Alone Together:
Compositional Reasoning for Weak Isolation

Abstract

Serializability is a well-understood correctness criterion that sim-
plifies reasoning about the behaviour of concurrent transactions
by ensuring they are isolated from each other while they execute.
However, enforcing serializable isolation comes at a steep cost in
performance because it necessarily restricts opportunities to ex-
ploit concurrency even when such opportunities would not vio-
late application-specific invariants. As a result, database systems
in practice support, and often encourage, developers to use weaker
alternatives. These alternatives break the strong isolation guaran-
tees offered by serializable transactions to permit greater concur-
rency. Unfortunately, the semantics of weak isolation is poorly un-
derstood, and usually explained only informally in terms of low-
level implementation artifacts. Consequently, verifying high-level
correctness properties in such environments remains a challenging
problem.

To address this issue, we present a program logic that enables
compositional reasoning about the behaviour of concurrently exe-
cuting weakly-isolated transactions. Notably, our development is
parametric over a transaction’s specific isolation semantics, and
the consistency guarantees provided by the underlying data store,
allowing it to be applicable over a range of concurrency control
mechanisms. Case studies and experiments on real-world applica-
tions demonstrate the utility of our approach, and provide strong ev-
idence that weakly-isolated transactions can be placed on the same
formal footing as their strongly-isolated serializable counterparts.

1. Introduction

Database transactions allow users to group operations on multi-
ple objects into a single logical unit, equipped with a set of four
key properties - atomicity, consistency, isolation, and durability
(ACID). Concurrency control mechanisms provide specific instan-
tiations of these properties to yield different ACID variants that
characterize how and when the effects of concurrently executing
transactions become visible to one another. Serializability is a par-
ticularly well-studied instantiation that imposes strong atomicity
and isolation constraints on transaction execution, ensuring that any
permissible concurrent schedule yields results equivalent to a serial
one in which there is no interleaving of actions from different trans-
actions.

The guarantees provided by serializability do not come for free,
however - pessimistic concurrency control methods that enforce
serializability, for example, require databases to provide expen-
sive techniques such as two-phase locking that incur overhead to
deal with deadlocks, rollbacks, and re-execution [23, 28]. Simi-
lar criticisms apply to optimistic multi-version concurrency con-
trol methods that must deal with timestamp and version manage-
ment [15]. Regardless of the particular concurrency control method
employed, enforcing serializability in a replicated data store addi-
tionally requires global coordination among geo-distributed repli-
cas, which makes the store unavailable in the presence of network
partitions [5, 14, 21, 29].

The tension between serializable transactions, which are easy to
reason about but difficult to implement, and more pragmatic vari-
ants that are driven by performance and availability considerations,
has motivated the development of weaker forms of transaction iso-
lation, beginning as early as 1976 [31]. The ANSI SQL 92 stan-
dard defines three such weak isolation levels which are now im-
plemented in many relational and NoSQL databases. Not surpris-
ingly, weakly-isolated transactions have been found to significantly
outperform serializable transactions on benchmark suites, both on
single-node databases and multi-node replicated stores [5, 8, 45],
leading to their overwhelming adoption. A 2013 study [6] of 18
popular ACID and “NewSQL” databases found that only three of
them offer serializability by default, and half, including Oracle 11g,
do not offer it at all. A 2015 study [9] of a large corpus of database
applications finds no evidence that applications manifestly change
the default isolation level offered by the database. Taken together,
these studies make clear that weakly-isolated transactions are quite
prevalent in practice, whereas serializable transactions are often es-
chewed.

Unfortunately, weak isolation admits behaviours that are dif-
ficult to comprehend [12]. To quantify weak isolation anomalies,
Fekete et al. [26] devised and experimented with a microbench-
mark suite that executes transactions under a weakly-isolated read
committed isolation level - the default level for 8 of the 18 databases
studied in [6], and found that 25 out of every 1000 rows in the
database violate at least one integrity constraint. Bailis ez al. [9] rely
on Rails’ uniqueness validation to maintain uniqueness of records
while serving Linkbench’s [4] insertion workload (6400 records
distributed over 1000 keys; 64 concurrent clients), and report dis-
covering more than 10 duplicate records. Rails relies on database
transactions to validate uniqueness during insertions, which is sen-
sible if transactions are serializable, but incorrect under the read
committed isolation level used in the experiments. The same study
has found that 13% of all invariants among 67 open source Ruby-
on-Rails applications are at risk of being violated due to weak isola-
tion. Indeed, incidents of safety violations due to executing applica-
tions in a weakly-isolated environment have been reported on web
services in production [43, 48], including in safety-critical applica-
tions such as bitcoin exchanges [16, 39]. While enforcing serializ-
ability for all transactions would be sufficient to avoid these errors
and anomalies, it would likely be an overly conservative strategy;
indeed, 75% of the invariants studied in [9] were shown to be pre-
served under some form of weak isolation. When to use weak iso-
lation, and in what form, is therefore a prominent question facing
all database programmers.

A major problem with weak isolation is that its semantics in
the context of user programs is not well-understood. The original
proposal [31] defines multiple “degrees” of weak isolation in terms
of implementation details such as the nature and duration of locks
held in each case. The ANSI SQL 92 standard defines four levels of
isolation (including serializability) in terms of various undesirable
phenomena (e.g.,dirty reads) each is required to prevent. While this
is an improvement, it requires programmers to be prescient about
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the possible ways various undesirable phenomena might manifest
in their applications, and in each case determine if the phenomenon
can be allowed without violating application invariants. This is un-
derstandably hard, especially in the absence of any formal under-
pinning to define weak isolation semantics. Adya [1] presents the
first formal definitions of some well-known isolation levels in the
context of a sequentially consistent (SC) database. However, there
has been little progress relating Adya’s system model to a formal
operational semantics or a proof system that can facilitate rigor-
ous correctness arguments. Consequently, reasoning about weak
isolation remains an error prone endeavour, with major database
vendors [37, 38, 40] continuing to document their isolation levels
primarily in terms of the undesirable phenomena a particular iso-
lation level may induce, placing the burden on the programmer to
determine application correctness.

Recent results on reasoning about application invariants in the
presence of weak consistency [10, 17, 30, 35, 36] address broadly
related concerns. Weak consistency is a phenomenon that manifests
on replicated data stores, where atomic operations are concurrently
executed against different replicas, resulting in an execution order
inconsistent with any sequential order. In contrast, weak isolation is
a property of concurrent transactions interfering with one another
resulting in an execution order that is not serializable. Unlike weak
consistency, weak isolation can manifest even in an unreplicated
setting, as evident from the support for weakly-isolated transactions
on conventional (unreplicated) databases as mentioned above. In
the presence of replication, however, the interaction between weak
isolation and weak consistency can be subtle and non-trivial. Un-
derstanding weak isolation in these varied contexts thus requires
new insights and substantial generalization of existing techniques.

In this paper, we propose a program logic for weakly-isolated
transactions that realizes this goal. In particular, we develop a set
of syntax-directed compositional proof rules that allow developers
to build correctness proofs for transactional programs in the pres-
ence of a weakly-isolated concurrency control mechanism. A key
novelty of our approach is that it is parametric over the isolation
semantics of transactions in the program, as well as the consistency
semantics of the underlying store. In concrete terms, this means
that, unlike recent work focused on reasoning about programs un-
der weak consistency [10, 30, 36], our system model does not as-
sume a minimum or predefined set of consistency or isolation lev-
els. Instead, our operational semantics admits declarative specifica-
tions of transaction isolation and store consistency, and generates
executions that are guaranteed to satisfy these specifications. The
result is a flexible system model that is general enough to incorpo-
rate the semantics of a range of isolation levels on a variety of stores
(e.g., the sequentially consistent store of [1], or the causally consis-
tent store of [30], etc). Our key technical contribution is thus a set
of proof rules that demonstrate that a program with a given selec-
tion of isolation levels for its transactions preserves its invariants
when executed on a store equipped with appropriate consistency
guarantees. The paper makes the following contributions:

1. We develop a semantics for a core language equipped with
weakly-isolated transactions, demonstrating that a general para-
metric isolation semantics can be expressed as well-formedness
constraints on a program’s execution.

2. We present a compositional proof system for this language ca-
pable of relating high-level application invariants to the struc-
ture of traces induced by the operational semantics, in which
transactions are associated with specific weak isolation levels.

3. We define a maximum visibility principle to reconcile store
consistency guarantees with transaction isolation requirements,
and use it to instantiate our operational model and the proof
system for various kinds of (weakly-consistent) data stores.

{B=k A k> al+a2}

txn(Wd1){ txn(Wd2){
if (B > al1) { if (B > a2) {
B := B - al B := B - a2
} }
} }

{B =k-al-a2}
Figure 1: Concurrent withdraw transactions

4. Case studies modeled after real-world scenarios demonstrate
the applicability and utility of our proof methodology.

Our results provide the first (to the best of our knowledge) mech-
anism that precisely and uniformly relates high-level program in-
variants to low-level weak isolation and weak consistency guar-
antees, thereby allowing weakly-isolated transactions to enjoy the
same rigorous reasoning capabilities as their strongly-isolated (se-
rializable) counterparts.

The remainder of the paper is organized as follows. The next
section provides motivation and background on serializable and
weakly-isolated transactions. §3 presents an operational semantics
for a core language that supports weakly-isolated transactions, pa-
rameterized over different isolation notions. §4 formalizes the proof
system that we use to reason about program invariants, and es-
tablishes the soundness of these rules with respect to the seman-
tics. §5 generalizes the framework to integrate support for weakly-
consistent data stores. We describe the impact of our reasoning
framework in the context of several real-world case studies in §6.
Related work and conclusions are given in §7.

2. Motivation

In this section, we motivate our ideas via an example written in
T- a C-like imperative language equipped with a txn lexical block
defining a transaction scope. Each txn block is associated with an
identifier in angle braces that uniquely identifies the transaction.
We use Hoare triple notation to annotate programs with pre- and
post- conditions.

Consider an implementation of a banking application that ad-
mits concurrent withdraw transactions on an account balance (B),
as shown in Fig. 1. If the initial balance (k) in the account is enough
to perform both withdraws, then the final balance, after both trans-
actions commit, is expected to reflect the effects of both withdraws.
The pre- and post-conditions in Fig. 1 reflect this expectation. In-
deed, invariants are guaranteed to hold if both withdraw transac-
tions are serialized, making Serializable isolation (SER) level a suf-
ficient condition to preserve invariants. But, is SER necessary?

As an alternative, consider the execution of this transaction un-
der a Read Committed (RC) isolation level, which is weaker than
SER.! An RC transaction is isolated from the writes of uncommitted
transactions, and is therefore free from dirty reads [12] of uncom-
mitted data. In the current example, RC isolation admits the two
executions shown in Fig. 2 on a strongly consistent (SC) store, such
as a conventional RDBMS.

The figure depicts an execution as a series of read, write, and
commit operations. In the execution on left, transaction Wd1 (green)
reads the current balance (k) and writes the new balance (k-al),
but before it commits, transaction Wd2 (red) executes and com-
mits, writing the new balance (k-a2). RC isolation prevent Wd2
from witnessing the uncommitted writes of transaction Wd1. Sub-
sequently committing Wd1 leads to the loss of Wd2’s updates (the
so-called lost update anomaly [12]), resulting in an incorrect bal-
ance of k-al. The execution on right describes a similar scenario

'RC is in fact the default isolation level in Postgres 9.5 and Oracle 11g
databases.
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Read(B) — k Read(B) — k
Read(B) — k Read(B) — k
Write(B, k-a1) Write(B, k-a2)

Read(B) — k
Read(B) — k

Write(B, k-a2)

Read(B) — k
Read(B) — k

Write(B, k-a1)

Commit Commit

[ Commit [ Commit

(a) RC Execution 1 (b) RC Execution 2
Figure 2: A possible execution of the program shown in Fig. 1 under
Read Committed isolation level. Transaction Wd1 is shown against lighter
green background, and transaction Wd2 against darker red background. Each
transaction reads the balance (B) twice, hence two Reads.

with Wd1 and Wd2 exchanging their roles. Clearly, RC is an exces-
sively weak isolation level for this program because it loses the
updates of one transaction, resulting in the violation of the post-
condition. A stronger isolation level that prevents lost updates is
required. Snapshot Isolation (S1) [12] fits this requirement; SI ef-
fectively serializes transactions that update a shared data object by
aborting and re-executing a transaction if write-write conflicts are
detected during its commit.” Since SI, unlike SER, does not need
expensive mechanisms such as lock-based concurrency control or
runtime monitoring, it is also more efficient, making it appropriate
for both withdraw transactions.

Thinking in terms of anomalies, as described above, is how
database programmers are often encouraged to reason about weak
isolation. Unfortunately, such reasoning does not rest on any sound
foundation, and is thus highly error-prone. Reasoning in terms of
how weak isolation variants are implemented is no better since it
requires programmers to understand low-level implementation de-
tails of the database that are far removed from the application se-
mantics. An attractive alternative in this context would be a princi-
pled reasoning approach that combines declarative reasoning about
isolation guarantees with operational reasoning about programs.
We demonstrate how our proof system makes this possible in the
context of the current example.

First, we note that the example in Fig. 1 is a concurrent pro-
gram, and hence is amenable to rely-guarantee style reasoning [33],
a compositional proof technique that allows us to reason about the
behaviour of individual threads by abstracting away interferences
induced by other threads (collectively called the environment) into
a rely relation. In an ordinary concurrent program, every environ-
ment step is a valid interference in the current thread. However,
in the presence of transactions executing under various levels of
weak isolation, determining what constitutes an interference is a
non-trivial problem. For example, a Serializable transaction admits
no interference, whereas within a transaction executing under Read
Uncommitted isolation, all interferences are valid. Between these
two extremes are various levels of isolation that admit some inter-
ferences while prohibiting others. For example, Read Committed
isolation admits interference of a committed transaction, but not
those from uncommitted transactions. Snapshot Isolation admits

251 however does not serialize transactions in the absence of write-write
conflicts.

def

YRrC VT1, T2, n1,m2. txn(m) = T1 A txn(nz) = T
hb hb
ANTL#Te Am—n2=T1 — 02
vsi Y OVTL T T £ T A G T V0 x A Ty V0 x)

:>T1£>T2 VTQng

Figure 3: Interference properties for different weak isolation levels can be
captured as constraints over the happens-before relation.

(a) (b) (©) (d)

Figure 4: Possible executions for the example in Fig. 1. Letters R, W and
C stand for read, write and commit, respectively. Each blue dashed arrow
represents a hb relationship between all operations of Wd2 and an operation
inWd1l. 1 g specification allows hb arrows (hence the execution) in Fig. 4a.
YR specification allows hb arrows in Figs. 4a, 4b, 4c, and 4d.

interference from committed non-conflicting transactions, and so
on.

For the rely-guarantee approach to be useful, it has to thus con-
strain allowed interference in accordance with the chosen level of
isolation associated with a transaction. The first observation we
make is that we can constrain interference by constraining the na-
ture of the happens-before (hb) relation, which ultimately dictates
what other transactions become visible to a transaction, or its con-
stituents, and when. To do so, we axiomatize the hb relation to cap-
ture the interference characteristics of different isolation levels as
their specifications. Two such specifications are shown® in Fig. 3.
The Read Committed specification () rc) allows an operation 7,
of a transaction 77 to happen-before an operation 72 of another
transaction 7% only if every operation in 77 (including its commit)

happens-before 72 (we let 1 LN 12 denote this). The specification
does not require 71 to execute and commit before all operations of
T5, thus allowing it to interfere in 75, just as Wd2 interferes in Wd1
in Fig. 2a. The Snapshot Isolation specification (s 1) requires two

wrsto

transactions that write to the same variable (denoted —) to be
related by happens-before. This effectively prohibits interference
due to actions in 77 being interleaved in 7% (or, vice versa).

Fig. 4 is a visualization of hb from Wd2 to Wd1 allowed by ¥ rc
and tgr. Arrows in all executions are legal under ¥rc because
in no execution does an operation from Wd2 happen-before an
operation of Wd1 without the commit of Wd2 also happening before
the operation of Wdl. ¥s; however disallows hb arrows (hence
executions) in Figs. 4b, 4c, and 4d because such arrows establish
hb edges between (operations in) Wd2 and only a subset of the
operations in Wd1. Since the result of an operation (e.g.,a read)
depends on what happens before that operation, the structure of
the hb relation ultimately dictates the final result of the program.
The arrows in Figs. 4a and 4b denote hb relationships that do not
affect the value of B in a way that causes the program to violate

3 Note that specifications presented here are solely for illustration. The
actual specifications described in §3.1 are more nuanced.
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its post-condition. In contrast, arrows in Figs. 4c and 4d denote
hb relationships that lead to the violation of the post-condition.
The task of the reasoning framework is to determine if all hb
relationships allowed by an isolation level lead to the satisfaction
of the post-condition.

The specification of an isolation level encodes its interference
characteristics as constraints over the hb relation. However, for
this to be useful in reasoning about programs, the rely-guarantee
framework should be able to use the specification to determine if
an interference is valid or not, allowing the programmer to only
focus on valid interferences. Our second observation is that this
is possible if the reasoning framework adequately tracks hb at
each program point, while preserving hb constraints as invariants
between program points. An interference that leads to the violation
of hb constraints (i.e., an invalid interference) is thus automatically
prohibited. For instance, consider the program point after the write
to B in Wd1l. The expected invariant (¢) at that program point is
shown below (com stands for “committed”):

wrsto

—com(Wd1l) A Wdl —— B A (—com(Wd2) =B =k — al)
A (com(Wd2) =B =k — al — a2)
¢ asserts that Wd1 is not yet committed, and that it wrote to B, and
the value of B is either k-al-a2 or k-al depending on whether or
not Wd2 is committed. If ¢ remains invariant until Wd1 commits,
then the post-condition (B = k-al-a2) can be established easily.
However, an interference from Wd2 at this stage (captured by the
last dashed arrow in Fig. 4) may violate the invariant by writing
k — a2 to B and committing Wd2, thus leading to com(Wd2) =
B = k — a2. Fortunately, Snapshot Isolation prevents this inter-
ference, and this can be shown by demonstrating that an inter-
ference from Wd2 starting from an execution state that satisfies

Psr A ¢ leads to an execution state where neither Wd2 by wai
nor Wd1 2 Wd2 holds; Wd2 b, Wd1 does not hold because Wd1’s

write to B clearly happened before Wd2’s commit, and Wd1 by wa2
does not hold because Wd1 has not yet committed, while Wd2 has
already begun. Since Wd2 also writes to B, this violates the ¥sr
constraint which we assume to be an invariant. A proof that the
post-condition holds now follows from the contradiction. It is in-
formative to note that if the invariant is ¢ rc instead of g7, we
cannot derive a contradiction and we cannot rule out the interfer-
ence, which (rightfully) causes the proof to fail.

Implicit in the above discussion is the assumption of a strongly
consistent (SC) store that guarantees the visibility of all previously
committed transactions. An SC semantics can be built into the rea-
soning framework, leading to a proof system tailor-made for such
stores. However, for the reasoning framework to be truly useful,
it should be capable of handling different consistency semantics,
supporting stores that are weaker than SC (e.g., causally or eventu-
ally consistent), and should be able to reconcile conflicts between
consistency and isolation constraints. We demonstrate how our rea-
soning framework makes this possible in the following sections.

3. 7T:Syntax and Semantics

Fig. 5 shows the syntax and small-step semantics of 7, a core
language that we will use to formalize the intuitions presented in
the previous section. Natural numbers, (shared) variables and arith-
metic expressions constitute the syntactic class of expressions (e).
Commands (c) include SKIP, assignment statements, transaction
(txn) lexical blocks, and their sequential and parallel composition.
We let T; for i € Nrange over transaction identifiers. When it is ev-
ident we are referring to a transaction, we use the number ¢ instead
of T; for identification (e.g.,in txn(i)). Like variables, transaction
identifiers are globally accessible. For notational convenience, we
let ¢ range over both expressions and commands.

We define a small-step operational semantics for this language
in terms of an abstract machine that generates an execution trace
(E). The first component of the trace is a set (A) of effects, where
an effect (n) is a tuple of (a). the identifier (73) of the transaction
that generated this effect, (b). the unique identifier (j) of this ef-
fect, (c). the operation (op) documented by this effect, which can
be either a read (RD (X)), a write (WR (X)), or a transaction commit
(COMMIT), and (d). the value, if any, associated with the operation
(e.g.,, value read or value written). Functions txn, id, oper, and rval
project each of the four aforementioned individual components of
the tuple. In every step of the evaluation, the machine reduces a
T term by executing a read, write or commit operation, generating
an effect, and extending the trace. Since effects include transaction
identifiers, the semantics distinguishes between terms (¢) of differ-
ent transactions. For example, [t]; denotes a term ¢ inside a trans-
action 7;. Evaluation contexts are also appropriately marked. For
example, & denotes the evaluation context for a term inside 7T5.
The other component of an execution trace is a visibility relation
(vis) that establishes a visibility property between effects among
different transactions. The intent and mechanics of vis is described
in the sequel.

Fundamental to our development is the notion of a trace invari-
ant (). [ is a function from traces (E) to first-order logical formulas
(IP) that define well-formedness constraints over traces. The ma-
chine takes a step only if the resulting trace satisfies the constraints
imposed by 1. This behaviour is captured by the auxiliary reduc-
tion rule E-AUX that factors out the trace extension aspect of the
evaluation by abstracting away the operation-specific behaviour as
a function that generates an appropriate effect. We let F denote
this function. E-AUX uses F to generate a new effect and extend
the trace (E = (A, vis)) only if the well-formedness constraints im-
posed by T on E (i.e., I(E")) are satisfied. Otherwise, it gets stuck.
In an execution that runs to completion, every small-step preserves
the well-formedness of a trace, thus ensuring the invariance of I.
Note that the semantics makes no assumptions about I other than
its type. As such, it can be instantiated with any trace-parametric
proposition that expresses constraints over the given trace. For in-
stance, consider the ¥ rc specification from §2, but with bounded
T1 and 15 instantiated with Wd1 and Wd2, respectively. The instan-
tiated specification is the following term:

VN1, m2. txn(n) = Wdl A txn(n2) = Wd2
A WAL A WA2 A 11 2 1o = Wdl 22

It is easy to interpret the above specification in the context of a trace
E that captures an execution of the program in Fig. 1. Such a trace-
parametric formula can be used to instantiate the trace invariant I
in Fig. 5. The resultant operational semantics describes an abstract
machine that gets stuck if an operation of Wd2 is executed in a
state that incorporates some, but not all the effects (including the
COMMIT) of Wd1.

As described in §2, the semantics of various isolation levels can
be captured as constraints over the happens-before (hb) relation.
hb is however a derived relation in our model, composed of more
fundamental session order (so) and visibility (vis) relations. In par-
ticular, hb = (so U vis)™. Unlike hb, vis (defined below) is not
a transitive relation, and hence lets us capture finer-grained isola-
tion properties than hb, which we leverage in our development. The
session order relation captures the sequential order of operations
within a transaction. In particular, it relates two effects, 1 and 72,
such that txn(n1) = txn(n2) and id(n1) < id(n2). The semantics
assigns monotonically increasing identifiers to effects, as defined
by the id(n) > maxId(A) condition of E-AUX (maxId(A) returns
the maximum number identifying an effect in A). Evaluation con-
texts (&;) for transaction-bound terms are defined so as to enforce
a deterministic sequential order of execution within a transaction,
leading to a deterministic total order among effect ids, which de-
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Syntax

X,Yela
e € Expressions =
€ Commands

e}

t € Terms = e ec

Auxiliary Definitions

op € Op.Name := RD(X) | WR(X) | COMMIT

n € Effect = (T3,7,0p,NU{L})

A € EffectSet 1= P (Effect)

[1 € state := P (Effect) > Id = N
tn(ti, ) =t (LG =

i,7,n,v €N
v| X |ete
SKIP | X :=e | c1;c2 | cl||c2 | txn(i){c}

oper(-, -, 0p, ) = op

T;,T; € TxnId

vis € Visibility == P (Effect x Effect)
E € Execution = (A,vis)
I € Invariant = E—-P
F € Op. Def. := P (Effect) — Effect

rval(ﬂ - = TL) =n

Evaluation |1 (F,E) = (v,E)| |1+ ([):,E) — (¢, E)| [IF (c.E) — (¢,F)

E € EvalCtx == e | ef|ca | cile &
E-Aux

SCA n=F(S) id(n) > maxld(A)

E' = (AU{n},visUS x {n}) I(E")

€ Eval Ctx in txn(i) =
E-Tor-CTX

I+ (t,E) — (¢',E)

txn(i){e} | [e £e2]; | [v1 L e]; | [ocals
E-TxXN-CTX

I+ ([tl:,E) — (¢, E)

I+ (F,(A,vis)) < (rval(n),E’)

E-VAR
F = AS. (T, 5,BD(X), [S](X))
I+ (F,E) = (v,E)

E-ASGN

I+ (E[t],E) — (E[Y'],E)

F = AS. (T3, 4, WR(X), v)
[+ (F,E) < (v,E)

IH (&t B) — (&[], E')

E-CoMMIT
F = AS. (T, j, COMMIT, L)
I+ (F,E) = (L,E)

I+ ([X]:,E) — (v, E)

I+ ([X :=wv];,E) — (SKIP,E’)

I+ (txn(i){SKIP},E) — (SKIP, E’)

Figure 5: 7 Syntax and Small-step semantics

fines the session order relation. Visibility (vis) on the other hand
relates effects across concurrent transactions. Intuitively, vis relates
71 to 72 if and only if 11 was visible to the operation that generated
12 during its execution, thus effecting its return value (rval(n2)).
For example, a read operation over X may pick the value (rval) of
the write effect with the highest id among its visible effects (this is
made possible by appropriately defining [-] in E- VAR, as we show
later). Thus, the value of a read depends on what write effects it
can witness. An operation can only witness the effects of already
concluded operations, which varies between executions due to the
non-deterministic order of evaluating the parallel composition of
transactions.

A more notable source of non-determinism, however, is the E-
AUX rule, which allows the machine to expose an arbitrary sub-
set (S) of existing effects (A) to the incoming operation. In other
words, the machine is not obligated to reveal the effects of all pre-
vious operations to an incoming operation. This relaxation allows
the abstract machine to model the semantics of weakly-consistent
data stores. For instance, operations issued to an eventually consis-
tent (EC) replicated store could be dispatched to different replicas
whose states may not be in any well-defined relationship. By al-
lowing operations to witness arbitrary subsets of the global state,
the semantics models the weak visibility properties of such stores;
we elaborate on the implication of this style of definition in §5.
Stronger visibility properties can be expressed by imposing well-
formedness constraints over vis via the trace invariant (II). Since
the abstract machine is obligated to satisfy I at every step of the
execution, operations are guaranteed to experience the level of iso-
lation specified by 1. Thus, in executions that run to completion,
the abstract machine models a store that provides the required lev-
els of isolation. Notably, the machine achieves this without defining
an operational semantics for isolation levels, instead solely relying

on their declarative characterization as trace well-formedness con-
straints to enforce isolation guarantees. §3.1 specifies various ANSI
SQL isolation levels stated as trace well-formedness constraints.

As described previously, E-AUX abstracts away the operation-
specific behaviour of a machine step as a function (F) that accepts
a set (S) of effects chosen by the machine to make visible to the
operation, interprets the operation w.r.t. S, and returns an appropri-
ate effect that encodes its return value. Rules E-VAR, E-ASGN and
E-COMMIT define such functions for read, write and commit oper-
ations, respectively. The effect returned by the function in each case
includes its transaction id (73) along with an arbitrarily chosen ef-
fect id (j) that is later verified to be unique in E-AUX. The rval for
a write is the value being written, and for commit it is L. In case of
a read, the value read depends on how the read operation chooses
to interpret the given set (S) of visible effects. The interpretation
may depend on application semantics. For example, a monotoni-
cally increasing counter application may choose to let a write with
the largest value determine the value of a read. To accommodate
multiple interpretations, the semantics is made parametric over an
interpretation function ([-]) that accepts a set of effects and a vari-
able name, and returns the value associated with the variable. A
straightforward interpretation function that chooses the last write
(i.e., write with largest id) is shown below:

isMax(S,m) & V(1 € S).oper(n’) = oper(n)
=n'"=nVid(n') <id(n)
[S](X) = if (3(n € S).oper() = WR(X) A isMax(S, 7))

then rval(n) else 0

Rules E-TorP-CTX and E-TXN-CTX define congruence properties
for top-level terms and transaction-bound terms, respectively. The
rules and evaluation contexts (£ and &;) are defined such that only
certain kinds of terms are allowed at the top-level and inside a
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(Avis) Ik € T, W heAAbn(n) =T
EFSCT; “ oy neS=>ElFneT
(A, vis) IFm AN 72 def {m,n2} CA A (n1,7m2) € vis
(Avis) Fm 2 ns 2 {n,me} CA A ten(m) = txn(2)
A id(m) <id(n2)
(A, vis) IF 71 2 1o = {m,n2} CA A (n1,m2) € (visUso)T
vis def i

EFT; 5 2 Yp.(ErmeT) =ElFn Sg

vis def

El-T; 2Ty =2 VYn,m.Elrm €Ti A Elrng €T
=S Elm 2

BT, N , .
1—)T] = Vni,m2.Elbm € T; A E”‘?]QETJ

= ~(ElFn1 %5 )
EbT, 2™ x 2 3. ElbneT A oper(n) = WR(X)
EFT, ™ x % 3, ElFpeT; A oper(n) = RD(X)

uses def wrsto rdsfm

EFT;, — X EFT;, — X VEFT, — X

Figure 6: Relations defined over a trace

transaction. In particular, a 7 program at the top-level can either be
a transaction, or a parallel composition of transactions. A command
inside a txn block can either be an assignment, or a sequential
composition of assignments.

3.1 Isolation Specifications

‘We now describe specifications of standard isolation guarantees ex-
pressed as constraints over trace well-formedness. For brevity and
convenience, we introduce some notations that are used in the fol-
lowing sections. An execution trace is destructed as (A,vis) when-
ever individual components of the pair are needed. Otherwise, it is
written as E. Sometimes, the dot notation (e.g., E.A) is also used.
Since A and vis are both sets, we lift the operations on sets to pairs
of sets when updating E. For example, E' = EU({n2}, {(m1,72)})
expands to E' = (E.AU {n2}, E.vis U {(n1,72)}). When ¢ is a
formula, E IF v denotes the interpretation of 1) in the context of the
trace E. Such interpretations are defined on a case-by-case basis in
Figs. 6 and 7.

Fig. 6 shows various relations defined over elements in a trace.
In the context of a trace (A, vis), an effect 7 is said to belong to a
transaction 7T; if 1 belongs to the effect set A and its transaction
identifier is 7;. The containment relation is trivially lifted to the
set of effects to define E |- S C 7T;. Visibility, session order, and

happens-before relations are denoted by 71 RLN N2, N =, N2, and

m LN 72, respectively. A transaction 7; is said to be visible to an
effect 7 if every effect n1 of T; recorded by the trace is visible to 7.
T; may be visible to 7 but may not be visible to every other effect
in the txn(n). For a transaction T; to be considered to be visible to
a transaction T in the context of a trace E (written E IF T; =5 T}),
every effect (1) of T; present in E must be visible to every effect
(n2) of T} in E. Conversely, if none of the effects of T} present in E
are visible to any effect of T, then 7T} is considered invisible to T}
under E (written E I+ T; =2 T}). Transaction T} is said to have

wrsto

written to a variable X under E (ie., E IF T; —— X)) if there
exists a WR(X) effect from T} in E. Reads-from (E I+ T; LCLNG'S)
uses

is defined similarly. T; uses X (1; — X) if it reads or writes X.

Fig. 7 shows various isolation guarantees defined as proposi-
tions indexed by transaction identifiers. Transaction 7T} is said to
have experienced read-my-writes visibility (RMWVis) under E if ev-
ery effect (n1) of T} is visible to every subsequent effect (1)2) of the
same transaction in E. This lets 7; to never lose its own updates.
Monotonic visibility (MonotonicVis) adds one more constraint to
read-my-writes; besides requiring 7; to be visible to 72, it also re-
quires every effect (n) visible to 7; in E to be visible to 12 as well.
Thus, later operations in a transaction witness at least the same set
of effects witnessed by the earlier operations, if not more (hence,
“monotonic” visibility). Atomic visibility (AtomicVis) allows an
effect 12 of T to witness an effect 11 of T} only if all effects of T}
in E are also visible to 72. Atomic visibility thus prevents a trans-
action from being partially visible. However, atomic visibility does

not prevent an uncommitted transaction from being visible. This is
addressed by CommitVis, which requires the commit effect of T;
to be visible whenever any effect of T is visible.

The ANSI SQL 92 standard requires Read Committed isola-
tion to avoid the dirty reads phenomenon, which is achieved by
enforcing AtomicVis and CommitVis guarantees. The RC speci-
fication (RC)* is therefore a combination of these two guarantees.
The specification also agrees with the description and implemen-
tation [5, 46] of RC for highly available replicated stores. On re-
lational databases, however, RC has also come to be associated
with the MonotonicVis guarantee. Nonetheless, AtomicVis and
CommitVis are sufficient to reason about RC isolation on relational
stores too. The combination of these guarantees with the SC prop-
erty of relational stores (formalized in §5) automatically leads to
the monotonicity guarantee, which explains why RC comes with
MonotonicVis on such stores regardless of the implementation.
On weakly consistent stores however, AtomicVis and CommitVis
do not imply MonotonicVis. A stronger isolation level called
Monotonic Atomic View (MAV of Fig. 7) [S] was proposed to ex-
plicitly extend RC with monotonicity on such stores.

Snapshot visibility (SnapshotVis) captures the scenario where
a transaction executes against a static snapshot of the database. A
transaction 7; is said to be snapshot-visible to a transaction 77 if
either it is visible to 7 (i.e., T; is included in the snapshot), or it
is invisible (i.e., it is not included); it is forbidden for only a suffix
(more generally, a subset) of T} to witness T;. The specification
of ANSI SQL Repeatable Read isolation (RR) extends MAV with
the snapshot visibility guarantee. Observe that snapshot visibility
permits 75 and T} to execute and commit while being oblivious of
each other. This scenario is captured in Fig. 8a, where transactions
Ty and 7%, which perform conflicting writes, execute against a
snapshot of the database and commit concurrently. While the actual
values read and written by 77 and 7> are unimportant (hence,
elided), it is important to note the absence of visibility arrows from
T5 to Ty, although 75 commits before 77 ’s read-from-Y.

Snapshot Isolation (S1) proscribes this possibility. If T; and T}
both write to the same shared variable, then SI insists that either T;
be visible to 17, or T; be visible to the conflicting write of T’; (this is
captured by the auxiliary definition SnapshotSER). Fig. 8b shows
an execution where SI transaction 71 witnesses a snapshot of the
database that doesn’t include 7. Due to SI(77), the conflicting
write to X in 7% is now required to witness 71, as captured by the
direction of the vis arrow (subsequent operations also witness 7%
because 715 is executing under MAV). Lastly, Serializable isolation
extends SnapshotSER to also cover non-conflicting transactions
that write to variables read in the current transaction. Fig. 8c shows
an execution of an SER transaction 73 and a MAV transaction Ty,

41In the following, we use small caps to abbreviate isolation levels (e.g., RC
for Read Committed), and typewriter font for abbreviations of the specifica-
tion of an isolation level (e.g., RC denotes the specification for RC as given
in Fig. 7).
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Figure 7: Standard isolation guarantees expressed as trace well-formedness constraints

E IF MonotonicVis(7}) def
E IF AtomicVis(T}) def
E IF CommitVis(T}) def
E IF RC(T}) def
E I MAV(T}) def
E IF SnapshotVis(T5,T}) def vis
E I RR(T}) def
E |- SnapshotSER(T}, T, X) ¢ vis
E I+ SI(T}) def
E IF SER(T}) def
T T
1 2
Y RD(X) i) 5T
RD(X) RD(Y) RD(X) ($i
RO WR(X) i RD(Y) 4|
Egm WR(Y) 190 RO WR (X)11!
Commit o] "a % Commit)$7™.
RD(X) Commit T Stwrco ¥ ‘\nﬁﬁfi;
RO HRD(Y) 1$1RD(X)
VV‘\I’E(()Y()) I WR(Y) : iCommit
{ i e
Commit |¢,Commit
v v v v \

(a) RR(171), RR(12). () sI(T1), MAV(T2) () SER(T3), MAV(T})
Figure 8: Sample executions of concurrent transactions at different isola-
tion levels. Solid (black) arrows indicate the timeline. Points on the timeline
mark the time when an operation is executed. Dotted (blue) arrows denote
vis.

which write to X and Y, respectively. The snapshot witnessed by
the SER transaction 73 does not include 7}, but the write to Y in
T4, although non-conflicting, witnesses 71 because Y is read by
T1. Visibility includes other operations of 7% because of MAV. Note
that SER does not guarantee a total order on transactions w.r.t. vis
because, in practice, databases do not guarantee global serializable
execution unless all transactions choose SER.

4. The Reasoning Framework

We now describe a proof system that lets us demonstrate that a
T program satisfies its high-level invariants in all small-step execu-
tions that satisfy a chosen trace invariant (I).° Since the trace invari-
ant captures transaction-isolation constraints, the demonstration is
a proof that the given selection of isolation levels for transactions
is sufficient to enforce a program’s invariants.

As mentioned earlier, our proof system is a rely-guarantee
framework that admits compositional reasoning by abstracting

3Tt is important to keep in mind the distinction between high-level invari-
ants (e.g., X>0) and trace invariants (e.g., I = AE.RC(Wd1) A SI(Wd2)).
The former constitute proof obligations for the programmer, whereas the
latter is a combination of transaction-specific assumptions about operational
characteristics of the underlying data store.

away environmental interference as a rely relation. A conspicu-
ous difference between a standard development of rely-guarantee
and ours is that, while the former reasons in terms of program
states (variable to value bindings), we reason in terms of execu-
tions as captured by their traces (E). In particular, our rely (R) and
guarantee (G) relations relate executions (i.e., R, G C E X E),
and our pre- (P) and post- (Q)) conditions are assertions over
executions (i.e., P, Q : E — P). Our development also facil-
itates state-based reasoning via the interpretation function ([-])
introduced in §3, which interprets the given set of effects as a
state. For example, if a bi-state rely relation relates every pair of
states o and o’ such that o' (X) > o(X) > 0, the correspond-
ing bi-execution rely relation relates every pair of executions E
and E’ such that [E.AJ(X) > [E’.AJ(X) > 0. Assertions on
states are also written similarly. For instance, consider the post-
condition B = k — al — a2 of the program in Fig. 1. The corre-
sponding assertion on the post-state (Ao. 0(B) = k —al — a2)
asserts that in all states resulting from executing the program, the
value of B is k-al-a2. The equivalent execution-based assertion
(AE. [E.A](B) = k — al — a2) asserts that in all executions of
the program, the value of B is k-a1-a2. However, having access to
an execution facilitates assertions that go beyond the state. An ex-
ample is an invariant of Wd1 described abstractly in §2, and reified
as an execution-based assertion below:

wrsto

AE. —~(E IF com(Wd1) A ElFwdal 2= B
A (—(EIF com(Wd2)) = [E.A](B) =k — al)
A (EF com(Wd2) = [E.A](B) =k — al — a2)
One of the conjuncts asserts that Wd1 has written to B - a fact which
cannot be deduced solely from the value of B (esp. in the presence
of interference), but can be expressed as a proposition over the
execution trace.

4.1 The Rely-Guarantee Judgment

The standard rely-guarantee judgment is a quintuple { P, R} ¢ {G, Q},
which informally asserts that if a command c is executed in a state
that satisfies its pre-condition P, provided that every interference
step during the execution is contained inside the rely relation R,
then the effect that each step of executing ¢ has on the state is
captured by G, and the final state of execution satisfies the post-
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Expressions in txn(i) ’ {I, P, R} [e]: {G, C,Q} ‘
RG-VAR
stable(R,I) I+ stable(R,P) It stable(R,Q)
VE,j,n,5,E. P(E) Aj > maxld(E.A) A § C E.A
A = (T, 5,RD(X), [S](X)) A E"=EU ({n},S x {n})
A I(E') = C([S](X)) A Q(E") A G(E,E')
{I, P, R} [X]: {G, C, Q}

RG-ARITH
Yy, v2. Cl(vl) AN Cg(vz) = C(Ul :tvz)
{Hv P7 R} [61]1' {GV Cl,Ql} {]L Q/7R} [62]i {Ga C27Q}
{]1, P, R} [61 + 82]7; {G, C, Q}

RG-CONSEQ
I'=1 P=P Q=Q C=CC
RCR GCG& {L, P, R} [eh {G, C’,Q}
{H,7P,,R/} [eh {G/,C,7Q/}

Commands in txn(7) ’ {I, P, R} [c]: {G, Q} ‘
RG-ASGN

{I, P, R} [e]; {G,C,Q"}
stable(R,I) I} stable(R,Q') It stable(R,Q)
Vv, E, j,n,S,E". C(v) A Q(E) A j > maxld(E.A) A S CEA
A = (Ti,j,WR(X),v) A B =EU({n},S x {n})
A I(E) = Q(E') A G(E,E)
{I,P,R} X :=¢€]; {G,Q}

Top-Level Commands ’ {I, P, R} c{G,Q} ‘

RG-TXN
{Hv P, R} [C]l {G7 Ql}
stable(R,I) It stable(R,Q) It stable(R,Q’)
VE,j,m,5,E'. Q'(E) A j > maxld(EA) A S C E.A
n = (Ty,5,COMMIT, L) A E' =EU({n},S x {n})
A I(E') = Q(E') A G(E,E)
{I, P, R} txn(i){c} {G, Q}

Figure 9: T Rely-Guarantee Rules

condition (). The terms “execution” and “step” are defined with
respect to an operational semantics, which, in our case, is param-
eterized on the trace invariant I. Consequently, our rely-guarantee
judgment for commands is the sextuple {I, P, R} ¢ {G, Q}, whose
semantics differs from the quintuple in that it requires every step
of the execution to additionally preserve the trace invariant I for
the post-condition to be valid. As usual, if c is inside a transaction
T;, we write [c];. T expressions are side-effecting (they generate RD
effects), and admit interference during their evaluation. Therefore,
like commands, expressions need to be reasoned about explicitly.
But, unlike commands, expressions evaluate to values, and the rea-
soning framework should also admit assertions on such values. We
therefore define a separate judgment for expressions - the septuple
{I, P, R} e {G,C,Q}. The new entrant C' : N — P is an assertion
on the return value of e.

The rules that define rely-guarantee judgment are shown in
Fig. 9. Like standard rely-guarantee definitions, these definitions
also require a stability condition, which requires pre- and post-
conditions to hold despite any interference from concurrent threads
(captured by R). Stability can be predicated on the assumption that
interference preserves the trace invariant I. Formally:

I+ stable(R,P) ¢ VEE.IE) A P(E) A R(E,E)

A I(E') = P(E')
However, the assumption that interference preserves I (or, dually,
I withstands interference) needs to be justified separately. We call
this the stability requirement on I:

stable(R,1) ¢ VEE.I(E) A R(E,E) = I(E)

The rule RG-VAR defines the rely-guarantee judgment for shared
variable reads inside a transaction 7;. It requires I to be stable, and
pre- and post- conditions to be stable relative to I. The quantified
premise effectively requires a proof that if the abstract machine of
Fig. 5 takes a step starting from an execution E that satisfies the
pre-condition P, then the resultant execution E’ satisfies the post-
condition (), and that the guarantee G faithfully captures the transi-
tion from E to E’. It is informative to compare this premise with the
premise of the E-AUX reduction rule of Fig. 5. Similar premises
also appear in the RG-ASGN and RG-TXN rules, which define
rely-guarantee judgments for assignments and transactions, respec-
tively. RG- VAR however also requires the return value ([S](X)) of
the read to satisfy the assertion C' meant for the value. RG-ARITH
defines the RG judgment for an arithmetic expression e; &+ ez in
terms of the corresponding judgments for the constituent expres-
sions e; and e2. The quantified premise requires any value result-
ing from evaluating e; =+ ez to satisfy the assertion C, provided
that e; and ez always evaluate to values that satisfy C; and Co,
respectively. The rules for sequential and parallel composition of
commands are essentially the same as their counterparts in a stan-
dard rely-guarantee formulation and hence elided.

The RG-CONSEQ rule defines ways to strengthen or weaken
relations and assertions associated with the RG judgment of
transaction-bound expressions. Similar rules exist for transaction-
bound and top-level commands, but are not shown.® As is the case
with a standard rely-guarantee formulation,the rules allow the pre-
condition P and the rely relation R to be strengthened, and the
post-condition @ (also, C in the case of expressions) and the guar-
antee relation GG to be weakened. The most notable aspect of the
RG-CONSEQ rules is that they allow the trace invariant I to be
strengthened. Considering that I captures isolation properties, this
means that a program proven correct under weaker isolation levels
is also correct under stronger ones. Parametricity over the trace
invariant I, combined with the ability to strengthen I as needed, al-
lows our proof system to support a highly flexible proof strategy to
prove programs correct over various isolation variants. For exam-
ple, programmers can define isolation guarantees of their choice (by
defining I appropriately) and then prove programs correct assum-
ing the guarantees hold. The soundness of strengthening I ensures
that a program can be safely executed on any system that offers
isolation guarantees at least as strong as those assumed.

4.2 Semantics and Soundness

Definition 4.1 (Step-indexed reflexive transitive closure). For all
A:Type, R: A— A — P, and n : N, the step-indexed reflexive
transitive closure R™ of R is the smallest relation satisfying the
following properties:

*VY(z: A). Rz, x)
*V(n:N)(z,y,2: A). R(z,y) A R™(y,2) = R"(x, 2)

Definition 4.2 (Interleaved step and multi-step relations). An
interleaved step relation interleaves thread-local reductions with
interference from concurrent threads captured as the rely relation
(R). It is defined thus:

I+ (c,E) —g (¢,E) ¥

I+ (c,E) — (c/,E')
V (¢ =c A R(E,E') A I(E))

The interleaved step relation for transaction bound expressions
([e]:) and commands ([c];) is defined similarly. An interleaved
multi-step relation (—7) is the step-indexed reflexive transitive
closure of the interleaved step relation.

6 The supplementary materials provide the complete set of rules.
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Definition 4.3 (Semantics of the RG judgment). The semantics
of the RG sextuple {I, P, R} c{G, Q} is defined in terms of the
interleaved step relation thus:
{IP,R}c{G,Q} Y vE.P(E) AL(E)

= (Vn,E'. T+ (¢,E) —" (SKIP,E') = Q(E'))

A step-guaranteed(l, R, G, ¢, E)

The first conjunct in the consequent is called the Hoare conse-
quent since it ascribes Hoare triple semantics to an RG sextuple.
The second conjunct, called the guarantee consequent, uses the
step-guaranteed predicate defined below:

dof
step-guaranteed(l, R, G, ¢, E) f vn,E’, ", E".

I+ (¢,E) —% (¢ E') AT (d,E') — (¢',E") = G(E',E")

The guarantee consequent requires GG to capture the trace effect
of every small-step of ¢, where the reduction can be interleaved
by the interference (R) from concurrent threads. The semantics of
the RG sextuple for transaction-bound commands ([c];) is defined
similarly. Expressions, unlike commands, evaluate to a value v,
and the semantics of their RG septuple ({I, P, R} [e]: {G, C,Q})
differs slightly in that its Hoare consequent requires the value v to
satisfy the assertion C.

Note that the semantics of all RG judgments, including the judg-
ments for transaction-bound terms, make similar demands of the
guarantee relation. Given that transactions are atomic (though not
isolated), it is not immediately apparent why a transaction’s guar-
antee is required to make explicit every step of its reduction. This
requirement is justified however because, in reality, a transaction’s
atomicity is predicated on the isolation settings of the observer. A
Read Uncommitted transaction, for example, is permitted to ob-
serve the internal state of a transaction 7" even if 1" is claimed
to execute atomically. In the interest of modular verification, the
transaction must therefore make its internal state available via its
guarantee relation.

Theorem 4.4 (Soundness). The rely-guarantee judgments defined
by the rules in Fig. 9 are sound with respect to the semantics of
Definition 4.3.”

In particular, if {I, P, R} ¢ {G, Q} can be derived using the rules of
Fig. 9, then (a) every interleaved multi-step reduction of c starting
from a trace that satisfies P and I, results in a trace that satisfies @,
and (b) the effect that every small-step of ¢ has on the trace is con-
tained in GG. Soundness of the RG judgment for transaction-bound
commands ([c];) is stated similarly. For expressions, soundness of
the judgment {I, P, R} [e]; {G, C, Q} also proves that e is always
evaluated to a value that satisfies C.

5. Data Stores and Consistency

The operational semantics of Fig. 5 allows operations to witness
arbitrary subsets of the global state, effectively mimicking the be-
haviour of an eventually consistent (EC) data store®. There are,
however, data stores, such as relational databases, that provide
stronger consistency guarantees than EC. Like the isolation levels
of transactions, the consistency level of the underlying store also
affects the semantics of a program in non-trivial ways. In this sec-
tion, we demonstrate how the semantics of stronger stores with on-
demand weak isolation can be captured in our operational model.
First, we observe that the consistency level of a data store
can be captured by store-specific consistency constraints, along
with transaction-specific isolation constraints, via the trace invari-
ant [. In particular, we can split I into two components: (1). L,

7 Formal proof of soundness is provided in the supplementary material.

8 Eventual consistency guarantees that in the absence of further updates, all
reads witness the same global state eventually. In any finite trace, however,
there are no guarantees on what a read may witness.

the store-specific invariant, and (2). I, the program-specific (or,
client-specific) invariant, to capture consistency and isolation con-
straints’, respectively. I is now a conjunction: I = AE. I(E) A
I.(E) (often simplified to I = I AlL.). While the program-specific
trace invariant (I.) is independent of the underlying data store, the
store specific invariant (I;) changes from store to store depending
on the consistency level. For an eventually consistent store, I is
simply true. Stronger stores, such as those that support strong con-
sistency, have non-trivial definitions for I,.

A strongly-consistent SC store guarantees a total order on all
operations w.r.t. vis consistent with their chronological order. A
straightforward I for this store is the SC property formalized be-
low:

SC(E) = Vni,m2. {m,m2} S EA Aid(m1) <id(n2)

SElg

Unfortunately, I, = SC conflicts with all isolation specifications of
Fig. 7. For instance, consider a case where I.(E) = VT7;. E I-
RC(T3), a constraint that dictates all transactions execute under
Read Committed isolation. Imagine a sample execution where 7;’s
transaction is not yet committed when 72 is generated. Letting
71 be visible to 72 violates I., whereas not letting it be visible
violates I;. The only way to satisfy both invariants is to rule out all
executions that interleave the operations of one transaction with the
other, thereby enforcing serializability. In general, when [ conflicts
(but is not inconsistent) with I, the only way to enforce both is to
restrict concurrency. Clearly, this is unacceptable since it defeats
the very purpose of supporting weak isolation.

In practice, relational databases resolve such conflicts by pri-
oritizing weak isolation (thus, concurrency and performance) over
strong consistency, so the execution traces do not necessarily sat-
isfy SC. In particular, visibility constraints imposed by SC are vi-
olated iff they are found to be in conflict with the constraints im-
posed by a transaction’s isolation level. In the context of the afore-
mentioned example, 7; is not made visible to 772 because doing so
would violate I.. However, if 1. is redefined to true, then the store
makes 7 visible to 72 to honor its consistency commitment'®. We
generalize this approach to any I and I. by defining a maximum
visibility principle to determine an acceptable weakening of I, in
case of a conflict with I.. The principle requires the weakened con-
sistency guarantee (I,) of the store to enforce all visibility rela-
tionships imposed by the actual consistency guarantee (L), unless
enforcing such a relationship violates .. Formally:

Definition 5.1. I, : E — P is said to be a maximum visibility
weakening of [[; : E — P if and only if:

* T is weaker than I,: VE. I,(E) = I,(E), and

* In every trace E that satisfies I, and for every pair of effects 71
and 72 in E, if I (E) requires 71 to be visible to 72, then so does
I, (E) unless extending E with vis(n1,72) violates I

VE, m1,m2. Te(E) = (I (E) = E by 5 o) =
(IL(E) = Elk m1 2= 2 v —I(E U (0, {(n1,m2)})))
Applying this principle, we can weaken SC to obtain the fol-

lowing store trace invariant (I;) for an SC store whose isolation
constraints are captured by I.:

() = vn,m2.{m,n2},C EA A id(m) <id(n2)
= Elrm =52 v SLe(EU (0, {(m,72)}))

I; requires a trace E to satisfy the visibility constraints of SC except
in cases where they are in conflict with I.. Instantiating the param-
eter [ with I; A L. in Fig. 5 results in an operational semantics that

91 captures the combination of transaction-specific isolation constraints.

10 The term recency commitment [5] is often used in practice to capture the
best-effort nature of SC.
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op=n
(b) Subset model

p=n

(a) Replica model

Figure 10: In the replica model, operation op generates effect 7 at replica
R, which is then merged to Ra. If the store is CC, then R2’s state at the
merge event is same or larger than R1’s state at the generation event (the
difference is highlighted). In our subset model, op witnesses S1 C E.A
and generates 7), which is immediately added to E.A. A later operation may
witness So C E.A, and if the operation is CC and 7 € So, then it also
witnesses S1 (i.e., S1 C S2).

describes SC stores with on-demand weak isolation, such as pro-
vided by off-the-shelf relational databases. Similar approaches can
be employed to capture the semantics of other kinds of stores, such
as a causally consistent (CC) data store, as specific instantiations of
our operational semantics''.

51

Reasoning under weakly-consistent replication has received special
attention in recent work [30]. Our operational semantics and proof
system are general enough to admit replication as a special case of
our formulation, as we explain below.

The primary challenge in this setting is to ensure that the as-
sumptions made and guarantees enforced by an operation at one
replica carry over to other replicas that merge their effects, thus pre-
serving the overall integrity of the system. In prior work [30, 34],
this challenge is partly addressed by imposing restrictions on how
various replica states differ, i.e., by fixing a system model with
a stronger baseline consistency (CC) than EC. This unfortunately
restricts the reasoning approach from being applied to data stores
(e.g., [46, 49]) that provide guarantees weaker than causal consis-
tency, such as causal visibility or read-my-writes [52]. Causal con-
sistency is not baseline consistency in these stores because it is not
highly available [5].

Notably, our view of replication does not explicitly involve
replicas. Fig. 10 contrasts our model of weakly-consistent repli-
cation with a conventional replica-based model. Under our model,
the notion of a replica is subsumed by the concept of visibility; a
replica is defined by the subset (S) of global state (E.A) that an
operation witnesses. Constraints over replica states therefore man-
ifest as constraints over the visibility relation. For example, instead
of requiring the store to be causally consistent, an operation can
witness a causally consistent subset of the state; such demands can
be made via the trace invariant I. For a pre-condition (P) of the
operation to be useful, it has to be an assertion over every causally
consistent subset of the global state. Since any replica that even-
tually executes the operation has to expose one such subset (5),
the pre-condition is guaranteed to hold regardless of the replica.
There is however one problem with this explanation - by consider-
ing subsets of just one global state, it ignores the fact that the global
state (hence, the replica states) change during the execution of the
operation. To account for such changes, we might choose to distin-
guish between an effect generation event at one replica r1 and an
effect merge event at replica r2, requiring that non-conflicting op-
erations execute between these two events at r2, and that they pre-
serve certain invariants [30]. Instead, our framework folds all such

Weakly Consistent Replication

" Details of the CC instantiation are given in the supplementary material.

P : {-com(Wdl) A -com(Wd2) A B =k}

Py : {-com(Wd1l) A (—com(Wd2) =B=k) A
wrsto

com(Wd2) = Wd2 —— BAB =k — a2}
txn(Wdl){

¢4 : {-com(Wd2) == B=kAv3=k—al A
wrsto

(com(Wd2) = Wd2 —— B) A -—com(Wdl) A

com(Wd2) A Wd2 % Wdl = B = k — a2A
v3=k—a2—al}
B := v3
@5 : {(-com(Wd2) = B=k —al) A -com(Wdl) A

wrsto

com(Wd2) = Wd2 — BAB =k — al — a2}

}
Q1 : {(-com(Wd2) =B =k —al) A com(Wdl) A

com(Wd2) = B =k —al — a2}

Q : {com(Wdl) A com(Wd2) A B=k—al —a2}
Figure 11: Wd1 transaction decorated with assertions

machinery into a stability condition predicated on I (§4.1). Since
any change to the global state during the execution of the operation
is an interference, and P is required to be stable with respect to any
such interference, it follows that P is valid on every replica, thus
ensuring that assumptions made at a generation event is also valid
at the merge event.

5.2 Example

We now consider the proof of the example in Fig. 1 in greater
detail. Both withdraw transactions are run at SI isolation, hence 1.
is AE. E I- SI(Wd1) A E IF SI(Wd2). We assume an SC store, such
as a conventional RDBMS, whose store-specific trace invariant (Is)
is the maximum visibility weakening of SC w.r.t. I, as described
in §5. In concrete terms, this means that an effect added to E.A
by the current thread or a concurrent thread immediately becomes
visible to the subsequent operations unless we produce a witness
that such visibility violates I.. As usual, I is I, A I.. Note that
the language of our specifications is a decidable subset of the
first-order logic. In particular, our specifications and rely-guarantee
rules are carefully crafted to avoid generating proof obligations
with transitive closures and quantification over infinite domains.
The domain of assertions is often linear arithmetic, which is also
decidable. Consequently, the generated proof obligations can often
be discharged via an SMT solver.

Decorated parts of Wd1 relevant to the discussion are shown in
Fig. 11. Wd2 is similar and not shown. Temporary name v3 has been
introduced to capture the result of the RHS expression B-al. As-
sertions implicitly refer to the current execution (E), just as Hoare
triples implicitly refer to the current state. The context for propo-
sitions and the state for shared variables is also the implicit, i.e.,
we write ¢ instead of E IF ¢ and B = k instead of [E.A](B) = k.
The proposition k > al+a2 remains an invariant, hence elided.
The pre-condition P; of Wd1l accounts for the possibility of Wd2
committing before Wd1, writing k-a2 to B. Since neither Wd1 nor
Wd2 are committed at the beginning, the pre-condition P of the pro-
gram is extended with —~com(Wd1) A ~com(Wd2), from which P;
follows. The post-condition @)1 of Wd1 asserts different values for
B depending on whether or not Wd2 has already committed. It also
asserts that Wd1 has committed. The post-condition Q)2 of Wd2 (not
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shown) is similar, but with the roles of Wd1 and Wd2 exchanged. The
post-condition @ follows from Q1 A Q2, hence valid. It remains to
show that Wd1 satisfies its specification (Wd2 must also satisfy its
spec, but the proof is similar).

First, we focus on the sequential aspect of the proof and show
that the assertions that decorate Wd1 are indeed valid. We consider
the triple associated with the assignment to B for illustration. The
pre-condition ¢4 asserts different values for B and v3 depending
on whether or not Wd2 is committed. Inside Wd1, com(Wd2) may
mean that either Wd2 happened before Wd1 (hence can be visible
to all of Wd1), or that it committed concurrently with Wd1 (hence
cannot be visible to all of Wd2). Nonetheless, ¢4 only considers
the case when Wd2 — Wd1. As we show below, this is sufficient
to prove the post-condition ¢5, which appears to make a stronger
claim about the value of B. The proof follows from the RG rule
RG-ASGN for assignments, which allows us to easily conclude the
following about the execution state after the assignment:

wrsto

—com(Wd1l) A Wdl —— B A (—com(Wd2) =B =k —al) A

wrsto

(com(Wd2) = Wd2 —— B) A

(com(Wd2) AWd2 5> Wd1 = B =k —a2 AB =1k — a2 — al)

The rule also lets us assume that the execution satisfies trace invari-
ant (I), which asserts SI for both transactions. Since both transac-
tions now write to B, SI requires either Wd1 BLN Wd2, or Wd2 BN
Wd1. Since Wd1 is not yet committed (—com(Wd1)), SI, which sub-
sumes RC and requires only committed transactions be visible, pro-
hibits Wd1 =5 Wd2, allowing us the deduce Wd2 = Wd1. This lets
us derive com(Wd2) = B =k — a2 AB =k — a2 — al, allowing
us to prove the post-condition ¢s.

The second part of the proof is to show that assertions are stable
despite the interference from the concurrent thread executing Wd2.
We formalize such interference as a rely relation that describes the
semantics of Wd2 at the right level of abstraction. In particular, we
would like to capture two important facts about Wd2:

* If Wd2 commits, then it should have already written to B. This
fact is needed to show that Wd2 conflicts with Wd1, S0 that
SI(Wd1) property can be exploited to deduce Wd2 = Wdi
from com(Wd2) in the sequential proof.

* The value written to B is either k —al — a2 or k — al de-
pending on whether or not Wd1l has already committed. This
is clearly necessary to deduce the value of B before and after
Wd1l commits.

The resultant rely relation (R1) is shown below'?:

R = {(E,E')|—ElFcom(Wwdl) A (E' — E) IF com(Wd2)

=B=k—a2 A E/ |Fwd2 2 5
A EIF com(Wdi) A (E' — E) IF com(Wd2)
wrsto

=B=k—al—a2 A E' Fwd2 =B
A ¥Y(n € E'.A — E.A). txn(n) = Wd2}

For the sake of completeness, we also explicitly represent the fact
that all the effects added by R; are from Wd2. This is needed to
prove that an interference from Wd2 does not affect the local state
of Wdl.

The stability for ¢4 w.r.t. Ry is trivial to establish: if R, does
not commit Wd2, then the value of B is unaffected. If it commits
Wd2, then since Wd1 had already performed (read) operations that

cannot witness Wd2, we have Wd2 7\& Wd1, and since ¢4 only

makes assertions under the case Wd2 = Wd{, it is stable. For ¢,
the SI condition is used to show that any interference from Wd2 is

12We write (E' — E) IF com(Wd2) to express the property that Wd2 is not
committed in E, but committed in E’.

invalid. The proof proceeds on the same lines as the proof discussed
above, and is also discussed in detail in§2.

The final aspect of the proof is to show that any interference
from Wd1 is contained in its guarantee relation GG1, which is also
the rely relation Ro for Wd2. Since the implementation of Wd2 is
same as Wd1’s, Ro (hence GG1) is same as ]R1 shown above, but with
Wd2 and Wd1 interchanged. Continuing our focus on the assignment
statement, the guarantee proof requires us to show that if executing
the assignment takes the execution from E to E’, such that E’
satisfies I, then (E,E’) € Gi. The proof follows from the RG-
ASGN rule, which establishes that (a). the assignment statement
does not commit Wd2, and (b). it adds a write effect i such that
txn(n) = Wdl. The proofs for other triples of Wd1 can also be
constructed similarly. The combination of correctness proofs for
Wd1 and Wd2 yields a correctness proof for the program.

6. Case Studies

We present two case studies below that demonstrate the applicabil-
ity of our framework and its practical utility. Both examples target
Ruby-on-Rails applications, which are commonly used to interface
applications to database systems. To analyze these, and other simi-
lar open-source applications, we have developed a symbolic execu-
tion engine that compiles a Rails program to an abstract program in
an extended version of 7, along with some proof automation sup-
port."* The focus of our formal verification efforts are such trans-
lated 7 programs.

A video view counter. Our first application is a Rails implemen-
tation of a counter to count the number of views a video has gar-
nered on a video-sharing website like YouTube. The application
stores the video count in a MySQL database, and supports a read
operation (a database read transaction), and an increment opera-
tion (a read-increment-write sequence wrapped in a transaction).
The application is expected to preserve a monotonicity invariant,
namely that the view count should never appear to be decreasing.
However, the default Repeatable Read isolation level of MySQL
leads to anomalous executions - with 32 concurrent writers per-
forming single increments, and one reader issuing a constant stream
of reads, we observed 12 violations of monotonicity in 10 rounds.
We subsequently instantiated our reasoning framework for an SC
store with ANSI SQL isolation levels, and spent 5 man hours deter-
mining appropriate isolation levels needed to enforce the invariant.
In particular, we were able to formally prove that to preserve the in-
variant, writers need to execute using Serializable isolation, while
readers can execute using Read Uncommitted. Repeating the ex-
periments with this configuration led to no violations, as expected.
While executing all transactions at SER also prevents violations, it
led to an additional 113% increase in the latency of writes averaged
over 5 rounds with 32 concurrent writers. We repeated the exper-
iments with the same configuration on Postgres, and found no vi-
olations. However, Postgres’ isolation levels [40] are stronger than
ANSI SQL’s in non-trivial ways. We therefore formalized Postgres’
guarantees and repeated relevant parts of the proof to discover that
Postgres’ Repeatable Read is in fact sufficient for writers - an ob-
servation further validated through experiments. As usual, using
SER for all transactions also suffices, but on Postgres results in an
additional 47% increase in write latency.

To understand the effect of changing store consistency levels,
we re-implemented the counter as an op-based replicated data
type (RDT) [17, 44] on top of Cassandra bolted-on [7] with CC
and SC consistency levels (both on-demand; EC is default), and

13 Details can be found in the supplementary material. Source code of
our tools, applications and experiments, is also provided in the (non-
anonymous) supplementary.
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ANSI SQL isolation levels. Keeping the consistency level at EC,
we then repeated our experiments with committed reads and seri-
alizable increments - a combination which was proved to preserve
monotonicity on an SC store, but nonetheless observed monotonic-
ity violations. Under this instantiation, it is impossible to derive
the MonotonicVis (§3.1) property needed to show that successive
reads in a session witness monotonically increasing state. How-
ever, assuming CC for reads allowed us to complete the proof, and
recover the monotonicity invariant. In fact, we were able to com-
plete the proof even after relaxing the serializability requirement
for increments, just by changing the definition of the [S](X) (§3)
to return the value of the largest write-to-X instead of the latest
write-to- X in S. Thus, if the reads chose the largest-valued write
effect, instead of the latest write effect they witness, then counter
increments need not be serializable for reads to witness a mono-
tonically increasing count.'* We implemented this version of the
counter as an op-based RDT, which uses CC reads and EC incre-
ments, both un-isolated (i.e., Read Uncommitted), and obtained a
52% improvement in overall latency compared to the serializable
original.

Microblog. Our second set of experiments focused on a Twitter-
like microblogging application taken from [32]. An important in-
variant that must be preserved is referential integrity between mi-
croposts (tweets) and authors. The application enforces this invari-
ant entirely in user space by relying on database-backed transac-
tions (this behaviour is typical of Rails applications [9]). For in-
stance, the deletion of a user is carried out in a transaction that
also includes the deletion of microposts authored by the user. How-
ever, it is possible for concurrent observers to nonetheless witness
invariant violations. To quantify the likelihood of such anomalies,
we first populated a Postgres database with 1000 user accounts, in
which each user is associated with 50 microposts and 20 followers,
chosen uniformly at random. We then constructed experiments with
64 concurrent clients performing deletions and timeline reads of
randomly chosen users in a 1:7 ratio, and witnessed 250 violations
of referential integrity (the isolation level was left at the default
RC level for these experiments). To determine appropriate (correct)
isolation levels, we then instantiated our framework for an SC store
with various ANSI SQL isolation levels for user deletions and time-
line reads, and obtained a proof that RC is sufficient for deletions,
whereas reads require RR. The proof is immediately applicable for
MySQL, which implements ANSI SQL isolation levels. Repeating
our experiments for MySQL with this configuration resulted in no
violations (as expected), while yielding a 38% reduction in latency
compared to an SER configuration. Since Postgres’ isolation levels
are stronger than the corresponding ANSI levels, the RG-CONSEQ
rule (Fig. 9) lets us immediately deduce that the same choice of
isolation levels also work on Postgres.

Clearly, there exists significant diversity among the weak con-
sistency and isolation variants implemented on various real-world
data stores. More such variants have been developed in recent years
to meet the need for high availability (e.g., Parallel Snapshot Isola-
tion [47] (2011) or Non-Monotonic Snapshot Isolation [3] (2013)).
As more commercial weakly-consistent stores adopt various kinds
of transactional semantics, like Cassandra’s recently introduced
lightweight transactions, it is reasonable to expect new isolation
definitions to continue to be proposed. While it may be possible
to carefully engineer a reasoning framework for each combination
of consistency and isolation, such a strategy would lead to multi-
ple semantic definitions and proof systems with no obvious way to
compare and relate them. As illustrated here, having a parameter-
ized semantics and a proof framework built on top of it allows us
to support these variants as distinct, yet comparable, instantiations.

14 The trade-off is that the view count is now no longer accurate, although
it grows monotonically.

7. Related Work

Specifying weak isolation. Adya [1] specifies several weak iso-
lation levels in terms of dependency graphs between transactions,
and the kinds of dependencies that are forbidden in each case.
The operational nature of Adya’s specifications make them suit-
able for runtime monitoring and anomaly detection [18, 41, 53],
whereas the declarative nature of our specifications make them suit-
able for formal reasoning about program behaviour. Sivaramakrish-
nan et al. [46] specify isolation levels declaratively as trace well-
formedness conditions, but their specifications implicitly assume
a complete trace with only committed transactions, making it dif-
ficult to reason about a program as it builds the trace. Cerone et
al. [20] specity isolation levels with atomic visibility, but their
specifications are also for complete traces. Like ours, all the afore-
mentioned specification frameworks use the vocabulary introduced
in [17]. However, none of them are equipped with a reasoning
framework that can use such specifications to verify programs un-
der weak isolation.

Reasoning under weak isolation 1In [25], Fekete et al. propose a
theory to characterize non-serializable executions that arise under
SI. Fekete [24] also proposes an algorithm that allocates either SI
or SER isolation levels to transactions while guaranteeing serializ-
ability. In [19], Cerone et al. improve on Adya’s SI specification
and use it to derive a static analysis that determines the safety of
substituting SI with a weaker variant called Parallel Snapshot Iso-
lation [47]. These efforts focus on establishing the equivalence of
executions between a pair of isolation levels, without taking ap-
plication invariants into account. Bernstein et al. [13] propose in-
formal semantic conditions to ensure the satisfaction of applica-
tion invariants under weaker isolation levels. All these techniques
are tailor-made for a finite set of well-understood isolation levels
(rooted in [12]) under a pre-defined store consistency model.

Reasoning under weak consistency There have been several re-
cent proposals to reason about programs executing under weak
consistency [2, 8, 10, 30, 35, 36]. All of them assume a sys-
tem model that offers a choice between a coordination-free weak
consistency level (e.g., eventual consistency [2, 8, 10, 35, 36]) or
causal consistency [30, 34]). All these efforts involve proving that
atomic and fully isolated operations preserve application invariants
when executed under these consistency levels. In contrast, we admit
weakly-isolated transactions, and our system model accepts speci-
fications of consistency and isolation levels drawn from an expres-
sive logic. Gotsman et al. [30] adapt Parallel Snapshot Isolation
to a transaction-less setting by interpreting it as a consistency level
that serializes writes to objects; a dedicated proof rule is developed
to help prove prove program invariants hold under this model. By
parameterizing our proof system over a gamut of weak isolation
specifications, we avoid the need to define a separate proof rule for
each new isolation level we may encounter.

Reasoning under relaxed memory The reasoning mechanisms
used to describe and prove properties about weakly-isolated trans-
actions bear some resemblance to those used to formalize relaxed
memory behaviour [11]. Ridge [42] generalizes rely-guarantee rea-
soning to the x86-TSO memory model. Likewise, Vafeiadis et
al. [51] generalize concurrent separation logic (CSL) [50] to the
C11 relaxed memory model. Ferreira et al. [27] propose a param-
eterized operational semantics for relaxed memory models, but the
parameterization is over a relation between relaxed memory pro-
grams and related SC programs. Demange et al. [22] present a
buffered memory model for Java that defines an axiomatic defini-
tion for the JMM in terms of memory reorderings, and an opera-
tional instantiation consistent with the TSO memory model.
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