CSCI 7000-001 Distributed Systems Verification
Lec 1: Introduction

MA

CU Programming Languages
& Verification

1

Introductions

e About me: Gowtham Kaki

* Assistant Professor, Dept. of Computer Science
e New to CU Boulder - Joined Fall 2020
 PhD from Purdue University, 2019.

* Thesis: Automatic Reasoning Techniques for Non-Serializable Data-
Intensive Applications

 Research: Programming Languages and Formal Methods. Applications in
Concurrent and Distributed Systems.

 Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

* Enjoy reading pop-science books (recent: Emperor of All Maladies) and
biographies/memoirs (recent: Hillbilly Elegy). Amateur cartoonist and
racquetball player. Maker of terrible puns.

 About you?

 Name « Academic program Research interests * Other interests

2

About the course

Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

Why do we need formal mathematics?

About the course

Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

Why do we need formal mathematics?
“Writing is nature’s way of letting you know how sloppy your thinking is;

Mathematics is nature’s way of letting you know how sloppy your writing is,
Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.” 2 .

Leslie Lamport

About the course

* Key learning objective is to appreciate and internalize a scientific approach to building and reasoning
about distributed systems.

* We shall learn formal mathematics to reason about distributed systems, and apply it to design novel
systems.

 Why do we need formal mathematics?
“Writing is nature’s way of letting you know how sloppy your thinking is;

Mathematics is nature’s way of letting you know how sloppy your writing is,
Formal mathematics is nature’s way of letting you know how sloppy your mathematics is.” 2 .

Leslie Lamport
* Distributed systems are complex beasts.

* Sloppy thinking is easy.

« Sloppy thinking = terrible systems.

Course structure

* Seminar-style course:
 Part 1: Instructor-led lectures (10-12).

e Part 2: Student-led paper presentations and discussions (= 2x#students).

* |ectures review the foundations of distributed systems; introduce relevant formal methods & tools.

« Asynchronicity - Safety and Liveness State transition systems « TLA+/PlusCal

- Logical Time & Vector Clocks * FLP & CAP Impossibilities Temporal Logic of Actions - |Vy

» Consensus » Paxos, Raft etc Inductive reasoning

Program Logics

+ Fault tolerance - Byzantine faults

Refinement Proof Technique

* Papers presentations review the state-of-the-art in scientific approach to building distributed systems.

 Tentative list of papers is posted on the course website. List evolves as the semester progresses.

0

Grading

Programming assignment (TLA/PlusCal or 1Vy) 25%
Research paper presentations 30%
Exploratory project based on a research paper 30%

Contributing to paper discussions 15%

Grading

Programming assignment (TLA/PlusCal or 1Vy) 25%
Research paper presentations 30%
Exploratory project based on a research paper 30%
Contributing to paper discussions 15%

Important: the intent of grading is not to evaluate you, but to incentivize learning.
Partial credit shall be awarded wherever possible.

Efforts to think creatively and try something new shall be rewarded even if the outcome is not a total
SUCCESS.

Let’s learn together and have fun!

Introduction to distributed systems & formal reasoning

Distributed System

* System of interconnected computers coordinating to execute a computational task.

10

Distributed System

* System of interconnected computers coordinating to execute a computational task.

 |n an ideal world:
5 ¥ * Nodes never crash.
-

* Network never fails (latency is finite and known).

v \/

“?\\

11

Distributed System

* System of interconnected computers coordinating to execute a computational task.

e |In an ideal world:

5. (LQF‘ 3 * Nodes never crash.
AP
/ \ Network never fails (latency is finite and known).
/ \ « No message is ever lost or corrupted.

* Characterized by partial failures

 Sub-components can fail independently. Worse: It’s impossible to reliably detect failures!

12

Distributed System

* System of interconnected computers coordinating to execute a computational task.

* Characterized by partial failures

 Sub-components can fail independently. Worse: It’s impossible to reliably detect failures!

13

How to handle failures?

Non answer: terminate the program on every failure.

14

How to handle failures?

Non answer: terminate the program on every failure.

~, resp = send(R[2],msg);

7 switch (resp->errno) {

case SEND_FAILED:

// R2 never got the msg.
case TIMEOUT:

// R2 may or may not have received the msg.
case RETRY:

// R2 got the msg, but could not respond
// due to a transient internal error.
case INVALID_REQ:

// R2 received corrupt or invalid msg.
case INVALID_RES:

// R2's response 1s corrupt or invalid.
case SUCCESS:

// msg sent and response received

15

Fallure scenarios accumulate

o . for(i=2; i<5; i++) {
S~ RZ/ resp[1] = send(R[1], msg[i]);
} //....
}

16

Fallure scenarios accumulate

—_ " 0 for(1=2; 1<5; 1++) {

resp[i] = send(R[1], msg[i]);
//. ...

Scenarios:
 send(RZ, . .) fails.

 send(R2Z, . .) succeeds, but send(R3, . .) fails
 send(RZ,..) and send(R3, . .) succeed, but send(R4, . .) fails.

\m 4 %C ¢ Mﬁ"vﬁ ‘2 4

17

Failure scenarios multiply

p\l 6 &
Cem d KL,’M.B

18

Failure scenarios multiply

X N
(.o
resp = send(R[2],msg); se C ‘D SR .
switch (resp->errno) { o resp = send(R[2],msg);
h%/’}iase SEND_FAILED: switch (resp->errno) {

case SEND_FAILED:

// R2 never got the msg.
case TIMEOUT:

// R2 may or may not have received the msg.
case RETRY:

// R2 got the msg, but could not respond
// due to a transient internal error.
case INVALID_REQ:

// R2 received corrupt or invalid msg.
case INVALID_RES:

// R2's response is corrupt or invalid.
case SUCCESS:

// msg sent and response received

// R2 never got the msg. J//’
& case TIMEOUT: £¥”
mwfj // R2 may or may not have received the msg.

case RETRY:

M//’l // R2 got the msg, but could not respond
// due to a transient internal error.

my’j/ case INVALID_REQ:
// R2 received corrupt or invalid msg.

\M”g/f case INVALID_RES:
// R2's response is corrupt or invalid.
case SUCCESS:
// msg sent and response received

19

Failure scenarios multiply

 Exhaustively testing a non-trivial distributed system is practically impossible!

20

Failure scenarios multiply

* Exhaustively testing a non-trivial distributed system is practically impossible!

* Debugging is nightmarish!

From Leesatapornwongsa et al, OSDI’14:

Z.ooKeeper Bug #335: (1) Nodes A, B, C start with
latest txid #10 and elect B as leader, (2) B crashes,
(3) Leader election re-run; C becomes leader, (4)
Client writes data; A and C commit new txid-value
pair {#11:X}, (5) A crashes before committing tx
#11, (6) C loses quorum, (7) C crashes, (8) A re-
boots and B reboots, (9) A becomes leader, (10)
Client updates data; A and B commit a new txid-
value pair {#11:Y}, (11) C reboots after A’s new tx
commit, (12) C synchronizes with A; C notifies A of
{#11:X}, (13) A replies to C the “diff” starting with
tx 12 (excluding tx {#11:Y}!), (14) Violation: per-
manent data inconsistency as A and B have {#11:Y}
and C has {#11:X}.

21

\

y

> 14 steps!

Testing vs Formal Verification

 E.g., “slow” multiplication.

// Assume m>=0Q and n>=0/"
int slow_multiply(int n'
int s =0, 1 = 0;
while(i<n){
S =S + m;
1 =1+ 1;
}

return s,

«~Slow_multiply(m,n) = mxn >

22

Testing vs Formal Verification

 E.g., “slow” multiplication.
pAn "

// Assume (m>=0 _and n>=0)
int slow_multiply(int m, int n) {
int s.= 0, 1-= 0;
while(i<n){
S =S + m;

1 =1+ 1;

}

return s;

e slow_multiply(m,n) = mxn

Testing vs Formal Verification

Testing vs Formal Verification

Testing vs Formal Verification

Testing vs Formal Verification

}’ é R AN Lz2mX v
} ,2"’\’1 (F e 4he £ { ?"’fm ’

Testing vs Formal Verification

LA T't;k Al
» E.g., “slow” multiplication. /"
j#
// Assume m>=0 and n>=0
int slow_multiply(int m, 1int n) {
int s =0, 1 =0;
while(i<n){
S =S + m;
1 =1+ 1;
s o
return s; ’
¥
' o) <
* Prove slow_multiply(m,n) = mxn ([) Bokc Co%e @ om 2o A ™23 A £20 A 1227

=

> il A 8=

(2-) ﬁnwﬂ'\k Cosse . | < o A SN SR NE RS
Cred &maﬁ%&ﬁ}% — [< N ST

Formal Verification for Distributed Systems

« How do we formalize a distributed system/program?

// Assume m>=0 and n>=0 < [LoV
int slow_multiply(int m, int n) {
int s =0, 1 = 0;
while(i<n){ —
S =S + m; I
1=1+ 1;
I D vL

resp = send(R[2],msg);

switch (resp->errno) {
case SEND_FAILED:
// R2 never got the msg.
case TIMEOUT:

// R2 may or may not have received the msg.

case RETRY:

}

return s;

resp = send(R[2],msg);
switch (resp->errno) { Dot
case SEND_FAILED: A
// R2 never got the msg.
case TIMEOUT:
// R2 may or may not have received the msg.
case RETRY:

// R2 got the msg, but could not respond
// due to a transient internal error.
case INVALID_REQ:

// R2 received corrupt or invalid msg.
case INVALID_RES:

// R2's response is corrupt or invalid.
case SUCCESS:

// msg sent and response received

// R2 got the msg, but could not respond
// due to a transient internal error.
case INVALID_REQ:

// R2 received corrupt or invalid msg.
case INVALID_RES:

// R2's response is corrupt or invalid.
case SUCCESS:

// msg sent and response received

29

Formal Verification for Distributed Systems

« How do we formalize a distributed system/program?

 What are the properties of interest? How are
they specified? Col

N
v \J e /

L~

30

// Assume m>=0 and n>=0

int slow_multiply(int m, int n) {

int s =0, 1 = 0;

while(i<n){

S =S + m;
1 =1+ 1;
return s,

slow_multiply(m,n)

mxn

\\“"“”"————\\\v’—"“‘--—_——~f”””

resp = send(R[2],msg);
switch (resp->errno) {
case SEND_FAILED:
// R2 never got the msg.
case TIMEOUT:
// R2 may or may not have receive
case RETRY:

// R2 got the msg, but could not respon

// due to a transient internal error

case INVALID_REQ:

// R2 received corrupt or invalid ms

case INVALID_RES:

// R2's response is corrupt or inva

case SUCCESS:
// msg sent and response received

(de— 4

resp = send(R[2],msg);
switch (resp->errno) {

case SEND_FAILED:
// R2 never got the msg.
case TIMEOUT:

// R2 may or may not have received the msg.

case RETRY:

// R2 got the msg, but could not respond
// due to a transient internal error.
case INVALID_REQ:

// R2 received corrupt or invalid msg.
case INVALID_RES:

// R2's response is corrupt or invalid.
case SUCCESS:

// msg sent and response received

277

Formal Verification for Distributed Systems

« How do we formalize a distributed system/program?

// Assume m>=0 and n>=0
int slow_multiply(int m, int n) {
int s =0, 1 = 0;

 \What are the properties of interest”? How are whileCi<n){

they specified? L teien
return s; Induction

* How do we prove those properties
(automatically)?

<—>

resp = send(R[2],msg); resp = send(R[2],msg);

switch (resp->errno) { S
case SEND_FAILED: switch (resp->errno) {
case SEND_FAILED:

// R2 never got the msg.
case TIMEOUT: // R2 never got the msg. 7 ? 7
// R2 may or may not have received the msg. case TIMEQUT: . e o o
case RETRY: // R2 may or may not have received the msg.
// R2 got the msg, but could not respond case RETRY:
// due to a transient internal error. // R2 got the msg, but could not respond
case INVALID_REQ: // due to a transient internal error.
// R2 received corrupt or invalid msg. case INVALFD-REQZ . .
case INVALID_RES: // R2 received corrupt or invalid msg.
// R2's response is corrupt or invalid. case INVALID_RES: . ‘
case SUCCESS: // R2's response is corrupt or invalid.
// msg sent and response received case SUCCESS: ‘
} // msg sent and response receive d

Formal Verification for Distributed Systems

How do we formalize a distributed system/program?

What are the properties of interest”? How are
they specified?

How do we prove those properties
(automatically)?

> This course!
+

Effective testing strategies

Design principles

Domain-specific reasoning techniques y,

32

