: We proceed by induction on derivations. Most of the cases are exactly

the same (modulo the transition from a lambda­calculus of terms to a lambda­

calculus of types) as the corresponding proof in Chapter 6. The cases for the

new rules Q­Def and K­Def follow directly from our assumptions for γ and

δ. The cases for K­All and Q­All are similar to each other; we sketch just the

former.

Case Q­All: Γ ` ∀X::K1.T2 :: * because Γ ,X::K1 ` T2 :: *.

Using the Main Lemma we have that Γ ′,X::K1 ` γ[X,X] is δ[X,X] : Γ ,X::K1.

By the inductive hypothesis we have Γ ′,X::K1 ` (γ[X,X])T2 is (δ[X,X])T2 :

*. By the Main Lemma, Γ ′,X::K1 ` (γ[X,X])T2 a (δ[X,X])T2 : *. Thus Γ ′ `

γ(∀X::K1.T2) ↔ δ(∀X::K1.T2) : *. Universally­quantified types are weak

head normal, so by the Main Lemma one last time, Γ ′ ` γ(∀X::K1.T2) is

δ(∀X::K1.T2) : *. 2
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Because the definition for logical equivalence of substitutions has become

more involved, the fact that the identity substitution is logically related to

itself is no longer an immediate corollary of the Main Lemma.

A.5 Lemma: Let γ be the identity substitution. If Γ ` � then Γ ` γ is γ :: Γ . 2

Proof: By induction on the proof of Γ ` �.

Case CTX­Type: Γ = Γ ′,x:T with Γ ′ ` �.

By the inductive hypothesis.

Case CTX­Kind: Γ = Γ ′,X::K with Γ ′ ` �.

By the inductive hypothesis we have that Γ ′ ` γ is γ :: Γ ′. By monotonicity,

Γ ` γ is γ :: Γ ′. Finally, by the Main Lemma we have Γ ` X is X :: K, so

Γ ` γ is γ :: Γ .

Case CTX­Def: Γ = Γ ′,X::K=T with Γ ′ ` T :: K.

By the inductive hypothesis and monotonicity we again have Γ ` γ is γ :: Γ ′.

By the Fundamental Theorem, Γ ` T is T :: K. By weak head expansion,

then, Γ ` X is T :: K, Γ ` T is X :: K, and Γ ` X is X :: K. Therefore,

Γ ` γ is γ :: Γ . 2

A.6 Corollary [Completeness]: If Γ ` S :: K and Γ ` T :: K and Γ ` S ≡ T :: K

then Γ ñ̀ Sa T :: K. 2

Proof: Apply the Fundamental Theorem with the identity substitution. 2

A.7 Corollary [Termination]: If Γ ` S :: K and Γ ` T :: K then Γ ñ̀ Sa T ::

K is decidable (i.e., deterministic proof search must always terminate with

success or failure). 2

Proof: By completeness we know that Γ ñ̀ Sa S :: K and that Γ ñ̀ Ta T ::

K. We can show by induction on the former algorithm that the comparison of

S and T must terminate. 2

9.1.9 Solution: As one example, the equivalence

X :: (*⇒*⇒*) = (λY::(*⇒*). Y Nat) ` X(λZ::*.Z) ≡ X(λZ::*.Nat)

is provable, because both sides are provably equivalent to Nat. However,

given the same definition for X we have X(λZ::*.Nat) 6≡ X(λZ::*.Bool).

Pfenning and Schürmann (1998) give a syntactic criterion for detecting a

collection of injective type operators that yield equivalent results only when

given equivalent arguments, and hence can be treated specially by an imple­

mentation.
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9.2.1 Solution: An equivalent most­precise interface would be

Πm:(Σm’:L*M. L!m’M).

(Σm”:L*=!m.1×!m.1M. L!m.1×!m.1M),

which is a subinterface of infinitely many interfaces, including

Πm:(Σm’:L*M. L!m’M). (Σm”:L*M. L!m”M)

and

Πm:(Σm’:L*=NatM. LNatM). (Σm”:L*=Nat×NatM. LNat×NatM).

9.2.2 Solution: If Nat <: Top then we could allow LNatM <: LTopM in analogy with

depth subtyping for records. In contrast, the interfaces L*=NatM and L*=TopM

must be unrelated, because a module containing the type Nat is not a module

containing the type Top nor vice versa. To see what goes wrong, assume that

L*=NatM <: L*=TopM and let M be the module LNatM. Then M : L*=NatM, which

by subsumption would further yield M : L*=TopM. At this point, we could then

show that !M ≡ Nat and !M ≡ Top and hence that Nat ≡ Top.

9.2.3 Solution: The module defined by

(λm : Σm:L*M.L!mM). L L λX::*.(!m.1)::*⇒*M, !m.2 M

(L LNat::*M, L3::NatM M :> Σm:L*M.L!mM)

or, using syntactic sugar,

let m = L LNat::*M, L3::NatM M :> Σm:L*M.L!mM

in

L L λX::*.(!m.1)::*⇒*M, !m.2 M

satisfies the interface Σm′:L*⇒*M. L(!m′)(Nat)M and more generally the in­

terface Σm′:L*⇒*M. L(!m′)(T)M for any type T, but it satisfies no interface

that is a subinterface of all of these.

9.3.1 Solution: If Nat <: Top then we should expect S(Nat) and S(Top) to be

kinds unrelated in the subkinding hierarchy. All types of kind S(Nat) are

provably equivalent to Nat, and hence should not be provably equivalent to

Top. See also Exercise A.

9.3.7 Solution: We again proceed by induction on the size of K. Assume Γ ` S ::

S(T :: K) and Γ ` T :: K.

Case: K = *, so S(T::K) = S(T).

Then Γ ` S ≡ T :: S(T) by Rule Q­SElim, and Γ ` S(T) <: * by SK­Forget, so

Γ ` S ≡ T :: * by Rule Q­Sub.
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Case: K = S(U), so S(T::K) = S(T).

By Rule Q­SElim we have Γ ` S ≡ T :: S(S). By Proposition 9.3.4(5), inversion

of K­Sing, and SK­Forget we have Γ ` S(S) <: *, so Γ ` S ≡ T :: * by

Q­Sub. Since Γ ` T :: S(U), by similar arguments we have Γ ` T ≡ U :: *

and so Γ ` S ≡ U :: * and Γ ` S(S) <: S(U). Therefore by Q­Sub we have

Γ ` S ≡ T :: S(U) as required.

Case: K = ΠX::K1.K2, so S(T::K) = ΠX::K1.S(T X :: K2).

By Proposition 9.3.4(5) and inversion we have Γ , X::K1 ` �, so by Proposi­

tion 9.3.2(1) and K­App, Γ , X::K1 ` S X :: S(T X :: K2). By the same reasoning

we have Γ , X::K1 ` T X :: K2. By the inductive hypothesis, Γ , X::K1 ` S X ≡

T X :: K2. Therefore, by Rule Q­Ext we have Γ ` S ≡ T :: ΠX::K1.K2.

Case: K = ΣX::K1.K2, so S(T::K) = S(π1 T :: K1)×S(π2 T :: [X, π1 T]K2)

By K­Fst and K­Snd we have Γ ` π1 S :: S(π1 T :: K1) and Γ ` π2 S ::

S(π2 T :: [X , π1 T]K2). Again by K­Fst and K­Snd we have Γ ` π1 T :: K1

and Γ ` π2 T :: [X , π1 T]K2, so by the inductive hypothesis we have we

have Γ ` π1 S ≡ π1 T :: K1 and and Γ ` π1 S ≡ π2 T :: [X , π1 T]K2). By

Rule Q­Pair­Ext, therefore, we have Γ ` S ≡ T :: ΣX::K1.K2 as desired.

By the definitions in Figure 9­9 it is possible for S(T::K) to be a well­

formed kind even if T does not satisfy kind K; for example, take T = Nat and

K = S(Nat→Nat). Then we have Γ ` Nat :: S(Nat::S(Nat→Nat)) but not

Γ ` Nat ≡ Nat :: S(Nat→Nat).

9.3.8 Solution: Using the properties of Fact 9.3.6, we can show the admissibility

of Q­Beta­Fst.

Γ ` T1 :: K1

Γ ` T1 :: S(T1 :: K1) Γ ` T2 :: S(T1 :: K2)

Γ ` {T1,T2} :: S(T1 :: K1)×K2

Γ ` π1 {T1,T2} :: S(T1 :: K1)

Γ ` π1 {T1,T2} ≡ T1 :: K1

The proof for Q­Beta­Snd is exactly analogous, and a similar idea works for

Q­AppAbs:

Γ , X::K11 ` T12 :: K12

Γ , X::K11 ` T12 :: S(T12 :: K12)

Γ ` (λX::K11.T12) :: (ΠX::K11.S(T12 :: K12)) Γ ` T2 :: K12

Γ ` (λX::K11.T12)T2 :: S([X, T2]T12 :: [X, T2]K12)

Γ ` (λX::K11.T12)T2 ≡ [X, T2]T12 :: [X, T2]K12
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9.3.9 Solution: Let Γ1
def
= Y::(S(Nat)⇒*)⇒*. Then

Y::(S(Nat)⇒*)⇒* ñ̀ Y(λX::*.X)a Y(λX::*.Nat) :: *

because

• Γ1 ñ̀ Y(λX::*.X) ⇓ Y(λX::*.X)

• Γ1 ñ̀ Y(λX::*.Nat) ⇓ Y(λX::*.Nat)

• Γ1 ñ̀ Y(λX::*.X)↔ Y(λX::*.X) ↑ *, because

– Γ1 ñ̀ Y↔ Y ↑ (S(Nat)⇒*)⇒*, and

– Γ1 ñ̀ λX::*.Xa λX::*.Nat : S(Nat)⇒*, because

∗ Γ1,Z::S(Nat) ñ̀ (λX::*.X)Za (λX::*.Nat)Z :: *, because

· Γ1,Z::S(Nat) ñ̀ (λX::*.X)Z ⇓ Nat

· Γ1,Z::S(Nat) ñ̀ (λX::*.Nat)Z ⇓ Nat

· Γ1,Z::S(Nat) ñ̀ Nat↔ Nat ↑ *.

The analogous proof for Y::(*⇒*)⇒* ñ̀ Y(λX::*.X)a Y(λX::*.Nat) ::

* fails because it requires proving Y::(*⇒*)⇒*, Z::* ñ̀ (λX::*.X)Z a

(λX::*.Nat)Z :: * and hence that Y::(*⇒*)⇒*, Z::* ñ̀ Z↔ Nat ↑ *.

9.3.11 Solution: The compile­time part is

λXm::*×K0. {(π1 Xm)×(π1 Xm), S0}

and the run­time part is

λXm::*×K0. λxm:T0×(π1 Xm). {t0, {xm.2, xm.2}}.

These perform the same computations as the intuitive phase­splittings, but

take some useless arguments (e.g., the second argument of the type pair Xm

and the first argument of the pair xm) and return some useless results (S0

and t0).

9.3.14 Solution:

1. Terms containing local modules can be translated as

|let m=M in t| := let Xm = |M|c in

let xm = |M|r in

|t|.

Both let forms can be expressed as derived forms in λS, or one could

extend the language to make them primitive.
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2. Adding a conditional module expression destroys the phase distinction,

because the types in a conditional module, e.g.

if ... then LNat::*M else LUnit::*M,

depends on the run­time value of the test.

10.1.22 Solution: Within Damas and Milner’s type system, we have:

dm­Let

dm­Var
z1 : X ` z1 : X z1 : X;z2 : X ` z2 : X

dm­Var

dm­Abs
z1 : X ` let z2 = z1 in z2 : X

� ` λz1.let z2 = z1 in z2 : X→ X

Note that, because X occurs free within the environment z1 : X, it is impossible

to apply dm­Gen to the judgment z1 : X ` z1 : X in a nontrivial way. For this

reason, z2 cannot receive the type scheme ∀X.X, and the whole expression

cannot receive type X→ Y, where X and Y are distinct.

10.1.23 Solution: It is straightforward to prove that the identity function has type

int→ int:

Γ0;z : int ` z : int
dm­Var

Γ0 ` λz.z : int→ int
dm­Abs

In fact, nothing in this type derivation depends on the choice of int as the type

of z. Thus, we may just as well use a type variable X instead. Furthermore,

after forming the arrow type X → X, we may employ dm­Gen to quantify

universally over X, since X no longer appears in the environment.

dm­Gen

dm­Abs

dm­Var
Γ0;z : X ` z : X

Γ0 ` λz.z : X→ X X 6∈ ftv(Γ0)

Γ0 ` λz.z : ∀X.X→ X

It is worth noting that, although the type derivation employs an arbitrary

type variable X, the final typing judgment has no free type variables. It is thus

independent of the choice of X. In the following, we refer to the above type

derivation as ∆0.

Next, we prove that the successor function has type int → int under the

initial environment Γ0. We write Γ1 for Γ0;z : int, and make uses of dm­Var

implicit.

dm­App

dm­App
Γ1 ` +̂ : int→ int→ int Γ1 ` z : int

Γ1 ` +̂ z : int→ int Γ1 ` 1̂ : int

dm­Abs
Γ1 ` z +̂ 1̂ : int

Γ0 ` λz.z +̂ 1̂ : int→ int
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In the following, we refer to the above type derivation as ∆1. We may now

build a derivation for the third typing judgment. We write Γ2 for Γ0;f : int →

int.

∆1

Γ2 ` f : int→ int Γ2 ` 2̂ : int

Γ2 ` f 2̂ : int
dm­App

Γ0 ` let f = λz.z +̂ 1̂ in f 2̂ : int
dm­Let

To derive the fourth typing judgment, we re­use ∆0, which proves that the

identity function has polymorphic type ∀X.X → X. We write Γ3 for Γ0;f :

∀X.X → X. By dm­Var and dm­Inst, we have both Γ3 ` f : (int → int) →

(int→ int) and Γ3 ` f : int→ int. Thus, we may build the following derivation:

∆0

dm­App

dm­App

Γ3 ` f : (int→ int)→ (int→ int)

Γ3 ` f : int→ int

Γ3 ` f f : int→ int Γ3 ` 2̂ : int

Γ3 ` f f 2̂ : int

Γ0 ` let f = λz.z in f f 2̂ : int
dm­Let

The first and third judgments are valid in the simply­typed λ­calculus, be­

cause they use neither dm­Gen nor dm­Inst, and use dm­Let only to introduce

the monomorphic binding f : int→ int into the environment. The second judg­

ment, of course, is not: because it involves a nontrivial type scheme, it is not

even a well­formed judgment in the simply­typed λ­calculus. The fourth judg­

ment is well­formed, but not derivable, in the simply­typed λ­calculus. This is

because f is used at two incompatible types, namely (int → int) → (int→ int)

and int→ int, inside the expression f f 2̂. Both of these types are instances of

∀X.X→ X, the type scheme assigned to f in the environment Γ3.

By inspection of the rules, a derivation of Γ0 ` 1̂ : T must begin with an

instance of dm­Var, of the form Γ0 ` 1̂ : int. It may be followed by an arbitrary

number of instances of the sequence (dm­Gen; dm­Inst), turning int into a

type scheme of the form∀X̄.int, then back to int. Thus, T must be int. Because

int is not an arrow type, there follows that the application 1̂ 2̂ cannot be

well­typed under Γ0. In fact, because this expression is stuck, it cannot be

well­typed in a sound type system.

The expression λf.(f f) is ill­typed in the simply­typed λ­calculus, because

no type T may coincide with a type of the form T → T′: indeed, T would be

a subterm of itself. In DM, this expression is ill­typed as well, but the proof

of this fact is slightly more complex. One must point out that, because f

is λ­bound, it must be assigned a type T (as opposed to a type scheme) in

the environment. Furthermore, one must note that dm­Gen is not applicable

(except in a trivial way) to the judgment Γ0;f : T ` f : T, because all of the
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type variables in the type T appear free in the environment Γ0;f : T. Once these

points are made, the proof is the same as in the simply­typed λ­calculus.

It is important to note that the above argument crucially relies on the fact

that f is λ­bound and must be assigned a type, as opposed to a type scheme.

Indeed, we have proved earlier in this exercise that the self­application f f is

well­typed when f is let­bound and is assigned the type scheme ∀X.X → X.

For the same reason, λf.(f f) is well­typed in an implicitly­typed variant of

System F. It also relies on the fact that types are finite: indeed, λf.(f f) is well­

typed in an extension of the simply­typed λ­calculus with recursive types,

where the equation T = T→ T′ has a solution.

Later, we will develop a type inference algorithm for ML­the­type­system

and prove that it is correct and complete. Then, to prove that a term is ill­

typed, it will be sufficient to simulate a run of the algorithm and to check

that it reports a failure.

10.3.2 Solution: Our hypotheses are C, Γ ` t : ∀X̄[D].T (1) and C ð [~X , ~T]D (2).

We may also assume, w.l.o.g., X̄ # ftv(C, Γ , ~T) (3). By hmx­Inst and (1), we have

C∧D, Γ ` t : T, which by Lemma 10.3.1 yields C∧D∧~X = ~T, Γ ` t : T (4). Now,

we claim that ~X = ~T ð T ≤ [~X , ~T]T (5) holds; the proof appears in the next

paragraph. Applying hmx­Sub to (4) and to (5), we obtain C ∧D ∧ ~X = ~T, Γ `

t : [~X , ~T]T (6). By C­Eq and by (2), we have C ∧ ~X = ~T ð D, so (6) may be

written C∧~X = ~T, Γ ` t : [~X, ~T]T (7). Last, (3) implies X̄ # ftv(Γ , [~X, ~T]T) (8).

Applying rule hmx­Exists to (7) and (8), we get ∃X̄.(C ∧ ~X = ~T), Γ ` t : [~X ,
~T]T (9). By C­NameEq and by (3), ∃X̄.(C ∧ ~X = ~T) is equivalent to C, hence (9)

is the goal C, Γ ` t : [~X, ~T]T.

There now remains to establish (5). One possible proof method is to unfold

the definition of ð and reason by structural induction on T. Here is another,

axiomatic approach. Let Z be fresh for T, ~X, and ~T. By reflexivity of subtyping

and by C­ExTrans, we have true ≡ T ≤ T ≡ ∃Z.(T ≤ Z ∧ Z ≤ T), which by

congruence of ≡ and by C­ExAnd implies ~X = ~T ≡ ∃Z.(T ≤ Z ∧ ~X = ~T ∧ Z ≤

T) (10). Furthermore, by C­Eq, we have (~X = ~T ∧ Z ≤ T) ≡ (~X = ~T ∧ Z ≤ [~X ,
~T]T) ð (Z ≤ [~X , ~T]T) (11). Combining (10) and (11) yields ~X = ~T ð ∃Z.(T ≤

Z∧ Z ≤ [~X, ~T]T), which by C­ExTrans may be read ~X = ~T ð T ≤ [~X, ~T]T.

10.3.3 Solution: The simplest possible derivation of true, � ` λz.z : int → int is

syntax­directed. It closely resembles the Damas­Milner derivation given in

Exercise 10.1.23.

true,z : int ` z : int
hmx­Var

true, � ` λz.z : int→ int
hmx­Abs

As in Exercise 10.1.23, we may use a type variable X instead of the type int,
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then employ hmx­Gen to quantify universally over X.

true,z : X ` z : X
hmx­Var

true, � ` λz.z : X→ X
hmx­Abs

X # ftv(true, �)

true, � ` λz.z : ∀X[true].X→ X
hmx­Gen

The validity of this instance of hmx­Gen relies on the equivalence true∧true ≡

true and on the fact that judgments are identified up to equivalence of their

constraint assumptions.

If we now wish to instantiate X with int, we may use hmx­Inst’ as follows:

true, � ` λz.z : ∀X[true].X→ X true ð [X, int]true

true, � ` λz.z : int→ int
hmx­Inst’

This is not, strictly speaking, an HM(X) derivation, since hmx­Inst’ is not

part of the rules of Figure 10­7. However, since the proof of Lemma 10.3.1

and the solution of Exercise 10.3.2 are constructive, it is possible to exhibit

the HM(X) derivation that underlies it. We find:

Y = int,z : X ` z : X
hmx­Var

Y = int, � ` λz.z : X→ X
hmx­Abs

Y = int, � ` λz.z : ∀X.X→ X
hmx­Gen

Y = int, � ` λz.z : Y→ Y
hmx­Inst

Y = int ð Y→ Y ≤ int→ int

Y = int, � ` λz.z : int→ int
hmx­Sub

∃Y.(Y = int), � ` λz.z : int→ int
hmx­Exists

Since ∃Y.(Y = int) is equivalent to true, the conclusion is indeed the desired

judgment.

10.4.1 Solution: Let X 6∈ ftv(Γ) (1). Assume that there exist a satisfiable constraint

C and a type T such that C, Γ ` t : T (2) holds. Thanks to (1), we find that,

up to a renaming of C and T, we may further assume X 6∈ ftv(C,T) (3). Then,

applying Lemma 10.3.1 to (2), we obtain C ∧ T = X, Γ ` t : T, which by hmx­

Sub yields C∧T = X, Γ ` t : X (4). Furthermore, by (3) and C­NameEq, we have

∃X.(C ∧ T = X) ≡ C. Because C is satisfiable, this implies that C ∧ T = X is

satisfiable as well. As a result, we have found a satisfiable constraint C′ such

that C′, Γ ` t : X holds.

Now, assume Γ is closed and X is arbitrary. Then, (1) holds, so the previous

paragraph proves that, if t is well­typed within Γ , then there exists a satisfi­

able constraint C′ such that C′, Γ ` t : X holds. By the completeness property,
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we must then have C′ ð JΓ ` t : XK. Since C′ is satisfiable, this implies that

JΓ ` t : XK is satisfiable as well. Conversely, if JΓ ` t : XK is satisfiable, then,

by the soundness property, t is well­typed within Γ .

10.7.1 Solution: We have

let Γ0 in Jc t1 . . . tn : T′K

≡ let Γ0 in ∃Z1 . . .Zn.(
∧n
i=1Jti : ZiK∧ c � Z1 → . . .→ Zn → T′) (1)

≡ let Γ0 in ∃Z1 . . .ZnX̄.(
∧n
i=1Jti : ZiK

∧ T1 → . . .→ Tn → T ≤ Z1 → . . .→ Zn → T′)

(2)

≡ let Γ0 in ∃X̄.(
∧n
i=1Jti : TiK∧ T ≤ T′) (3)

where (1) is by definition of constraint generation; (2) is by C­InId; (3) is by

C­Arrow, C­ExAnd, and by Lemma 10.4.6.

10.7.2 Solution: We must first ensure that R­Add respects v (Definition 10.5.4).

Since the rule is pure, it is sufficient to establish that let Γ0 in Jn̂1 +̂ n̂2 : TK

entails let Γ0 in Jn̂1 + n2 : TK. In fact, we have

let Γ0 in Jn̂1 +̂ n̂2 : TK

≡ let Γ0 in (Jn̂1 : intK∧ Jn̂2 : intK∧ int ≤ T) (1)

≡ let Γ0 in (int ≤ int∧ int ≤ int∧ int ≤ T) (2)

≡ int ≤ T (3)

≡ let Γ0 in Jn̂1 + n2 : TK (4)

where (1) and (2) are by Exercise 10.7.1; (3) is by C­In* and by reflexivity of

subtyping; (4) is by Exercise 10.7.1 again.

Second, we must check that if the configuration c v1 . . . vk/µ (where k ≥ 0)

is well­typed, then either it is reducible, or c v1 . . . vk is a value.

We begin by checking that every value that is well­typed with type int is of

the form n̂. Indeed, suppose that let Γ0; refM in Jv : intK is satisfiable. Then, v

cannot be a program variable, for a well­typed value must be closed. v cannot

be a memory location m, for otherwise refM(m) ≤ int would be satisfiable—

but the type constructors ref and int are incompatible. v cannot be +̂ or +̂ v′,

for otherwise int→ int→ int ≤ int or int→ int ≤ int would be satisfiable—but

the type constructors → and int are incompatible. Similarly, v cannot be a

λ­abstraction. Thus, v must be of the form n̂, for it is the only case left.

Next, we note that, according to the constraint generation rules, if the

configuration c v1 . . . vk/µ is well­typed, then a constraint of the form

let Γ0; refM in (c � X1 → . . . → Xk → T∧ Jv1 : X1K∧ . . .∧ Jvk : XkK) is satisfiable.

We now reason by cases on c.

◦ Case c is n̂. Then, Γ0(c) is int. Because the type constructors int and →

are incompatible with each other, this implies k = 0. Since n̂ is a constructor,

the expression is a value.
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◦ Case c is +̂. We may assume k ≥ 2, because otherwise the expression is

a value. Then, Γ0(c) is int → int → int, so, by C­Arrow, the above constraint

entails let Γ0; ref M in (X1 ≤ int ∧ X2 ≤ int ∧ Jv1 : X1K ∧ Jv2 : X2K), which, by

Lemma 10.4.5, entails let Γ0; ref M in (Jv1 : intK ∧ Jv2 : intK). Thus, v1 and

v2 are well­typed with type int. By the remark above, they must be integer

literals n̂1 and n̂2. As a result, the configuration is reducible by R­Add.

10.7.5 Solution: We must first ensure that R­Ref, R­Deref and R­Assign respect v

(Definition 10.5.4).

◦ Case R­Ref. The reduction is ref v/� -→m/(m , v), wherem 6∈ fpi(v) (1).

Let T be an arbitrary type. According to Definition 10.5.4, the goal is to show

that there exist a set of type variables Ȳ and a store type M′ such that

Ȳ # ftv(T) and ftv(M′) ⊆ Ȳ and dom(M′) = {m} and let Γ0 in Jref v : TK

entails ∃Ȳ.let Γ0; refM′ in Jm/(m , v) : T/M′K. Now, we have

let Γ0 in Jref v : TK

≡ ∃Y.let Γ0 in (ref Y ≤ T∧ Jv : YK) (2)

≡ ∃Y.let Γ0; refM′ in (m � T∧ Jv :M′(m)K) (3)

≡ ∃Y.let Γ0; refM′ in Jm/(m , v) : T/M′K (4)

where (2) is by Exercise 10.7.1 and by C­InEx; (3) assumes M′ is defined as

m , Y, and follows from (1), C­InId and C­In*; and (4) is by definition of

constraint generation.

◦ Case R­Deref. The reduction is !m/(m , v) -→ v/(m , v). Let T be an

arbitrary type and let M be a store type of domain {m}. We have

let Γ0; refM in J!m/(m , v) : T/MK

≡ let Γ0; refM in ∃Y.(refM(m) ≤ ref Y∧ Y ≤ T∧ Jv : M(m)K) (1)

≡ let Γ0; refM in ∃Y.(M(m) = Y∧ Y ≤ T∧ Jv : M(m)K) (2)

≡ let Γ0; refM in (M(m) ≤ T∧ Jv :M(m)K) (3)

ð let Γ0; refM in (Jv : TK∧ Jv :M(m)K) (4)

≡ let Γ0; refM in Jv/(m , v) : T/MK (5)

where (1) is by Exercise 10.7.1 and by C­InId; (2) follows from C­ExTrans and

from the fact that ref is an invariant type constructor; (3) is by C­NameEq;

(4) is by Lemma 10.4.5 and C­Dup; and (5) is again by definition of constraint

generation.

◦ Case R­Assign. The reduction is m := v/(m , v0) -→ v/(m , v). Let T
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be an arbitrary type and let M be a store type of domain {m}. We have

let Γ0; refM in Jm := v/(m , v0) : T/MK

ð let Γ0; refM in Jm := v : TK (1)

≡ let Γ0; refM in ∃Z.(refM(m) ≤ ref Z∧ Jv : ZK∧ Z ≤ T) (2)

≡ let Γ0; refM in ∃Z.(M(m) = Z∧ Z ≤ T∧ Jv : ZK) (3)

≡ let Γ0; refM in (M(m) ≤ T∧ Jv : M(m)K) (4)

ð let Γ0; refM in Jv/(m , v) : T/MK (5)

where (1) is by definition of constraint generation; (2) is by Exercise 10.7.1

and C­InId; (3) follows from the fact that ref is an invariant type constructor;

(4) is by C­NameEq; and (5) is obtained as in the previous case.

Second, we must check that if the configuration c v1 . . . vk/µ (where k ≥ 0)

is well­typed, then either it is reducible, or c v1 . . . vk is a value. We only

give a sketch of this proof; see the solution to Exercise 10.7.2 for details of a

similar proof.

We begin by checking that every value that is well­typed with a type of the

form ref T is a memory location. This assertion relies on the fact that the type

constructor ref is isolated.

Next, we note that, according to the constraint generation rules, if the

configuration c v1 . . . vk/µ is well­typed, then a constraint of the form

let Γ0; refM in (c � X1 → . . . → Xk → T∧ Jv1 : X1K∧ . . .∧ Jvk : XkK) is satisfiable.

We now reason by cases on c.

◦ Case c is ref. If k = 0, then the expression is a value; otherwise, it is

reducible by R­Ref.

◦ Case c is !. We may assume k ≥ 1; otherwise the expression is a value.

By definition of Γ0(!), the above constraint entails let Γ0; ref M in ∃Y.(ref Y →

Y ≤ X1 → . . . → Xk → T ∧ Jv1 : X1K), which, by C­Arrow, Lemma 10.4.5, and

C­InEx, entails ∃Y.let Γ0; ref M in Jv1 : ref YK. Thus, v1 is well­typed with a

type of the form ref Y. By the remark above, v1 must be a memory location

m. Furthermore, because every well­typed configuration is closed, m must

be a member of dom(µ). As a result, the configuration ref v1 . . . vk/µ is

reducible by R­Deref.

◦ Case c is :=. We may assume k ≥ 2, because otherwise the expression is a

value. As above, we check that v1 must be a memory location and a member

of dom(µ). Thus, the configuration is reducible by R­Assign.

10.8.2 Solution: The record access operation ·.〈`b〉 may be given the type scheme

∀Xb.{`b : Xb} → Xb. However, this type scheme isn’t satisfactory, because it

allows accessing `b only in records where `a and `c are undefined. The type

scheme ∀XaXb.{`a : Xa;`b : Xb} → Xb is also a valid type scheme for ·.〈`b〉,
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but allows accessing `b only in records where `a is defined and `c is not. To

sum up, a satisfactory description of ·.〈`b〉 requires a whole family of type

schemes, none of which is principal (more general than the others). A similar

problem arises with record extension 〈· with `b = ·〉.

A potential solution is to equip record types with a subtyping relationship,

so that (say) both {`a : Ta;`b : Tb} and {`a : Ta;`b : Tb;`c : Tc} are subtypes

of {`b : Tb}. Then, ∀Xb.{`b : Xb} → Xb becomes a satisfactory type scheme for

the record access operation ·.〈`b〉. Indeed, the operation is now applicable

to any record that admits a type of the form {`b : Tb}, that is, thanks to

subtyping, to any record where `b is defined, regardless of which other fields

are defined.

However, this is only half a solution, because there still is a problem with

record extension. The type scheme ∀Xb.{`b : Xb} → {`b : Xb} is valid, and

makes record extension applicable to any record where `b is defined, which

is good. The trouble is with its return type: it states that only `b may be

safely assumed to be defined in the new record. In other words, it causes

static information about all fields other than `b to be lost. Addressing this

dramatic loss of precision is one of the key motivations for introducing rows.

10.8.5 Solution: We let the reader check that X must have kind ?.Type and Y must

have kind ?.Row({`}). The type with all superscripts made explicit is

X→Type
Π (`?,Row(�) : intType ; (Y→Row({`}) ∂?,Row({`})X)).

In this case, because the type constructor Π occurs on the right­hand side

of the toplevel arrow, it is possible to guess that the type must have kind

?.Type. There are cases where it is not possible to guess the kind of a type,

because it may have several kinds; consider, for instance, ∂int.

10.8.27 Solution: For the sake of generality, we perform the proof in the presence of

subtyping, that is, we do not assume that subtyping is interpreted as equality.

We formulate some hypotheses about the interpretation of subtyping: the

type constructors (` : · ; ·), ∂, and Π must be covariant; the type constructors

→ and Π must be isolated.

We begin with a preliminary fact: if the domain of V is {`1, . . . , `n}, where

`1 < . . . < `n, then the constraint let Γ0 in J{V;v} : TK is equivalent to

let Γ0 in ∃Z1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK∧Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ T).

We let the reader check this fact using the constraint generation rules, the

definition of Γ0 and rule C­InId, and the above covariance hypotheses. We

note that, by C­Row­LL, the above constraint is invariant under a permuta­

tion of the labels `1, . . . , `n, so the above fact still holds when the hypothesis

`1 < . . . < `n is removed.
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We now prove that rules R­Update, R­Access­1, and R­Access­2 enjoy sub­

ject reduction (Definition 10.5.4). Because the store is not involved, the goal

is to establish that let Γ0 in Jt : TK entails let Γ0 in Jt′ : TK, where t is the redex

and t′ is the reduct.

◦ Case R­Update. We have:

let Γ0 in J{{V;v} with ` = v′} : TK

≡ let Γ0 in ∃XX′Y.(J{V;v} : Π (` : X ; Y)K∧ Jv′ : X′K∧Π (` : X′ ; Y) ≤ T) (1)

≡ let Γ0 in ∃XX′YZ1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ Π (` : X ; Y)

∧ Jv′ : X′K∧Π (` : X′ ; Y) ≤ T)

(2)

where (1) is by Exercise 10.7.1, and (2) follows from the preliminary fact and

from C­ExAnd, provided {`1, . . . , `n} is the domain of V. We now distinguish

two subcases:

Subcase ` ∈ dom(V). We may assume, w.l.o.g., that ` is `1. Then, by our

covariance hypotheses, the subconstraint in the second line of (2) entails

(`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ Y, which in turn entails Π (`1 : X′;`2 : Z2; . . . ;`n :

Zn; ∂Z) ≤ Π (` : X′ ; Y). By transitivity of subtyping, the subconstraint in the

second and third lines of (2) entails Π (`1 : X′;`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ T. By

this remark and by C­Ex*, (2) entails

let Γ0 in ∃X′Z2 . . .ZnZ.(Jv′ : X′K∧
∧n
i=2JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : X′;`2 : Z2; . . . ;`n : Zn; ∂Z) ≤ T)

(3)

which by our preliminary fact is precisely let Γ0 in J{V[` , v′];v} : TK.

Subcase ` ∉ dom(V). By C­Row­DL and C­Row­LL, the term (`1 : Z1; . . . ;`n :

Zn; ∂Z) may be replaced with (` : Z;`1 : Z1; . . . ;`n : Zn; ∂Z). Thus, reasoning as

in the previous subcase, we find that (2) entails

let Γ0 in ∃X′Z1 . . .ZnZ.(Jv′ : X′K∧
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : X′;`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ T)

(4)

which by our preliminary fact is precisely let Γ0 in J{V[` , v′];v} : TK.

◦ Cases R­Access­1, R­Access­2. We have:

let Γ0 in J{V;v}.{`} : TK

≡ let Γ0 in ∃XY.(J{V;v} : Π (` : X ; Y)K∧ X ≤ T) (1)

≡ let Γ0 in ∃XYZ1 . . .ZnZ.(
∧n
i=1JV(`i) : ZiK∧ Jv : ZK

∧ Π (`1 : Z1; . . . ;`n : Zn; ∂Z) ≤ Π (` : X ; Y)

∧ X ≤ T)

(2)

where (1) is by Exercise 10.7.1, and (2) follows from the preliminary fact and

from C­ExAnd, provided {`1, . . . , `n} is the domain of V. We now distinguish

two subcases:
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Subcase ` ∈ dom(V), i.e., (R­Access­1). We may assume, w.l.o.g., that ` is

`1. Then, by our covariance hypotheses, the subconstraint in the second line

of (2) entails Z1 ≤ X. By transitivity of subtyping, by Lemma 10.4.5, and by

C­Ex*, we find that (2) entails let Γ0 in JV(`) : TK.

Subcase ` ∉ dom(V), i.e., (R­Access­2). By C­Row­DL and C­Row­LL, the

term (`1 : Z1; . . . ;`n : Zn; ∂Z) may be replaced with (` : Z;`1 : Z1; . . . ;`n :

Zn; ∂Z). Thus, reasoning as in the previous subcase, we find that (2) entails

let Γ0 in Jv : TK.

Before attacking the proof of the progress property, let us briefly check that

every value v that is well­typed with type Π T must be a record value, that is,

must be of the form {V;w}. Indeed, assume that let Γ0; ref M in Jv : Π TK

is satisfiable. Then, v cannot be a program variable, for a well­typed value

must be closed. Furthermore, v cannot be a memory location m, because

ref M(m) ≤ Π T is unsatisfiable: indeed, the type constructors ref and Π

are incompatible (recall that Π is isolated). Similarly, v cannot be a partially

applied constant or a λ­abstraction, because T′ → T′′ ≤ Π T is unsatisfiable.

Thus, v must be a fully applied constructor. Since the only constructors in

the language are the record constructors {}L, v must be a record value. (If

there were other constructors in the language, they could be ruled out as

well, provided their return types are incompatible with Π.)

We must now prove that if the configuration c v1 . . . vk/µ is is well­typed,

then either it is reducible, or c v1 . . . vk is a value. By the well­typedness hy­

pothesis, a constraint of the form let Γ0; refM in Jc v1 . . . vk : TK is satisfiable.

◦ Case c is {}L. If k is less than or equal to n + 1, where n is the cardinal

of L, then c v1 . . . vk is a value. Otherwise, unfolding the above constraint,

we find that it cannot be satisfiable, because Π and → are incompatible; this

yields a contradiction.

◦ Case c is {· with ` = ·}. Analogous to the next case.

◦ Case c is ·.{`}. If k = 0, then c v1 . . . vk is a value. Assume k ≥ 1. Then,

the constraint let Γ0; ref M in Jc v1 : TK is satisfiable. By Exercise 10.7.1, this

implies that let Γ0; refM in Jv1 : Π (` : X ; Y)K is satisfiable. Thus, v1 must be a

record value, and the configuration is reducible by R­Access­1 or R­Access­2.

10.8.33 Solution: To make extension strict, it suffices to restrict its binding in the

initial environment Γ0, as follows:

〈· with ` = ·〉 : ∀XY.Π (` : abs ; Y)→ X→ Π (` : pre X ; Y).

The new binding, which is less general than the former, requires the field `

to be absent in the input record. The operational semantics need not be mod­

ified, since strict extension coincides with free extension when it is defined.
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Defining the operational semantics of (free) restriction is left to the reader.

Its binding in the initial environment should be:

· \ 〈`〉 : ∀XY.Π (` : X ; Y)→ Π (` : abs ; Y)

In principle, there is no need to guess this binding: it may be discovered

through the encoding of finite records in terms of full records (10.8.32). Strict

restriction, which requires the field to be present in the input record, may be

assigned the following type scheme:

· \ 〈`〉 : ∀XY.Π (` : pre X ; Y)→ Π (` : abs ; Y)

10.8.34 Solution: The informal sentence “supplying a record with more fields in a

context where a record with fewer fields is expected” may be understood as

“providing an argument of type Π (` : pre T ; T′) to a function whose domain

type is Π (` : abs ; T′),” or, more generally, as “writing a program whose

well­typedness requires some constraint of the form Π (` : pre T ; T′) ≤ Π

(` : abs ; T′) to be satisfiable.” Now, in a nonstructural subtyping order where

pre à abs holds, such a constraint is equivalent to true. On the opposite, if

subtyping is interpreted as equality, then such a constraint is equivalent to

false. In other words, it is the law pre T ≤ abs ≡ true that gives rise to width

subtyping.

It is worth drawing a comparison with the way width subtyping is defined in

type systems that do not have rows. In such type systems, a record type is of

the form {`1 : T1; . . . ;`n : Tn}. Let us forget about the types T1, . . . ,Tn, because

they describe the contents of fields, not their presence, and are thus orthog­

onal to the issue at hand. Then, a record type is a set {`1, . . . , `n}, and width

subtyping is obtained by letting subtyping coincide with (the reverse of) set

containment. In a type system that exploits rows, on the other hand, a record

type is a total mapping from row labels to either pre or abs. (Because we are

ignoring T1, . . . ,Tn, let us temporarily imagine that pre is a nullary type con­

structor.) The above record type is then written {`1 : pre; . . . ;`n : pre; ∂abs}.

In other words, a set is now encoded as its characteristic function. Width sub­

typing is obtained by letting pre à abs and by lifting this ordering, pointwise,

to rows (which corresponds to our convention that rows are covariant).
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0CFA, 101

« “quick check” exercise, xii

«« easy exercise, xii

««« moderate exercise, xii

«««« challenging exercise, xii

3 exercise without solution, xii

A­normal form, 253

abbreviations, see type definitions

abstract types, 245–289, see also mod­

ules, 454

access control with linear types, 3

adequacy, 277

admissible property, 259

affine types, see substructural types

Agda, 66

ALF, 68, 69

Alfa, 66

algebraic data types and type inference,

453–458

algorithmic type checking, see also un­

decidability

for the calculus of constructions,

66

for LF, 56–60, 62–63

for linear lambda­calculus, 11–14

aliasing, see also syntactic control of

interference

and typed assembly language, 156

alias types, see typed assembly language

applicative bisimilarity, 288

arrays

and typed assembly language, 170–

171

in linear type systems, 24–28

AUTOMATH, 86, 384

avoidance problem, see signatures

Barendregt cube, see lambda cube

behavioral type systems, 105

bisimilarity, 288

bunched logic, see substructural log­

ics

bunched types, see substructural types

C, 43, 90, 106, 133, 343

C#, 142

Calculus of Capabilities, 134

Calculus of Constructions, 64–71, 86

with dependent sum types, 69–71

Calculus of Inductive Constructions,

66–69

Caml, 389

capability types and typed assembly

language, 175

Cayenne, 74, 305

CC, see Calculus of Constructions

CIC, see Calculus of Inductive Construc­

tions

ciu­equivalence, 264, 288

Clean, 43, 389

CLI, see Common Language Infrastruc­

ture
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closing substitution, 263

closure analysis, 100

closures in TAL, 168–170

CLU, 343

coherence, see modules

Common Language Infrastructure, 139,

142, 178

compilation, separate, see modules

compilation, type­preserving, 141

compiler optimizations

enabled by affine and relevant types,

39–40

enabled by linear types, 19

computational λ­calculus, 105

concatenation of records, see type in­

ference

constraints, see also type inference

for type inference, 407–422

generation, 429–434

solving, 438–450

containment rules, see substructural

types

context

evaluation, 256

context splitting, see substructural types

contextual equivalence, 249, 261–266

vs. bisimilarity, 288

continuation­passing style and regions,

132

contraction, see structural properties

control flow analysis, 100

control flow safety, see typed assem­

bly language

Coq, 66, 67, 86, 175, 384

cryptographic authentication infrastruc­

ture, see proof­carrying code

Curry­Howard correspondence

and dependent types, 48–49

and linear logic, 41

cut­off compilation, 303

Cyclone, 43, 90, 132–134, 174

Damas–Milner type system, 399–406

relation with HM(X), 428–429

data types and type inference, 453–

458

decidability, see undecidability

definitional equality, see equivalence

checking

definitions, see type definitions

delta­reduction, 395

delta­reduction of type definitions, 354

Dependent ML, 74–82

dependent types, 45–86, see also LF,

calculus of constructions, calcu­

lus of inductive constructions

and typed assembly language, 171–

172

decidable type checking for restricted

systems, 75

higher­order abstract syntax and,

49, 206

implementation, 83–85

indexed types, 75

products, 46

semantics, 86

sums, 61–63, 69–71

sums vs. existentials (weak sums),

70

type inference, 82

undecidability of type checking, 74–

75

with substructural types, 43

dependently vs. statically typed lan­

guages, 305

determinate module, 363

DML, see Dependent ML

dot notation for existential types, 308

ECC, see Extended Calculus of Construc­

tions

Edinburgh Logical Framework, see LF

effect type systems, 89–90, 102–123,

see also regions

applications, 87

and interference analysis, 105

polymorphism, 114

and protocol verification, 105

region inference, 89–90
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and soundness of value flow anal­

ysis, 104

with substructural types, 43

Tofte–Talpin type system, 89, 101,

114–123

value restriction and polymorphism,

123

effects, 390

equirecursive types, 454, 459

equivalence, see contextual equivalence,

cui­equivalence

equivalence checking, 223–244

definitional equality, 54

for LF, 53–54

erasure

in region­based analysis, 111–114

in value flow analysis, 93–97

evaluation context, 256

evaluation frame, 257

exchange, see structural properties

exercises, difficulty ratings, xii

existential types, see also abstract types

in typed assembly language, 168

vs. Sigma types, 70

vs. signatures, 307, 308

in typed assembly language, 167

Extended Calculus of Constructions, 70

extensionality principle, 225, 249, 250,

252, 279

external name, see modules

external references between modules,

294

families of modules, see modules

families of signatures, see signatures

fibered signatures, see signatures

Finitary PCF, 90

first­class modules, see modules

foundational proof­carrying code (FPCC),

see proof­carrying code

frame

evaluation, 257

functors, see modules

fundamental property, see logical re­

lations

Galois connection, 267

garbage collection, see memory man­

agement

generalization of a type scheme, 402–

404

generic programming, 345

Glasgow Haskell Compiler, 39, 43

Haskell, 43, 74, 334, 342, 344, 389

Herbrand universe, 411

hiding, see abstract types, modules

higher­order abstract syntax in depen­

dent type systems, 49, 206

higher­order modules, see modules

HM(X), see type inference

Hope, 343

Howe’s method, 288

implicit syntax, see type inference and

dependent types

incremental compilation, see modules

indexed types, see dependent types

inference, see type inference

information hiding, see abstract types,

modules

instantiation of a type scheme, 402–

404, 407, 408

interfaces, see signatures

interference, see aliasing

interference analysis via effect type sys­

tems, 105

internal name, see modules

isorecursive types, 289, 454, 458, 459

Java, 90, 141, 142, 187, 300, 303, 305,

343

Java Virtual Machine, 139, 142, 178,

189

judgments­as­types, see LF

Kripke logical relation, 237

lambda cube, 71–73, 86

language­based security, see proof­carrying

code, typed assembly language
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LCF, 389

LEGO, 66, 70, 85, 86

LF, 49–63, 86, 175

algorithmic type checking, 56–60,

62–63

with dependent sum types, 61–63

implicit, in proof­carrying code sys­

tems, 211–214

Linear, 42

in proof­carrying code systems, 205–

214

linear lambda­calculus, 6–30

algorithmic type checking, 11–14

and arrays, 24–28

polymorphic, 20–24

with reference counting, 28–30

Linear LF, 42

linear logic, see substructural logics

linear types, see substructural types

linking, see modules

Lisp, 343

logical equivalence, 234

Logical Frameworks, see LF

logical relations, 223–289

fundamental property, 239–243, 274

history, 243–244

Kripke, 237

monotonicity, 235–237

operationally based, 266

and “recursive language features”,

289

manifest types, see type definitions

memory management, see also regions

with linear types, 7, 14

with linear types and regions, 42,

132

reference counting, 28–30, 41

reuse, 111

stack discipline, 30, 89, 99, 157

with substructural types, 4

and typed assembly language, 174

memory safety, see typed assembly lan­

guage

Microsoft Common Language Infras­

tructure, see Common Language

Infrastructure

mixin modules, 343

ML, 141, 142, 389–489

meanings of the term, 389

ML Kit, 90, 123, 128–130, 133

ML module system, see modules

ML type inference, see type inference

mobile code, see proof­carrying code,

typed assembly language

Modula­2 and Modula­3, 343

modules, see also signatures

abstract type components, 307–317

applicative vs. generative functors,

336–338

coherence, 327–333

determinacy, 312–315

in existing programming languages,

341–343

external references between, 294

families of, 324–338

first­class, 312, 338–339

functors, 324–338

functors and determinacy, 336–338

hierarchies, 317–320

higher­order, 339–340

internal vs. external names, 296, 317–

320

linking, 303–304

mixin modules, 343

ML module system, 341–342

phase distinction, 305–307

pragmatics of functors, 333–336

recursive, 341

separate and incremental compila­

tion, 302–303

static vs. dynamic equivalence, 340

units, 343

monad, 105

monotonicity property of logical rela­

tions, 271

nominal vs. structural signature match­

ing, 299



Index 571

nonstructural subtyping, 412

normalize­and­compare algorithm for

equivalence checking, 225

NuPrl, 54

object encodings in TAL, 168–170

Objective Caml, 342, 343

objects, type inference for, 459

occurs check, 439

opaque interface, 358

operational extensionality, see exten­

sionality principle

operational reasoning using types, 245–

289

ordered lambda­calculus, 30–36, 42

ordered logic, see substructural logics

ordered types, see substructural types

parameterized modules, see modules

parameterized signatures, see signatures

parametricity, see relational parametric­

ity

parametric polymorphism, see polymor­

phism

Pascal, 343

PCC, see proof­carrying code

Pebble, 74, 305

phantom types, 455

phase distinction, see also modules

and dependent types, 75

phase splitting, see type definitions

Pi types, see dependent types

pointers, shared vs. unique, 157

polymorphic record update, 460

polymorphic recursion, 154, 452

polymorphic variants, 483–486

polymorphism, see also type inference

and regions, 110

in effect type systems, 114

in linear type systems, 20–24

and regions, 108

in typed assembly language, 146

in value flow analysis, 101

pre­ and postconditions, in proof­carrying

code, 184

principal signature, see signatures

principal type schemes, 405, 430

principal typings, 430

privacy, guaranteeing with PCC, 216–

218

program analysis, type­based, 87–135

program equivalence, see typed oper­

ational reasoning

programming languages

C, 43, 90, 106, 133, 343

C#, 142

Caml, 389

Cayenne, 74, 305

Clean, 43, 389

CLU, 343

Cyclone, 43, 90, 132–134, 174

Dependent ML, 75–82

Haskell, 43, 74, 334, 342, 344, 389

Hope, 343

Java, 90, 141, 142, 187, 300, 303,

305, 343

LF, 86

Lisp, 343

ML, 141, 142, 389–489

ML Kit, 90, 123, 128–130, 133

Modula­2 and Modula­3, 343

Objective Caml, 342, 343

Pascal, 343

Pebble, 74, 305

Prolog, 90, 127, 134

Quest, 74

Russell, 305

Scheme, 305

Standard ML, 255, 341, 343, 345,

389

Vault, 43, 90

Prolog, 90, 127, 134

proof­carrying code, 139–140, 177–220

architecture, 178–180

beyond types, 216–218

costs, 211, 220

for cryptographic authentication, 219

efficient proof representation in im­

plicit LF, 211–214
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foundational, 155, 175, 178

guaranteeing privacy, 216–218

pre­ and postconditions, 184

program annotation, 193

proof checking as LF type check­

ing, 209–211

proof generation, 214–215

proof representation in LF, 205–214

safety policy, 182–187

and substructural types, 40

symbolic evaluation, 190–192, 194–

195

vs. typed assembly language, 141,

155, 178, 189

verification condition generation, 187–

190

propositions­as­types, see Curry­Howard

correspondence

protocol verification with effect type

systems, 105

pure type systems (PTS), 71–73

PVS, 74

qualified types, 488

qualifiers, see type qualifiers

Quest, 74

record operations, 460–489

record update and extension, polymor­

phic, 460

recursive definitions, 398

recursive modules, see modules

recursive types, see also modules, re­

cursive

in linear type systems, 17

and type inference, 453–460

reference counting, see also memory

management

in linear type systems, 28–30, 41

references, 390, 398, 435, 452, see also

effects

regions, 87–135, see also effect type

systems

and continuation­passing style, 132

erasure, 111–114

imperative, 131–132

inference, 89–90, 101, 123–127

lexically scoped, 89, 99–100

and linear types, 42, 132

polymorphic, 108–110

practical memory­management sys­

tems, 133–135

reuse of deallocated memory, 111

safety properties, 87, 106

and stack­oriented memory manage­

ment, 89, 99

and typed assembly language, 173,

175

register file type, 146

relational parametricity, 245, 271, 286,

287

relevant logic, see substructural logics

relevant types, see substructural types

resource management, see memory man­

agement, regions

row variables, see type inference

Russell, 305

safety policy, see proof­carrying code

Scheme, 305

scheme, see type scheme

Scott induction, 259

sealing, see signatures, 362

security, see proof­carrying code, typed

assembly language

separate compilation, see modules

set­based analysis, 101

Sigma types, see dependent types

signatures, see also modules

avoidance problem, 315–317, 365

dot notation, 307

vs. existential types, 307, 308

families of, 320–324

fibered vs. parameterized, 322–324

matching, 299

nominal vs. structural matching, 299

opaque, 307

principal, 298, 301

role in separate compilation, 295

sealing, 310–312



Index 573

sealing, static vs. dynamic, 338

subsumption principle for, 299

translucent, 307–310

transparent, 307

singleton kinds, see type definitions

singleton types, 385

software fault isolation, 140

sorts in pure type systems, 72

stack typing, see typed assembly lan­

guage

Standard ML, 255, 341, 343, 345, 389

statically vs. dependently typed lan­

guages, 305

strictness analysis, 43

strict types, see relevant types

strong sum types, see dependent types

structural properties, 4–6

contraction, 4, 11, 41

exchange, 4, 11, 31, 32

weakening, 4, 11, 41

structural subtyping, 412

structural vs. nominal signature match­

ing, 299

structures, see modules

submodules, see modules

substructural logics, 40–42

substructural types, 3–43

affine types, 5, 36–40, 43

bunched types, 42

containment rules, 9, 33

context splitting, 9, 42

context splitting, algorithmic, 11

with dependent types, 43

with effect type systems, 43

linear types, 5–30, 41, 43

ordered types, 5, 30–36, 42

relevant types, 5, 39

temporal resource management, 36

uniqueness types, 43

subtyping, see also constraints

and typed assembly language, 173

co­ and contra­variance, 412, 415

structural vs. nonstructural, 412

sum types, see also algebraic data types,

variant types

in dependent type systems, 61–63

in linear type systems, 17

surjective pairing, 62

symbolic evaluation, see proof­carrying

code

syntactic control of interference, 41

syntax­directedness, see algorithmic type

checking

TAL, see typed assembly language

TAPL, ix

temporal resource management with

substructural types, 36

theorem provers

Agda, 66

ALF, 68, 69

Alfa, 66

AUTOMATH, 86, 384

Coq, 66, 67, 86, 175, 384

LCF, 389

LEGO, 66, 70, 85, 86

NuPrl, 54

PVS, 74

TIL, see typed intermediate language

Tofte–Talpin type system, see effect type

systems

Touchstone PCC architecture, see proof­

carrying code

translucent sums, see type definitions

transparent interface, 358

type­based program analysis, 87–135

type checking, see algorithmic type check­

ing

type definitions, 347–385

for algebraic data types, 454

delta­reduction, 354

in module interfaces, 358–367

manifest types, 358

phase splitting, 378–384

primitive, 351–358

singleton kinds, 367–384

translucent sums, 358–367

type inference, 389–489
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and algebraic data types, 453–458

and dependent types, 82

HM(X), 389–489

objects, 459, 461, 486

polymorphic variants, 483–486

records, 460–489

and recursive types, 453–460

regions, 101, 123–127

regions and effect types, 89–90

row variables, 460–489

in typed assembly language, 154

and value flow analysis, 97–98

type­preserving compilation, 141

type qualifiers, 7

linear qualifier, 7

ordered qualifier, 32

quantification over, 21

reference counting qualifier, 28

unrestricted qualifier, 7

type reconstruction, see type inference

type scheme, 402–404, 407

typed assembly language, 139–175

and aliasing, 156

and alias types, 157

and arrays, 170–171

and capability types, 175

closures, 168–170

compiling to, 164–172

control flow safety, 142–155

and dependent types, 171–172

encoding objects, 168–170

ensuring memory safety, 155–172

and existential types, 167–168

memory management, 174

and origins of Cyclone, 134

polymorphism, 146

vs. proof­carrying code, 141, 155,

178, 189

and regions, 173, 175

stack­allocated memory, 157

and substructural types, 40

and stack typing, 173

and subtyping, 173

TALT, 173–175

TALx86, 170, 171, 173, 174

and type inference, 154

typed intermediate language, 142, see

also typed assembly language

typed operational reasoning, 245–289

typed operational semantics, 86

type and effect systems, see effect type

systems

Types and Programming Languages,

ix

undecidability

of dependent type checking, 54, 74–

75

of module type systems, 339

of type inference with polymorphic

recursion, 452

unification, 439–442

with record types, 476

uniqueness types, see substructural types

units, 343

untrusted code, see proof­carrying code,

typed assembly language

unwinding property, 259–260

UTT, 86

value flow analysis, 88, 90–102

constraint­based, 101

erasure, 93–97

polymorphic, 101

soundness with effect types, 104

type inference, 97–98

unsoundness without effect types,

88, 99

value restriction, 255, 437

in effect type systems, 123

variants, polymorphic, 483–486

Vault, 43, 90

verification conditions, see proof­carrying

code

weak head normalization, 57, 230

weak sum types, see dependent types

weakening, see structural properties

web resources, xii


