
CSCI 7000-001 Distributed Systems Verification
Lec 1: Introduction

CU Programming Languages  
& Verification

1

Introductions

• About me: Gowtham Kaki
• Assistant Professor, Dept. of Computer Science

• New to CU Boulder - Joined Fall 2020

• PhD from Purdue University, 2019.

• Thesis: Automatic Reasoning Techniques for Non-Serializable Data-
Intensive Applications

• Research: Programming Languages and Formal Methods. Applications in
Concurrent and Distributed Systems.

• Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

• Enjoy reading pop-science books (recent: Emperor of All Maladies) and
biographies/memoirs (recent: Hillbilly Elegy). Amateur cartoonist and
racquetball player. Maker of terrible puns.

• About you?

2

• Name • Academic program • Research interests • Other interests

About the course

• Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

• We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

• Why do we need formal mathematics?

3

About the course

• Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

• We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

• Why do we need formal mathematics?

“Writing is nature’s way of letting you know how sloppy your thinking is;
Mathematics is nature’s way of letting you know how sloppy your writing is;

Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.”

Leslie Lamport

4

About the course

• Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

• We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

• Why do we need formal mathematics?

“Writing is nature’s way of letting you know how sloppy your thinking is;
Mathematics is nature’s way of letting you know how sloppy your writing is;

Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.”

Leslie Lamport
• Distributed systems are complex beasts.

• Sloppy thinking is easy.

• Sloppy thinking ⟹ terrible systems.

5

Course structure

• Seminar-style course:

• Part 1: Instructor-led lectures (10-12).

• Part 2: Student-led paper presentations and discussions (≥ 2×#students).

• Lectures review the foundations of distributed systems; introduce relevant formal methods & tools.

• Logical Time & Vector Clocks

• Asynchronicity

• Consensus

• Safety and Liveness

• Fault tolerance

• FLP & CAP Impossibilities

• Paxos, Raft etc

• Byzantine faults

• State transition systems

• Temporal Logic of Actions

• Inductive reasoning

• Program Logics

• Refinement Proof Technique

• TLA+/PlusCal

• IVy

• Papers presentations review the state-of-the-art in scientific approach to building distributed systems.
• Tentative list of papers is posted on the course website. List evolves as the semester progresses.

6

Grading

Item Weight

Programming assignment (TLA/PlusCal or IVy) 25%

Research paper presentations 30%

Exploratory project based on a research paper 30%

Contributing to paper discussions 15%

7

Grading

• Important: the intent of grading is not to evaluate you, but to incentivize learning.

• Partial credit shall be awarded wherever possible.

• Efforts to think creatively and try something new shall be rewarded even if the outcome is not a total
success.

• Let’s learn together and have fun!

Item Weight

Programming assignment (TLA/PlusCal or IVy) 25%

Research paper presentations 30%

Exploratory project based on a research paper 30%

Contributing to paper discussions 15%

8

Introduction to distributed systems & formal reasoning

9

Distributed System

• System of interconnected computers coordinating to execute a computational task.

10

Distributed System

• System of interconnected computers coordinating to execute a computational task.

• In an ideal world:

• Nodes never crash.

• Network never fails (latency is finite and known).

• No message is ever lost or corrupted.

11

Distributed System

• System of interconnected computers coordinating to execute a computational task.

• In an ideal world:

• Nodes never crash.

• Network never fails (latency is finite and known).

• No message is ever lost or corrupted.

• Characterized by partial failures
• Sub-components can fail independently. • Worse: It’s impossible to reliably detect failures!

12

Distributed System

• System of interconnected computers coordinating to execute a computational task.

• Characterized by partial failures
• Sub-components can fail independently. • Worse: It’s impossible to reliably detect failures!

13

How to handle failures?

Non answer: terminate the program on every failure.

14

How to handle failures?

Non answer: terminate the program on every failure.

15

Failure scenarios accumulate

16

Failure scenarios accumulate

• send(R2,..) fails.

• send(R2,..) succeeds, but send(R3,..) fails

• send(R2,..) and send(R3,..) succeed, but send(R4,..) fails.

Scenarios:

17

Failure scenarios multiply

18

Failure scenarios multiply

19

Failure scenarios multiply

• Exhaustively testing a non-trivial distributed system is practically impossible!

20

Failure scenarios multiply

• Exhaustively testing a non-trivial distributed system is practically impossible!

• Debugging is nightmarish!

From Leesatapornwongsa et al, OSDI’14:

14 steps!

21

Testing vs Formal Verification

• E.g., “slow” multiplication.

• slow_multiply(m,n) = m×n

22

• E.g., “slow” multiplication.

• slow_multiply(m,n) = m×n

Testing vs Formal Verification

23

Testing vs Formal Verification

24

Testing vs Formal Verification

25

26

Testing vs Formal Verification

27

Testing vs Formal Verification

• E.g., “slow” multiplication.

• Prove slow_multiply(m,n) = m×n

Testing vs Formal Verification

28

Formal Verification for Distributed Systems
• How do we formalize a distributed system/program?

29

Formal Verification for Distributed Systems

• What are the properties of interest? How are
they specified?

slow_multiply(m,n) = m×n

???

• How do we formalize a distributed system/program?

30

Formal Verification for Distributed Systems

• What are the properties of interest? How are
they specified?

???

• How do we prove those properties
(automatically)?

• How do we formalize a distributed system/program?

Induction

31

Formal Verification for Distributed Systems

• What are the properties of interest? How are
they specified?

• How do we prove those properties
(automatically)?

• How do we formalize a distributed system/program?

• Effective testing strategies

• Design principles

• Domain-specific reasoning techniques

+
This course!

32

