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Abstract
Vulnerability and exploit analysis are at the heart of soft-
ware security research and practice. However, a formalization
framework for dissecting the cause, development, and impact
of common software errors has been missing. To address this
gap, we introduce Lancet, a formalization framework that
reliably tracks three distinct types of ownership within its
operational semantics that can be used to identify and differ-
entiate between various types of vulnerabilities and exploit
primitives even in the presence of memory corruption. Addi-
tionally, we developed two downstream tools, FCS and EPF,
to demonstrate how security analysts can use Lancet for de-
tailed crash and exploit analysis. FCS serves as a fast crash
triaging tool, aiding patch synthesis in our system, which was
selected as one of the winning teams in the DARPA AIxCC
semi-final, while EPF fingerprints the transition of exploitation
primitives to facilitate exploit analysis. Experiment results
show that both tools are efficient and effective.

1 Introduction

Investigating and understanding vulnerabilities and exploits
have long been fundamental to research and practice in soft-
ware security, driving advances in root cause analysis, ex-
ploitability assessment, patch development, defense design
and evaluation, and more. Yet, despite the many techniques
developed and deployed, a formalization framework for sys-
tematically studying the causes, development, and impacts of
vulnerabilities and exploits has been missing.

Current classification frameworks like the Common Weak-
ness Enumeration (CWE) and ATT&CK catalog vulnerabili-
ties in natural language, lacking the formality needed to pro-
vide analysis guarantees. Previous efforts have aimed to for-
mally define vulnerabilities and reason about the presence or
absence of bugs [3, 24–27, 44]. However, the program seman-
tics proposed in these works are targeted at verifying program
correctness or detecting vulnerabilities, where analyses stop
once a bug is found, and cannot progress beyond a vulnera-
bility. They are therefore not well-suited for the analysis of

exploits where multiple types of security violations are often
combined and chained.

To bridge this gap, we propose a formalization frame-
work, Lancet, to formally define common memory corruption
vulnerabilities, which account for over 70% of vulnerability
fixes [38]. In addition to reasoning about concrete memory
contents, Lancet reliably tracks three different types of own-
ership - cell owner, value owner, and pointee owner - that
capture the mutual relationship between memory cells, in
terms of operational semantics. These pieces of information
are sufficient to capture both spatial and temporal memory
safety violations, even in the presence of memory corruption.
Lancet includes an extensible set of ownership 1 violation
conditions to identify and distinguish between types of vul-
nerabilities.

To demonstrate how security analysts can leverage Lancet
for dissecting crashes and exploits, we developed two down-
stream tools to showcase its utility. The first tool, FCS, is
a fast crash triaging system designed to provide more reli-
able, accurate, and informative crash details than the widely
used Address Sanitizer (ASan) [15, 33]. We deployed FCS in
our winning Cyber Reasoning System (CRS) in the DARPA
AIxCC semi-final [12] to prompt a Large Language Model
to synthesize effective patches. The second tool, EPF, finger-
prints the transitions of exploitation primitives to ease exploit
analysis. EPF extends the vulnerability definitions in Lancet
to formally define common exploitation primitives and tech-
niques.

We evaluated Lancet and its two downstream tools FCS
and EPF, using 116 test cases, including vulnerabilities from
top-starred real-world programs and DARPA AIxCC semi-
final challenge projects, and exploitation code from how2heap
project, CTF challenge solutions, Juliet Test Suite [22], and
public exploits. The evaluation results show that our tools
can finish analysis for most cases in 20 seconds. In compari-
son with ASan, FCS avoids missing corruptions and reports
correctly and informatively for almost all cases. EPF addition-

1Distinct from Rust ownership rules (See Section 3.1)
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ally fingerprints primitive transition in exploits, a capability
lacking in tools like ASan that are meant to analyze until a
vulnerability is found. Further, FCS’s more accurate and infor-
mative crash triaging effectively facilitates the synthesis of
working patches.

In summary, this work makes three key contributions:

• Introducing a formalization framework, Lancet, for dis-
secting memory corruption vulnerabilities and exploits.
See Section 3.

• Demonstrating the utility of Lancet through the develop-
ment and application of two downstream tools for crash
triaging and patch synthesis prompting, and exploitation
primitive fingerprinting. See Section 4.

• Open-source implementation of Lancet and its down-
stream tools for x86, along with a comprehensive eval-
uation showing their efficiency and effectiveness. See
Section 5 and 6.

2 Background and Related Work

In this section, we will discuss prior works on downstream ap-
plications that can be developed under our proposed Lancet
and review related formalization efforts over the past decade.

2.1 Crash Triaging
The root cause of a program crash may be separated from the
crash point by tens of thousands of instructions [40]. Thus,
triaging tools generally fall into two categories: sanitizers,
which report crash-related information in situ, and diagnostic
tools, which are designed to locate and explain the root cause.

Sanitizers. Sanitizers are widely used by fuzzing tools due
to their ability to detect the most common and exploitable
types of corruption. Prominent sanitizers include Address
Sanitizer (ASan) [15], Memory Sanitizer (MemSan) [16], and
Undefined Behavior Sanitizer (UBSan) [8]. ASan and Mem-
San utilize poisoned redzones, instrumentation, and a runtime
library, whereas UBSan detects undefined behaviors of C/C++
language by instrumenting heuristic checks.

While sanitizers are useful for detecting corruption, prior
research [28, 35] has disclosed that their reports can some-
times be incorrect and misleading. Therefore, they cannot
be reliably used for tasks that require more precision such
as crash deduplication, reproduction, and manual debugging.
Additionally, they offer limited insights into the root cause of
crashes. We will further showcase this in our evaluation.

Root Cause Diagnosis. To reduce human efforts, tools
have been developed to automate root cause analysis, such
as POMP [40], RETracer [11], REPT [10], DEEPVSA [17].
These tools are based on reverse execution and backward
taint analysis. For example, REPT and POMP analyze core
dumps and Intel PT traces to highlight instructions that have
data dependency with the crashing instruction. Therefore,

naturally, they cannot diagnose situations where there is no
direct data flow between the corruption site and the actual
root cause, as discussed in Aurora [4]. Instead, Aurora first
produces a diverse set of inputs and performs a statistical
reasoning to synthesize predicates that describe the specifics
under which a vulnerability is triggered, as explanation of
root cause. Aurora’s main drawbacks are the prolonged time
needed to generate diverse inputs and the lack of guarantees
about the accuracy of generated predicates. Igor [21] resem-
bles Aurora by using a fuzzing procedure to minimize PoC’s
execution traces and prune test cases to extract the core be-
havior necessary to trigger the crash.

In contrast, our work Lancet lays out formal semantics
and definition of vulnerabilities that can be used to provide
guarantees for analyses. In the evaluation, we will showcase
how its downstream tool FCS, a fast crash triaging system
used during the DARPA AIxCC semi-final, provides reliable,
accurate, and informative crash details.

2.2 Exploit Analysis

Vulnerability exploitation is generally a process of escalating
primitives - a term to describe corruption capabilities achieved
during an exploit. This process typically follows three steps.
First, the exploit triggers a vulnerability, causing an initial cor-
ruption primitive. Then, this corruption is developed through
manipulation techniques such as heap spraying [39], heap
grooming [2], and stack pivoting [9] to tamper with sensi-
tive data like function pointers. This step grants the exploit
more advanced corruption primitives, such as control flow hi-
jacking, invalid free, memory overlap, and arbitrary read and
write. Finally, the exploit leverages these advanced primitives
to bypass protections and persist attacks.

Despite this general workflow, each exploit’s details are
highly intricate due to the complexity and the diversity of
different vulnerabilities. As a result, investigating exploit in-
ternals, particularly primitive transitions, is largely a manual
process, as shown by Project Zero’s blogs [42, 43] and white
hat hackers’ writeups [30].

Some automated exploit generation techniques incorpo-
rate limited fingerprinting elements for specific aspects of the
workflow. For example, KOOBE [6] uses sanitizers’ report
to depict the corruption capability of a kernel vulnerability.
SLAKE [7] applies SMT constraints to profile objects contain-
ing sensitive data. MAZE [37] models changes in heap layout
using the Diophantine equation. HeapHopper [14] employs
model checking to find weaknesses in heap implementations
(a.k.a., houses). ArcHeap [41] abstracts heap exploitation and
uses heuristics to classify the impact of an exploit primitive.

So far, there is no formalization framework or downstream
tool specially designed to identify exploitation primitives and
fingerprint their transitions. Our work Lancet and its down-
stream tool EPF aim to address this gap.
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2.3 Vulnerability and Exploit Formalization

The Common Weakness Enumeration (CWE) and ATT&CK
frameworks provide a classification of vulnerabilities, but
their descriptions are in natural language, lacking the for-
mality needed to provide any analysis guarantees. Other
work, such as the recent work into Incorrectness Separation
Logic [24,31,32], provides formal descriptions of program in-
correctness. This work can then be used to formally describe
vulnerabilities, which are fundamentally incorrect program
behaviors. These under-approximate formalizations can be
used to prove no-false-positive theorems, ensuring that any
detected vulnerabilities in a program are real vulnerabilities.
However, they provide no guarantees that all vulnerabilities
in a program are detected.

In contrast, other works, including Vellvm [44], SLAyer [3],
and CompCert [26], focus on verifying or preserving pro-
gram correctness, including the absence of vulnerabilities.
For example, the semantics of Vellvm are used to verify the
correctness of a compiler transformation that inserts bounds
checks by verifying that no stuck state corresponding to a
spatial memory safety violation can be reached [44]. Formal-
izations focused on program correctness support sound proofs
of correctness, ensuring that any verified program does not
contain (certain classes of) vulnerabilities. However, these
over-approximate formalizations do not guarantee that all pro-
grams without vulnerabilities will be deemed safe, meaning
they emit false positives.

The LancetISA semantics introduced in Section 3.3 are
over-approximate with respect to ownership information, and
therefore can similarly be used to formalize program cor-
rectness. However, the vulnerability rules introduced in Sec-
tion 3.4 allow for detecting the presence of granular vulner-
abilities including out-of-bound writes and use-after-frees,
more akin to the fine-grained error definitions, such as null
pointer exceptions, used in [24]. Regardless of whether prior
works formally define vulnerabilities or program correctness,
these works all rely on formal semantics that are only con-
sistent until a corruption occurs. For example, Vellvm’s se-
mantics dictate that a double free causes the machine to en-
ter a stuck state from which it cannot progress [44] while
CompCert’s semantics define free only in the case that the
target memory has not yet been freed. Reasoning about ex-
ploits requires reasoning about program behavior after these
kinds of corruptions occur. To the best of our knowledge, the
LancetISA semantics are novel in their support for reasoning
about program behavior even after corruptions occur.

3 Lancet- the Formalization Framework

In this section, we present Lancet, a formalization frame-
work that reliably track three different types of ownerships of
memory cells. We also define various types of vulnerabilities
with CWE-IDs under this framework.

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

Figure 1: The cell owner, value owner, pointee owner of mem-
ory cells (in dark) hosting the pointer p (subject A) and the
heap object (subject B) right after heap allocation.

3.1 Motivation
To start, we informally describe several common memory
vulnerabilities and exploitation techniques, highlighting their
shared characteristics and illustrating the core concept behind
Lancet.

Out-of-bound access (CWE-125 and CWE-787) occurs
when memory access exceeds the boundary of a memory ob-
ject, a boundary that separates memory cells belonging to
distinct subjects. A “subject” in this context is used to dis-
tinguish semantic chunks of memory which can be a stack
variable, a global variable, a heap object, or a field in a struc-
tural variable. Uninitialized read (CWE-457) arises when a
read memory cell contains a residual value from a different
subject than the memory cell’s owner subject. Use-after-free
(CWE-416) happens when a dangling pointer is dereferenced.
Initially, the pointer points to a memory cell owned by a spe-
cific subject, but before the pointer is dereferenced, the heap
allocator reassigns this cell to another subject - either the
allocator itself or another heap object if memory is already
recycled. In this sense, there is no so-called “freed” mem-
ory; rather it is the subject’s ownership of the memory that
expires. The similar concept applies to stack-use-after-scope
(CWE-562), where a stack variable is accessed after the func-
tion has returned. The commonality among these memory
vulnerabilities lies in ownership violations.

From this perspective, the progression of an exploit is to
amplify the initial violation introduced by a corruption vul-
nerability into increasingly powerful violations, by targeting
memory cells with sensitive data. For example, in the House
of Einherjar, an off-by-one overflow write first tampers with
the metadata header of heap chunks with a NULL byte. This
initial violation causes chunks to consolidate, creating a subse-
quent violation: the same memory cells within one chunk are
simultaneously “owned” by an active subject and the heap al-
locator. This violation further escalates when the consolidated
chunk is recycled to store heap objects containing function
pointers, ultimately enabling an Address Space Layout Ran-
domization (ASLR) bypass.

Our Lancet formalization framework is designed to iden-
tify these vulnerabilities and exploitation primitives by rea-
soning about ownership transfer and recognizing ownership
violations. In Lancet, we differentiate among three types of
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ownership. Figure 1 demonstrates this concept using heap
allocation as an example. Informally, when a heap object is
allocated, it becomes the cell owner of all memory cells that
host the object - cell owner = {B}. However, the values stored
in these cells still belong to the allocator or an expired subject
- the value owner, as no new value has yet been written to the
object. If the program attempts to read from these cells at this
stage, it triggers an uninitialized read as the cell owner and
the value owner are not consistent.

Further, the pointer to these memory cells, returned by
malloc, can be stored in another set of cells. The pointee
owner of the pointer’s cells is the newly allocated heap object,
indicating a reference relationship - pointee owner = {B}. Put
another way, the pointee owner tracks the subject the pointer
pointed to when it was created (or when the pointer is re-
assigned for the sake of rigor). Intuitively, when a pointer
accesses memory, the pointee owner of the pointer should be
the same as the cell owner of the accessed cells. Otherwise, the
pointer is referencing an incorrect, or stale, memory location.

Additionally, at any time, given a memory cell, it is sup-
posed to have at most one cell owner, one value owner, and
one pointee owner. Any deviation from this indicates that the
cell is corrupted. In Section 3.4, we will detail the various
causes of such corruption.

Note that, though Lancet and the Rust language both use
the term “ownership”, the concept differs between them. In
Rust, the ownership is a language feature that programmers
must adhere to for managing how values are accessed. Cou-
pled with the borrow checker and the compiler enforced safety,
Rust ensures that memory safety is not violated at the code
level. The ownership in Lancet, however, is designed to de-
fine corruption situations, providing insights into the causes,
development, progression, and impacts of vulnerabilities.

3.2 LancetISA Syntax

For the illustration purpose of this paper, we design a
minimal register-register instruction set architecture, named
LancetISA, to present how Lancet works. LancetISA is
kept small to reduce the manual effort of formal modeling
and analysis, yet more complex instructions can be emulated
by composing multiple LancetISA instructions through tran-
spilation, as we will show in our implementation (Section 5).
The syntax of LancetISA is presented in Figure 2.

A program compiled to LancetISA consists of a sequence
of instructions. The instructions operate using operands that
can represent literal values (v), values stored in registers (r),
or values stored in memory referenced by a pointer stored
in a register ([r]). The store instruction stores a value from
the source register (r) into the referenced destination memory
([r′]). The load instruction loads a value from the source
memory referenced by ([r]) to the destination register (r′).
The mov instruction moves values into or between registers.

Common arithmetic and logical instructions such as add
and or perform the given arithmetic or logical operation using
the values from both register operands and store the result in
the destination register operand (r′). The cmp instruction sets
or clears the flag of a special register according to the result of
the comparison operation. The jeq instruction jumps to the
instruction at the (relative or absolute) address given by r if
the flag in the special register is set. push and pop instructions
add and remove values from the stack. The LancetISA sup-
ports arbitrary calls and includes specialized instructions to
allocate (malloc) and deallocate (free) memory in the heap,
assuming that the backend allocator correctly implements the
desired functionality.

3.3 LancetISA Operational Semantics

Operational semantics of a language specify unambiguously
how to execute a program written in that language. Lancet is
equipped with a big-step operational semantics that specifies
the effect each instruction has when evaluated. A big-step
semantics, which naturally models each instruction as execut-
ing atomically, is given here rather than a small-step seman-
tics, which allows for reasoning about concurrent and non-
terminating executions, since it is a simpler form of semantics
that is a sufficient foundation for the downstream tools intro-
duced in this work which analyze concrete instruction traces
after a sequential program has terminated. Reasoning about
concurrent execution is discussed as future work in Section 7.

Most of the notation in the operational semantics is stan-
dard, but the notation A[b//c] is used as shorthand for
A∪{b} \ {c}, i.e., adding the element b to the set A while
removing element c. The notation a : a′ is also used as short-
hand for a range, so B[a : a′ 7→ c : c′] is shorthand for updating
the map B so a maps to c, a+ 1 maps to c+ 1, . . . , a′ − 1
maps to c′−1. The most interesting subset of the operational
semantics rules is shown in Figure 3. The remaining rules are
in Figure 14 for space considerations.

Each instruction produces a new state from a current state.
The state is described by a concrete model of the register (R)
and memory contents (M), a map tracking the size of allocated
heap objects (H), a map tracking the subject a stack object
was last allocated for (S), and ownership maps to track the cell
owners (C), value owners (V ), and pointee owners (P). The
memory is flat and each cell has a unique address. There can
be multiple owners (i.e., P (Subjects)) for a memory cell to
account for memory overlap during exploitation. Instructions
are sequentially composed by executing against the state from
the previous instruction, as described by rule SEQ.

Updates to register contents R and memory contents M
are straightforward. Only load (resp. store) instructions
can read from (resp. write to) arbitrary memory. Instructions
follow the intel convention that instructions write to the first
operand, e.g. load rl , [rb] writes the contents of the address
pointed to by rb into the register rl . The more interesting
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Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary: P[rax] = {“buf”}, C[R[rax]] = {“buf”} => 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}

FCS Report 

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

Heap Layout in CVE-2023-33476 Exploit

tcache chunk payload

endbuf

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
CrossBoundary: P={“endbuf”} => C={“endptr”}
CrossBoundary: P={“endbuf”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“payload”}
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Overlap: C={“GOT”,“h->req_buf”}

EPF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c45e0: mov byte ptr [rax], cl ; in 
ngx_decode_base64()
W to 0x555556264760, P = {ctx->cookie.data}
                . . . . . . . . . .
0x5555558c4f52: mov rcx, word ptr [rcx+0x28]
R from 0x555556264760, P = {ctx->cookie.data}
0x5555558c4f56: mov rdx, qword ptr [rcx]
R from  0xcccccccc

FCS Report  for CPV15 in Nginx CP

r 2 Registers
a 2 Addresses
s 2 Subjects
i 2 Instructions
x 2 Operands ::= v | r | [r]
d 2 Domains ::= heap | stack | global
R 2 Registers ! Values
M 2 Addresses ! Values
H 2 Addresses ! Values
C 2 Addresses ! P(Subjects)
V 2 Addresses ! P(Subjects)
P 2 Registers [ Addresses ! P(Subjects)

Figure 13: (Partial) Syntax

r 2 Registers a 2 Addresses s 2 Subjects v 2 Values

x 2 Operands ::= v | r | [r]

bin 2 Binary Instructions ::= cmp | add | sub | imul | and | or | xor

i 2 Instructions ::= store [r0], r | load r,0 [r] | mov r, v | mov r0, r |
bin r0, r | jeq r | push r | pop r |
call r | malloc r | free r |

Figure 14: Lancet RISC Syntax

(hii, R, M, H, C, V, P ) + (R0, M 0, H 0, C 0, V 0, P 0)

(hmov rl, rri, R, M, H, C, V, P ) + (R[rl 7! R[rr]], M, H, C, V, P [rl 7! P [rr]])
MOVREGROREG

(hmov rl, vi, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! C[v]])
MOVVALTOREG

w = sizeof(rl) a = R[rb] a0 = a + w v = M [a : a0]

(hmov rl, [rb]i, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! P [a]])
MOVMEMTOREG

KL: Should the MovRegToMem V update instead be V [a : a0 7! R[rr]]?

w = sizeof(rr) a = R[rb] a0 = a + w v = R[rr]

(hmov [rb], rri, R, M, H, C, V, P ) + (R, M [a : a0 7! v], H, C, V [a : a0 7! R[rr]], P [a 7! P [rr]])
MOVREGTOMEM

op 2 {add,sub,imul,and,or,xor} vl = R[rl]

(hop rl, vri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGVAL

op 2 {add,sub,imul,and,or,xor} rl 6= sp vl = R[rl] vr = R[rr]

(hop rl, rri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGREG

Figure 15: Concrete Instruction Semantics

13

050   intptr_t *a = malloc(0x38);
070   uint8_t *b = (uint8_t *)malloc(0x28);
080   uint8_t *c = (uint8_t *)malloc(0xf8);
092   b[real_b_size] = 0; // off-by-one

108   a[1] = fake_size;
125   free(c);

130   intptr_t *d = malloc(0x158);

140   free(b);
{A, D} {“allocator”,D} {D}

146   d[0x30/8] = (long)target ^ …;

{A, D} {B, D} {D}

{A} {B} {“allocator”}

{A} {B} {C}

Change of Cell Owners in the House of Einherjar

endptr

{“allocator”}

050   intptr_t *a = malloc(0x38);
070   uint8_t *b = (uint8_t *)malloc(0x28);
080   uint8_t *c = (uint8_t *)malloc(0xf8);
092   b[real_b_size] = 0; // off-by-one

108   a[1] = fake_size;
125   free(c);

130   intptr_t *d = malloc(0x158);

140   free(b);
{a, d} {“allocator”,d} {d}

146   d[0x30/8] = (long)target ^ …;

{a, d} {b, d} {d}

{a} {b} {“allocator”}

{a} {b} {c}

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

Figure 2: Syntax of LancetISA - A register-register instruction set architecture.

parts of the semantics concern how Lancet soundly tracks
ownership, even in the presence of corruptions.

Cell ownership is updated when a new atomic piece of
data is created or destroyed. For the heap, creation is done
through malloc, which allocates a new chunk of memory n
bytes (cells) long as specified by the parameter r. The starting
address of the user accessible part of the new chunk is stored
in the special r0 register while the heap size map H records the
size of this allocated object. In the H map, only the starting
address is mapped to the size of the object; all other cells
default to H = ⊥ since freeing memory is only valid when
starting from the allocated address. The cell owner for the
allocated memory range is updated to swap a fresh subject
identifier created to represent this object in for allocator’s
special id allocator, thereby preserving other ownership
information needed to track the downstream effects of exploits
using overlapping objects. ArcHeap [41] shows that most
modern allocators use an in-place metadata header for locality.
In LancetISA, the cell owner of the header cells remains
the special allocator subject in malloc. It allows to still
capture memory safety violations, including writing outside
the bounds of an allocated object, without needing to precisely
model allocator-specific implementation details.

Dually free deallocates a memory chunk. The free object’s
size is read from the heap size map H. The cell owner for
the freed memory range is swapped back to allocator to
indicate that these cells are now re-managed by the allocator.
Meanwhile, H[a] is set to ⊥ as a is no longer the starting
address of an allocated object. It should be noted that, we only
cancel the pointee owner of the pointer parameter in free
in the cell owner set, ensuring that in continuous corruption
where memory overlaps, like in the House of Einjerhar, we
keep track of overlapping subjects.

Similar cell ownership semantics apply to stack data. A
new stack variable is pushed onto the stack using the push
instruction. The new variable is given a fresh subject identifier,
which is swapped for the special stack id stack as the cell
owner for the new stack data. The special sp register contains
the address of the last object added to the stack, which grows
from high address to low address. Since push both allocates
and writes to memory, the value owner for the new stack
data is set to the new subject. The pointee owner for the
new stack data is likewise propagated from the value stored
in the source register. Even if a pointer consists of multiple

bytes, the pointee owner P only updates the mapping for the
starting address of the new variable since the pointer is only
valid to reference from that starting address. The fresh subject
identifier is recorded in the map S to properly track which
stack object is meant to be de-allocated when popped from the
stack. The SUBSP rule in Figure 14 in the Appendix handles
the creation of a stack frame through manipulating the sp
register. It resembles the PUSH rule except that it does not
update M, V , and P, as no value has been written to the stack
yet. Stack data can be removed from the stack using the pop
instruction. In this case the cell owner for the data replaces
the last subject allocated on the stack (S[a]) with the special
stack subject to indicate that the object has been de-allocated
from the stack. Notably, since the data is not overwritten, the
value and pointee owners remain unchanged, which is the
same as the ADDSP rule in Figure 14.

In general, value ownership is updated whenever data is
written to memory. In the STORE rule, the value owner of
written memory cells is updated to the pointee owner of rb -
the register referring to the written memory. It reflects that the
value flows to memory through the rb pointer. If the pointer
is not corrupted, the pointee owner of rb should be the same
as the cell owner of written memory. Otherwise, it indicates a
corruption, which will be discussed in detail in Section 3.4.

For pointee ownership, since pointers may be copied be-
tween memory cells and registers several times before being
used, the pointee ownership information needs to be propa-
gated on any write to a register or a memory cell to properly
track the subject the pointer originally referred to. For exam-
ple, the STORE rule clears and updates the pointee owner of
the written to memory cell with the propagated information
from the source register. Likewise, the LOAD rule clears and
updates the pointee owner of the destination register to ensure
the pointee owner information is properly propagated through
future use of the register. Additional related rules, MOVREG-
TOREG and MOVVALTOREG, are given in Figure 14. Col-
lectively, these rules preserve ownership information even in
the presence of aliasing.

Pointee ownership semantics is tricky in arithmetic instruc-
tions. For example, in p[10], the pointer p is used in an add
instruction. If the index 10 is within the boundary, the pointee
owner of the destination register can safely be updated as the
same as the source register storing p. However, if the array
has at most 10 elements, the resulting pointer actually crosses
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(⟨i⟩,R,M,H,S,C,V,P) ⇓ (R′,M′,H ′,S′,C′,V ′,P′)

R ∈ Registers→ Values M ∈ Addresses→ Values
H ∈ Addresses→ N S ∈ Addresses→ Subjects
C ∈ Addresses→ P (Subjects) V ∈ Addresses→ P (Subjects)
P ∈ Registers∪Addresses→ P (Subjects)

(⟨i⟩,R,M,H,S,C,V,P) ⇓ (R′,M′,H ′,S′,C′,V ′,P′) (⟨i′⟩,R′,M′,H ′,S′,C′,V ′,P′) ⇓ (R′′,M′′,H ′′,S′′,C′′,V ′′,P′′)

(⟨i; i′⟩,R,M,H,S,C,V,P) ⇓ (R′′,M′′,H ′′,S′′,C′′,V ′′,P′′)
SEQ

n = R[r] a′ = a+n f resh s
(⟨malloc r⟩,R,M,H,S,C,V,P) ⇓ (R[r0 7→ a],M,H[a 7→ n],S,C[a : a′ 7→C[a : a′][s//allocator]],V,P[r0 7→ s])

MALLOC

a = R[r] n = H[a] a′ = a+n s = P[r]
(⟨free r⟩,R,M,H,S,C,V,P) ⇓ (R,M,H[a 7→ ⊥],S,C[a : a′ 7→C[a : a′][allocator//s]],V,P)

FREE

w = sizeo f (r) a = R[sp] a′ = a−w f resh s C′ =C[a′ : a 7→C[a′ : a][s//stack]]
(⟨push r⟩,R,M,H,S,C,V,P) ⇓ (R[sp 7→ a′],M[a′ : a 7→ R[r]],H,S[a′ 7→ s],C′,V [a′ : a 7→ {s}],P[a′ 7→ P[r]][sp 7→ P[a′]])

PUSH

w = sizeo f (r) a = R[sp] a′ = a+w C′ =C[a : a′ 7→C[a : a′][stack//S[a]]]
(⟨pop r⟩,R,M,H,S,C,V,P) ⇓ (R[sp 7→ a′][r 7→ M[a : a′]],M,H,S[a 7→ ⊥],C′,V,P[r 7→ P[a]][sp 7→ P[a′]])

POP

w = sizeo f (rr) a = R[rb] a′ = a+w v = R[rr]

(⟨store [rb],rr⟩,R,M,H,S,C,V,P) ⇓ (R,M[a : a′ 7→ v],H,S,C,V [a : a′ 7→ P[rb]],P[a 7→ P[rr]])
STORE

a = R[rb] a′ = a+ sizeo f (rl) v = M[a : a′]
(⟨load rl , [rb]⟩,R,M,H,S,C,V,P) ⇓ (R[rl 7→ v],M,H,S,C,V,P[rl 7→ P[a]])

LOAD

rl ̸= sp vl = R[rl ] vr = R[rr]

(⟨bin rl ,rr⟩,R,M,H,S,C,V,P) ⇓ (R[rl 7→ bin(vl ,vr)],M,H,S,C,V,P[rl 7→ P[rl ]∪C[bin(vl ,vr)]])
BINARYOPERATION

Figure 3: The most interesting operational semantics of LancetISA. The remaining rules are in Figure 14 in Appendix.

a boundary. To not miss this error, the BINARYOPERATION
rule doesn’t clear the pointee owner of the destination register
but conjuncts it with the cell owner of the arithmetic com-
putation’s results. As such, when a boundary is crossed, the
destination register will have two pointee owners, indicating
an ownership violation. Such a rule may inadvertently intro-
duce over-approximation. For example, in p=(p+q)/2, where
both p and q are pointers and (p+q) happens to be a valid mem-
ory address with a defined cell owner, the new p will thus
have two pointee owners, even though the following memory
access using the new p is within the boundary of p array. How-
ever, this over-approximation is actually a strength of Lancet:
the memory safety of a program should not depend on the
compiler’s decision on memory layout - whether p array and
q array are adjacent and if p+q is a valid address. Performing

arithmetic on two pointers is a dangerous operation by any
measure.

Though the BINARYOPERATIONS rule introduces over-
approximation in the Pointee information, the concrete reg-
ister and memory values remain precise. Specifically, the
LancetISA semantics are precise with respect to register (R)
and memory contents (M), heap objects (H), and stack objects
(S). They are over-approximate with respect to ownership in-
formation including the cell owners (C), value owners (V ),
and pointee owners (P). In a bug, or vulnerability, finding
setting, this over-approximation supports complete detection
methods that ensure that any vulnerability that exists will be
detected (no false-negatives). However, over-approximation
cannot support sound detection methods where any reported
vulnerability is guaranteed to be an actual vulnerability (no
false-positives).
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vuln ∈Vulns(⟨i⟩,R,M,H,S,C,V,P)

vl = R[rl ] vr = R[rr] v′l = bin(vl ,vr) (P[rl ] =C[vl ] ∧ P[rl ] ̸=C[v′l ])
OutofRangePointer(CWE-823) ∈Vulns(⟨bin rl ,rr⟩,R,M,H,S,C,V,P)

CROSSBOUNDARY

sizeo f (rr) = w a = R[rb] a′ = a+w |P[rb]|> 1 ∨ (P[rb] =C[a] ∧ P[rb] ̸=C[a′−1])
OutOfBoundWrite(CWE-787) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

OOBW

a = R[rb] P[rb] ̸=C[a]
ExpiredPointerDereference(CWE-825) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

EXPIREDWRITE

a = R[rb] P[rb] ̸=C[a] ∧ dom(rb) = heap
UseAfterFree(CWE-416) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

UAFW

a = R[rb] P[rb] ̸=C[a] ∧ dom(rb) = stack
StackUseAfterScope(CWE-562) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

STACKWRITEAFTERSCOPE

vr = R[rr] P[rr] ̸=C[vr]

DanglingPtrOccur ∈Vulns(⟨mov rl ,rr⟩,R,M,H,S,C,V,P)
DANGLINGPTR1

a = R[r] allocator ∈C[a]
DoubleFree(CWE-415) ∈Vulns(⟨free r⟩,R,M,H,S,C,V,P)

DOUBLEFREE

sizeo f (rl) = w a = R[rb] a′ = a+w P[rb] =C[a] ∧ P[rb] =C[a′−1] ∧ ∃ i. a ≤ i < a′∧C[i] ̸=V [i]
UninitializedRead(CWE-457) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

UNINITREAD

Figure 4: Example definition of vulnerabilities. The remaining is in Figure 15 in Appendix.

3.4 Definition of Vulnerabilities in Lancet

Generally, in Lancet, a memory vulnerability arises whenever
a memory cell has more than one cell owner, or value owner,
or pointee owner. For different vulnerability types, we further
specify a function Vulns that uses the ownership information
tracked by the semantics to identify vulnerabilities during
a program’s execution. Figure 4 presents the most notable
definition rules. A more complete set is given in Figure 15 in
the Appendix. Each conclusion in these rules follows the form
vuln∈Vulns(⟨i⟩,R,M,H,S,C,V,P), which indicates that the
vulnerability ‘vuln’ occurs from executing the instruction i.

For example, the CROSSBOUNDARY rule formally defines
one kind of spatial vulnerability that can arise from arithmetic
operations on pointers: when the pointee owner of the desti-
nation register is the same as the cell owner of the pointed
cell (P[rl ] =C[vl ]) but differs from the cell owner of the cell
pointed to by the result of arithmetic operation (P[rl ] ̸=C[v

′
l ]).

In other words, the pointer is manipulated to refer to another
object not through assignment but via an arithmetic operation.
Further, according to the BINARYOPERATION rule in the oper-
ational semantics, the destination register rl will subsequently
have more than one pointee owners. When this register is

then used to store a value to memory, an out-of-bound access
occurs, as specified by the OOBW rule.

Using these two rules, we find we can not only report an
error earlier than ASan, but also illustrate how an initial cross
boundary error develops into a out-of-bound access, iden-
tifying critical variables in this process. More importantly,
unlike the definition of spatial safety in Vellvm [44] and HO-
Tracer [20] discussed in the background (See Section 2.3), our
definition doesn’t assume that the pointer always points to the
base address of an object because the pointee ownership ac-
curately records the supposed target of the pointer. Therefore,
downstream tools developed under Lancet are more precise
and robust, even for fingerprinting exploits like the House of
Einherjar, as we will show in the evaluation.

Another notable part of the premise in the OOBW rule
is, besides checking the number of pointee owners, it also
covers a corner case of out-of-bound access: a memory write
spans multiple cells, extending from the end of one object
till the start of another. It is achieved also by examining the
consistence between pointee owner and cell owner.

For temporal safety, EXPIREDWRITE formally defines Ex-
pired Pointer Dereference (CWE-825) by checking if the
pointee owner of the source register rb is the same as the
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cell owner of the referenced cell. This rule fundamentally
differs from CROSSBOUNDARY and OOBW - their premises
have no overlap. More specifically, instead of focusing on
whether a pointer has been manipulated beyond a boundary or
whether an access spans two objects, EXPIREDWRITE exam-
ines whether a previously valid pointer, without any pointer
operation, is found to be pointing to an incorrect object. The
only cause of this is that the cell owner of the pointed cell
has been somehow altered, either by the allocator or stack
prologue and epilogue.

Following EXPIREDWRITE, we can readily define a use-
after-free write (CWE-416) by restricting the region do-
main of the address in [rb] to the heap (UAFW), and stack-
write-after-scope (CWE-562) by restricting it to the stack
(STACKWRITEAFTERSCOPE). We further generalize EX-
PIREDWRITE to DANGLINGPTR1 to identify the occurrence
of dangling pointer before it is dereferenced.

Figure 4 further presents the formal definitions of two vul-
nerability types often overlooked in prior works. Double
Free (CWE-415) is defined as an attempt to free a mem-
ory cell already owned by the special subject allocator.
Uninitialized Read (CWE-457) is defined as a case where
there is no out-of-bound read and no use-after free (P[rb] =
C[a] ∧ P[rb] =C[a′]), yet the cell owner and the value owner
differ (C[i] ̸= V [i]). In other words, the value stored in the
cell is owned by a different subject, which commonly occurs
immediately after allocation or function prologue.

The vulnerability detection rules rely on the over-
approximate ownership information, meaning false-positives
detections may occur. They are also non-exhaustive, meaning
absence of detected vulnerabilities does not imply total mem-
ory safety. However, since the rules are over-approximate, if a
vulnerability covered by the rules occurs during a sequential
program execution, that vulnerability will be reported.

4 Downstream Tools

In this section, we demonstrate the utility of Lancet by illus-
trating how security analysts can leverage this framework to
develop downstream tools.

4.1 Fast Crash Triaging
In the AIxCC semi-final, each team’s Cyber Reasoning Sys-
tem (CRS) was required to automatically discover and patch
vulnerabilities in the challenge projects (CP). To meet this
objective, our CRS includes a fuzzing component to trigger
crashes and a patching agent that synthesizes patches using
a Large Language Model (LLM). To integrate these compo-
nents, we developed a tool named FCS, which triages crashes
to deduplicate reported errors and extract essential crashing
context that can be embedded into LLM prompts.

Since the CRS was allocated for only four hours per CP,
resource-intensive approaches like Aurora [4] and Igor [21]

a = R[r] dom(a) = stack
HouseOfSpirit ∈Vulns(⟨free r⟩, ...) SPIRIT

Figure 5: An example definition for the House of Spirit in EPF.
Readers can refer to Figure 10 for more primitive definitions .

are impractical (Aurora can take up to 17 hours to run in
certain cases). Other tools like POMP [40] and REPT [10]
rely on Intel PT, which is not available in the dockerized
environment of the competition. A straightforward approach
would be to use sanitizer reports. However, prior research
has shown that sanitizer reports can contain incorrect and
misleading information [28, 35], making us hesitant to rely
on them in a fully automated system. Furthermore, sanitizer
reports are neither clear nor informative enough for effective
patching, as we will demonstrate in the evaluation.

Given these considerations, we developed FCS under the
Lancet framework. FCS first identifies the key variables that
contribute to the satisfiability of a vulnerability definition rule
in Lancet. It then retrieves the cell owners, value owners,
and pointee owners of these key variables, annotating relevant
instructions and mapping them to corresponding source code
statements. FCS customizes its annotation focus based on the
error type. For example, in cases of out-of-bound access, FCS
concentrates on the code responsible for buffer allocation and
index initialization. For use-after-free, FCS highlights where
the dangling pointer is generated and whether it has aliases -
pointers with the same pointee owner.
FCS is not designed as a sophisticated root cause diagnosis

tool, but rather as an improvement over sanitizers. It aims to
provide accurate and informative annotations of error causes
and progression that are helpful for patch synthesis.

4.2 Exploit Primitive Fingerprinting

As discussed in Section 2.2, the essence of exploitation is to
escalate primitives from the initial corruption to more pow-
erful ones. One key task in investigating the internals of an
exploit is to understand how primitives are obtained and tran-
sitioned. Currently, this fingerprinting process heavily relies
on human efforts.

To this end, we developed a tool named EPF under the
Lancet framework to facilitate the analysis of primitive tran-
sition. EPF extends Lancet to define common exploitation
primitives and techniques. Figure 5 shows an example of the
House of Spirit, a heap exploitation technique that remains
effective in the newest glibc 2.40. It deliberately frees a stack
memory chunk, resulting in a non-heap pointer being added
to fastbin. Attackers can use the stack to manipulate heap
content or vice verse. This technique can be identified by
checking whether the domain of the free argument is stack or
not. A more general form of the House of Spirit is invalid free,
which is informally described as freeing any address that is
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not a start of a heap object. Readers can refer to the Appendix
for more definitions and explanation.

In Section 6.2, we will illustrate how EPF fingerprints the
primitive transition from a limited off-by-one NULL overflow
to use-after-free in the House of Einherjar. We will also show
the results of applying EPF to analyze a real-world remote
code execution in the Appendix.
EPF has certain limitations. For example, it cannot distin-

guish between restricted write and arbitrary write in a concrete
execution context. This limitation inherits from the Lancet
framework. In Section 7, we will discuss our future plans to
symbolize Lancet to address these limitations.

5 Implementation

We have implemented Lancet for x86 and plan to extend it
to ARM64 and RISC-V in the future.

Transpilation between LancetISA and x86. Instructions
in x86 can be seamlessly transpiled to LancetISA. Data trans-
fer instructions like mov, string manipulation instructions like
movsb, and SIMD instructions like movaps are mapped to mov,
store, and load instructions in LancetISA. Bitwise logic in-
structions like and and arithmetic instructions like add also
have direct counterparts in LancetISA. The Load Effective
Address (LEA) instruction, which is primarily used for pointer
computations, array indexing, and accelerating integer calcula-
tions, is translated in LancetISA as a combination of bin and
mov based on its scaled indexed addressing. Similarly, a com-
parison instruction in x86 is represented as a load followed
by cmp and jeq. Beyond instruction transpilation, we devel-
oped specialized handlers for memory-related library func-
tions such as memcpy and memmove, summarizing their effects
and bypassing internal instructions to enhance performance.

To initialize ownership for global variables and other pro-
gram assets like the Global Offset Table (GOT) and Procedure
Linkage Table (PLT), we retrieve offsets and ranges using
symbol tables, segment information, and the proc file. For
stack frames, we trace each stack adjustment instruction, like
sub rsp, 18h, to determine a function’s usable stack range.
Furthermore, for each local variable, we analyze source code
to scale it within the stack frame according to compiler lay-
out conventions. When source code is unavailable, we infer
layout by examining stack addressing instructions to identify
the start and end addresses of stack variables.

Deployment in AIxCC. FCS is developed as a downstream
tool under Lancet framework for fast crash triaging, aiming
to provide more reliable, accurate, and informative clues about
the cause and progression of errors triggered by fuzzing. In
our winning CRS for the AIxCC semi-final, we ran it as a
micro-service before the patching agent in our pipeline.

The patching agent used GPT 4.0, the newest and strongest
model from OpenAI before the semi-final. We adopted the rec-
ommendations from OpenAI user-guides [29] and designed

the prompt engineering strategy in an interaction mode: GPT
4.0 takes the role of a “security expert”, requesting guidance
from a “user” role and views related code through a “tool”
role. The FCS report is embedded into the “user” prompt.

Since Intel PT are not available in the AIxCC’s dockerized
environment, we leveraged Pin [19], a dynamic binary instru-
mentation tool, to collect instruction traces. Considering the
overhead of Pin as a software-based approach, we selectively
instrument up to 100,000 instructions before the corruption
site. This threshold is safe based on our experiment results
and prior research on root cause diagnosis [10, 40]. Besides,
instructions in the fuzzing harness are skipped.

6 Evaluation

In this section, we evaluate Lancet by answering the follow-
ing questions: (1) How efficiently can Lancet, and its two
downstream tools FCS and EPF, dissect crashes and exploits?
(2) Can FCS effectively annotate the cause and progression of
errors, and can EPF illustrate primitive transitions in exploits?
(3) Did FCS contribute to patch synthesis in the AIxCC semi-
final? We will first present our experiment setup and then
describe our experimental results.

Experiment Setup. We constructed a test case set from
seven sources to cover a wide range of vulnerability types and
exploitation techniques: (1) An internal dataset constructed
during the preparation for the AIxCC semi-final. Cases in this
dataset were pull issues of top-starred open source GitHub
repositories. (2) Vulnerabilities in the Ngnix CP released
by DARPA after the semi-final [13]. (3) Programs demon-
strating heap exploitation techniques (a.k.a., houses) from
the how2heap project [34]. (4) CTF challenges with pub-
licly available writeups and exploits. (5) Notorious public
exploits in recent years, like Baron Samedit (a.k.a., CVE-
2021-3156 [23]). (6) Reproducible memory-corruption cases
from REPT [10], used for efficiency comparison. (7) Rep-
resentative test cases and variants drawn from the Juliet
Test Suite [22], covering both memory-corruption and non
memory-corruption CWE categories. For vulnerabilities from
(1) and (2), we manually debugged them to obtain ground
truth. These cases are listed in Tables 1, 2, and 5.

6.1 Efficiency
Tables 1 and 2 present the analysis times for FCS and EPF
across crashes and exploits. They complete analysis within
25 seconds for 20 cases, with the longest duration extending
to 201 seconds for 195 million instructions. We test them
on Ubuntu 22.04, with 64GB RAM and 13th Gen Intel(R)
Core(TM) i5-13600KF@3.50Ghz.

From the table, we observe that the time cost for PHP
(CVE-2019-6977) and FFmpeg (10749) differs markedly,
even though their trace lengths are similar. This is because
of variations in the distribution of instruction types across
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Test Case ASan FCS
Trace Length /

LoC
Time (s)

Top-starred GitHub repos (crash)
PHP,
CVE-2007-1001 †

OOB CROSSBOUNDARY 9M / 447K 18.17

PHP,
CVE-2012-2386 †

OOB CROSSBOUNDARY 10.7M / 676K 20.74

PHP, #76041 † OOB CROSSBOUNDARY 11.1M / 1M 22.57
PHP,
CVE-2019-6977

missed CROSSBOUNDARY 1695M / 2M 132.08

PHP, #16595 UAF DANGLINGPTR1 ∆662 14M / 2M 63.33
GPAC, #2701 UAF DANGLINGPTR4 ∆54 142M / 835K 7.29
GPAC, #2583 UAF DANGLINGPTR4 ∆651 195M / 835K 201.44
Vim,
CVE-2024-41965

DF DANGLINGPTR1 ∆14 26M / 1M 31.08

Vim,
CVE-2024-43374

UAF
DANGLINGPTR4
∆441,687

26M / 1M 2.99

OpenSC,
OSV-2023-1276

UAF DANGLINGPTR4 ∆7 74M / 213K 13.87

Nasm,
CVE-2004-1287 †

OOB CROSSBOUNDARY 1.7M / 30K 2.91

mruby,
OSV-2024-96

OOB CROSSBOUNDARY ∆8 4M / 98K 9.03

FFmpeg, #10749 SEGV CROSSBOUNDARY 1872M / 1.6M 17.34

FFmpeg, #11228 SEGV
NLLPTRDEREF1
UNTRUSTEDPTRDEREF1

31M / 1.6M 11.30

QuickJS,
OSV-2024-204

UAF DANGLINGPTR4 ∆112 1.9M / 86K 5.19

Nginx CP in the AIxCC semi-final (crash)
CPV15 SEGV UNTRUSTEDPTRDEREF1 40M / 177K 6.63
CPV10 UAF DANGLINGPTR1 ∆10 40M / 177K 22.51

CPV5 SEGV
NLLPTRDEREF1
UNTRUSTEDPTRDEREF1

40M / 177K 21.96

Table 1: ASan and FCS on triaging crashes. means ASan is either
incorrect or misses the error. indicates ASan only reports the
very initial corruption. ∆ represents the number of instructions by
which FCS reports the issue earlier than ASan. The length of a trace
is measured in terms of the number of instructions. Cases with †
symbol were also used in REPT [10].

cases. Especially, most state updates in Lancet are spent on
MOV instructions which are memory involved, and the PHP
trace contains roughly 737 million MOV instructions which is
nearly five times the 150 million MOVs in the FFmpeg trace.
A detailed distribution breakdown can be found in Appendix.

For comparison, we successfully reproduced four cases that
were also evaluated in REPT [10]. The trace lengths we ob-
tained for these cases are up to two orders of magnitude longer
than those reported in REPT. The maximum analysis time
we observed was 22.54 seconds, which remains within the
same order of magnitude as REPT’s reported per-instruction
analysis time. This demonstrates that FCS achieves compa-
rable efficiency to REPT. The time cost of other triage tools
cannot be compared directly. For example, Igor [21], which
employs a fuzzing procedure to extract core behaviors of a
crash, requires at least 15 minutes, depending on the config-
ured cut-off time. Similarly, Aurora [4] also incurs extra time
on fuzzing.

Test Case Tuned ASan EPF
Trace Length /

LoC
Time (s)

how2heap and CTF challenges (exploit)

house_of_einherjar OOB

CROSSBOUNDARY

OOBW
INVALIDFREE

OVERLAP

UAFW

180K / 157 0.14

fastbin_reverse_
into_tcache

UAF
DANGLINGPTR4
SPIRIT

176K / 104 0.02

poison_null_byte missed

EXPIREDWRITE

EXPIREDWRITE

OOBW
OVERLAP

192K / 161
0.08

hacknote UAF
DANGLINGPTR4
UAF

178K / 160 0.12

Real-world exploits

MiniDLNA,
CVE-2023-33476

OOB
CROSSBOUNDARY

OOBW
OVERLAP

1M / 25K 4.51

Sudo,
Baron Samedit

OOB
CROSSBOUNDARY

OOBW
OOBR

179K / 211K 0.07

Table 2: Tuned ASan’s and EPF on fingerprinting exploits. The
meaning of symbols is the same as Table 1.

6.2 Effectiveness

To evaluate the effectiveness of Lancet, we examine whether
its downstream crash triaging tool, FCS, shows advantages
in dissecting the cause and progression of crashes compared
with its substitute target - ASan. Our evaluation criteria is
the correctness and utility of the information in the reports.
For all 14 crashes listed in Table 1, ASan missed one and
provided incorrect vulnerability type information for four
cases. In contrast, FCS not only successfully identifies all of
them and provides correct crashing details, but also reports
between 7 and 441,687 instructions ahead of ASan in 9 cases.
Note that in FFmpeg #11228 and CPV5, a small offset from
NULL address is dereferenced. While a manual scrutiny of
the report content would reveal this, ASan reports them as
simply SEGV without explicitly identifying them as NULL
pointer dereference. FCS reports both NULL pointer derefer-
ence and untrusted pointer dereference (CWE-822) because
the accessed memory cell is not defined with cell owner.
FCS demonstrates consistent effectiveness on the Juliet

Test Suite. For 67 test cases in 18 memory-corruption CWEs,
ASan produced 50 correct, 11 inaccurate, and 6 missed re-
ports. In comparison, FCS generated 65 correct, 1 inaccurate,
1 missed reports. Taking CWE129_fgets_01 as an example,
ASan fails to detect the error because the malicious input
index falls outside of the redzone. FCS flags it by applying the
CROSSBOUNDARY rule. We also evaluated 25 test cases from
8 non-memory-corruption CWEs. ASan produced 12 correct,
1 inaccurate, and 12 missed reports. In comparison, FCS gen-
erated 3 correct, 1 inaccurate, 21 missed reports. More details
are in Table 5 moved to Appendix for space limit.
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We also examine whether Lancet’s other downstream tool,
EPF, can fingerprint primitive transitions in exploits. Since
no existing tool is specifically designed for this purpose,
we use ASan as a makeshift solution, following the prac-
tice of KOOBE [6]. We tuned halt_on_error to 0 and set
sanitizer-recover=address in ASan so that it won’t immedi-
ately crash the program but activates a recovery mechanisms
to continue reporting subsequent errors to the best of its ability
after the initial corruption. EPF succeeds for all 6 exploits in
Table 2, while ASan misses poison_null_byte and only reports
the very initial corruption in the remaining 5 exploits.

In the following, we discuss two representative cases. A
third case for how EPF fingerprints a remote code execution
of CVE-2023-33476 is moved to Appendix due to space con-
straints.

CVE-2019-6977 in the PHP Interpreter. This case is
a heap out-of-bound access error from Source (1). Fig-
ure 6 shows the vulnerable code snippet. In the function
gdImageColorMatch of the file gd_color_match.c, a heap object
is allocated on line 36 with an allocated size of 40 bytes. On
line 41, the variable color is assigned a value that can be con-
trolled by the input. If color is large enough, on line 43, the
pointer bp will cross the boundary of buf, finally triggering an
out-of-bound access on line 44.

In the reproduction of this vulnerability using the PoC from
the PHP Bug Tracking System [36], ASan failed to detect
it. Through extensive manual debugging, we discovered that
the out-of-bound access was indeed triggered; however, the
value 255 assigned to color in the PoC was excessively large,
exceeding the red zone inserted by ASan.

To this end, we slightly decremented color to 248, at which
point ASan detected an error but unexpectedly reported a
“SEGV on unknown address”. As shown in Figure 6, the
report indicates that the crash occurs in zend_mm_del_segment

which is totally irrelevant according to the ground-truth. After
further manual investigation, we found that ASan actually
failed to catch the initial out-of-bound access, thus allowing
the error to propagate until it eventually caused an access to a
high-value address.

We further adjusted color to 150, and finally, ASan de-
tected the crash at the correct line in the correct function.
However, the report still incorrectly identified the allocation
site of the overflowed buffer. The buffer was actually al-
located in gdImageColorMatch, but the report attributed it to
gdImageCreateTrueColor. This mistake arises because the red
zone accessed during the overflow belongs not to buf but to
another object that happened to be allocated adjacent to buf.

Unlike ASan, FCS is more reliable, accurate, and infor-
mative. First, regardless of the value assigned to color, FCS
always detects it, not at the overflow site on line 44, but one
more statement earlier on line 43 where bp in rax just crosses
the boundary. As in Figure 6, FCS applies the CROSSBOUND-
ARY rule, where P[rax] matches C[R[rax]] but differs from
C[R[rax]+R[rcx]] (134 is the subject id of the object adjacent

Pointer p (subject A)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-6977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary: P[rax] = {“buf”}, C[R[rax]] = {“buf”} => 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}

FCS Report 

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

Heap Layout in CVE-2023-33476 Exploit

tcache chunk payload

endbuf

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
CrossBoundary: P={“endbuf”} => C={“endptr”}
CrossBoundary: P={“endbuf”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“payload”}
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Overlap: C={“GOT”,“h->req_buf”}

EPF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c45e0: mov byte ptr [rax], cl ; in 
ngx_decode_base64()
W to 0x555556264760, P = {ctx->cookie.data}
                . . . . . . . . . .
0x5555558c4f52: mov rcx, word ptr [rcx+0x28]
R from 0x555556264760, P = {ctx->cookie.data}
0x5555558c4f56: mov rdx, qword ptr [rcx]
R from  0xcccccccc

FCS Report  for CPV15 in Nginx CP

r 2 Registers
a 2 Addresses
s 2 Subjects
i 2 Instructions
x 2 Operands ::= v | r | [r]
d 2 Domains ::= heap | stack | global
R 2 Registers ! Values
M 2 Addresses ! Values
H 2 Addresses ! Values
C 2 Addresses ! P(Subjects)
V 2 Addresses ! P(Subjects)
P 2 Registers [ Addresses ! P(Subjects)

Figure 13: (Partial) Syntax

r 2 Registers a 2 Addresses s 2 Subjects v 2 Values

x 2 Operands ::= v | r | [r]

bin 2 Binary Instructions ::= cmp | add | sub | imul | and | or | xor

i 2 Instructions ::= store [r0], r | load r,0 [r] | mov r, v | mov r0, r |
bin r0, r | jeq r | push r | pop r |
call r | malloc r | free r |

Figure 14: Lancet RISC Syntax

(hii, R, M, H, C, V, P ) + (R0, M 0, H 0, C 0, V 0, P 0)

(hmov rl, rri, R, M, H, C, V, P ) + (R[rl 7! R[rr]], M, H, C, V, P [rl 7! P [rr]])
MOVREGROREG

(hmov rl, vi, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! C[v]])
MOVVALTOREG

w = sizeof(rl) a = R[rb] a0 = a + w v = M [a : a0]

(hmov rl, [rb]i, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! P [a]])
MOVMEMTOREG

KL: Should the MovRegToMem V update instead be V [a : a0 7! R[rr]]?

w = sizeof(rr) a = R[rb] a0 = a + w v = R[rr]

(hmov [rb], rri, R, M, H, C, V, P ) + (R, M [a : a0 7! v], H, C, V [a : a0 7! R[rr]], P [a 7! P [rr]])
MOVREGTOMEM

op 2 {add,sub,imul,and,or,xor} vl = R[rl]

(hop rl, vri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGVAL

op 2 {add,sub,imul,and,or,xor} rl 6= sp vl = R[rl] vr = R[rr]

(hop rl, rri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGREG

Figure 15: Concrete Instruction Semantics

13

050   intptr_t *a = malloc(0x38);
070   uint8_t *b = (uint8_t *)malloc(0x28);
080   uint8_t *c = (uint8_t *)malloc(0xf8);
092   b[real_b_size] = 0; // off-by-one

108   a[1] = fake_size;
125   free(c);

130   intptr_t *d = malloc(0x158);

140   free(b);
{A, D} {“allocator”,D} {D}

146   d[0x30/8] = (long)target ^ …;

{A, D} {B, D} {D}

{A} {B} {“allocator”}

{A} {B} {C}

Change of Cell Owners in the House of Einherjar

endptr

{“allocator”}

050  intptr_t *a = malloc(0x38);
070  uint8_t *b = (uint8_t *)malloc(0x28);
080  uint8_t *c = (uint8_t *)malloc(0xf8);
092  b[real_b_size] = 0;       // off-by-one (p1)

108  a[1] = fake_size;
125  free(c);                // illegal read (p1)
        
130  int *d = malloc(0x158);  // mem overlap (p2)

140  free(b);                // invalid free (p3)
{a, d} {“allocator”,d} {d}

146  d[0x30/8] = target ^ …;    // uaf write (p4)

{a, d} {b, d} {d}

{a} {b} {“allocator”}

{a} {b} {c}

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

092: off-by-one

125: illegal read

130: mem overlap

140: invalid free

146: uaf write

allocator

meta user

undef before

after

cond of 
given exp

cond of exp of 
same kind

extracted 
cond

?

Heap object (subject B)

Figure 6: Tailored snippets of vulnerable code, PoC, ASan report,
and FCS report for CVE-2019-6977 in the PHP Interpreter.

to buf at runtime), signaling that a pointer is manipulated to
refer to a different subject. Second, FCS accurately identifies
buf as the overflowed buffer by tracing where the subject in
P[rax] was created. It also correctly reports color as the access
index, according to the subject in C[rcx].

While FCS is not a sophisticated tool capable of explaining
to human why color is too large or why buf is too small,
it effectively annotates buf and color, the two most critical
variables in an out-of-bound access. It meets our expectations
for a fast crash triaging tool. As we will see in Section 6.3,
these simple annotations can prompt LLM to synthesize root
cause mitigation patches.
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House of Einherjar. This heap exploitation technique,
from Source (3), is widely-used and remains effective in the
latest glibc 2.40. It is particularly useful because it can esca-
late the initial corruption, which is as limited as off-by-one
NULL byte overflow, into a controllable use-after-free.

Figure 7 presents the change of cell owners of critical cells.
For clarity, we retain only the core logic of the primitive
transition, omitting non-essential statements. From the figure,
we can observe that EPF successfully fingerprints each critical
step in this primitive transition.

First, EPF locates the initial off-by-one and highlights that
the cell owner of the overwritten memory cell is allocator,
indicating a corruption of heap metadata. This corruption,
along with the fake size prepared in a[1], creates a fake chunk
from the perspective of allocator. When c is freed on line
125, the allocator consolidates a, b, and c into a larger chunk,
though a and b are still in use. Next, EPF accurately reports
a memory overlap on line 130 when d is allocated. It further
details that this overlap occurs between a and d, as well as b

and d, demonstrating its robustness in analyzing the exploit.
Further, EPF flags an invalid free on line 140, since the cell
referred by the pointer b has more than one cell owners. By
removing b from and adding allocator to the cell owner set,
EPF ultimately reports a use-after-free on line 146. EPF shows
that the corrupted cell is owned both by allocator and d,
providing a qualitative description of controllability.

In contrast, ASan reports only a heap out-of-bound write on
line 92, where the off-by-one is triggered, failing to detect all
subsequent corruption behaviors. In fact, tools like ASan are
fundamentally inadequate for exploit fingerprinting. This is
partly because the runtime library introduced by ASan for de-
tection purpose alters the glibc allocator’s management logic.
As a result, the chunk consolidation does not occur when
ASan is enabled. Similar problem also exist in fingerprinting
the exploitation of CVE-2023-33476 in Appendix.

Note that, the current EPF treats the allocator as a black box.
Though it manifests changes in ownership, it lacks insight
into how the allocator’s internal design, behind malloc and
free, drives these changes. In Section 7, we will discuss our
future plan to open the black box to uncover finer details of
primitive transition within the allocator.

6.3 Deployment in AIxCC

FCS was employed in our CRS for the AIxCC semi-final.
It extracts essential crashing context that can be embedded
into LLM’s prompts for patch synthesis. We evaluate the
usefulness of FCS, and thereby the Lancet framework, in this
application scenario. Our evaluation criteria is the extent to
which synthesized patches reassemble ground-truth patches
written by human experts and address underlying root causes.
We didn’t validate patches based on whether PoCs could
be reproduced after they were applied, as some synthesized

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary: P[rax] = {“buf”}, C[R[rax]] = {“buf”} => 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}

FCS Report 

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

Heap Layout in CVE-2023-33476 Exploit

tcache chunk payload

endbuf

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
CrossBoundary: P={“endbuf”} => C={“endptr”}
CrossBoundary: P={“endbuf”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“payload”}
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Overlap: C={“GOT”,“h->req_buf”}

EPF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c45e0: mov byte ptr [rax], cl ; in 
ngx_decode_base64()
W to 0x555556264760, P = {ctx->cookie.data}
                . . . . . . . . . .
0x5555558c4f52: mov rcx, word ptr [rcx+0x28]
R from 0x555556264760, P = {ctx->cookie.data}
0x5555558c4f56: mov rdx, qword ptr [rcx]
R from  0xcccccccc

FCS Report  for CPV15 in Nginx CP

r 2 Registers
a 2 Addresses
s 2 Subjects
i 2 Instructions
x 2 Operands ::= v | r | [r]
d 2 Domains ::= heap | stack | global
R 2 Registers ! Values
M 2 Addresses ! Values
H 2 Addresses ! Values
C 2 Addresses ! P(Subjects)
V 2 Addresses ! P(Subjects)
P 2 Registers [ Addresses ! P(Subjects)

Figure 13: (Partial) Syntax

r 2 Registers a 2 Addresses s 2 Subjects v 2 Values

x 2 Operands ::= v | r | [r]

bin 2 Binary Instructions ::= cmp | add | sub | imul | and | or | xor

i 2 Instructions ::= store [r0], r | load r,0 [r] | mov r, v | mov r0, r |
bin r0, r | jeq r | push r | pop r |
call r | malloc r | free r |

Figure 14: Lancet RISC Syntax

(hii, R, M, H, C, V, P ) + (R0, M 0, H 0, C 0, V 0, P 0)

(hmov rl, rri, R, M, H, C, V, P ) + (R[rl 7! R[rr]], M, H, C, V, P [rl 7! P [rr]])
MOVREGROREG

(hmov rl, vi, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! C[v]])
MOVVALTOREG

w = sizeof(rl) a = R[rb] a0 = a + w v = M [a : a0]

(hmov rl, [rb]i, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! P [a]])
MOVMEMTOREG

KL: Should the MovRegToMem V update instead be V [a : a0 7! R[rr]]?

w = sizeof(rr) a = R[rb] a0 = a + w v = R[rr]

(hmov [rb], rri, R, M, H, C, V, P ) + (R, M [a : a0 7! v], H, C, V [a : a0 7! R[rr]], P [a 7! P [rr]])
MOVREGTOMEM

op 2 {add,sub,imul,and,or,xor} vl = R[rl]

(hop rl, vri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGVAL

op 2 {add,sub,imul,and,or,xor} rl 6= sp vl = R[rl] vr = R[rr]

(hop rl, rri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGREG

Figure 15: Concrete Instruction Semantics

13

050   intptr_t *a = malloc(0x38);
070   uint8_t *b = (uint8_t *)malloc(0x28);
080   uint8_t *c = (uint8_t *)malloc(0xf8);
092   b[real_b_size] = 0; // off-by-one

108   a[1] = fake_size;
125   free(c);

130   intptr_t *d = malloc(0x158);

140   free(b);
{A, D} {“allocator”,D} {D}

146   d[0x30/8] = (long)target ^ …;

{A, D} {B, D} {D}

{A} {B} {“allocator”}

{A} {B} {C}

Change of Cell Owners in the House of Einherjar

endptr

{“allocator”}

Figure 7: Change of cell owners in the House of Einherjar. We omit
some noncritical details for simplicity.

patches only prevent the specific crash manifested by the PoC
without rectifying the fundamental problem.

Disclaimer. It should be emphasized that GPT 4.0 is not
proven to possess true reasoning capability, and its working
mechanism is not fully understood. In Section 6.2, we show-
case that FCS is more reliable, accurate, and informative than
ASan. However, we cannot conclude that this advantage will
directly translate into FCS outperforming ASan in facilitating
vulnerability patching, though our observations over a limited
dataset suggest this. We look forward to future research works
on interpretable LLM, which may yield further insights.

Patching CVE-2024-41965 in Vim. This is a double-free
vulnerability in Vim collected in our internal dataset. Fig-
ure 8 shows the relevant code and the official patch [5]. The
macro VIM_CLEAR frees the object referred to by its parameter
pointer. When buf->b_fname and buf->b_sfname are aliases, sub-
sequently executing VIM_CLEAR on them will trigger a double
free. The patch rules out this alias situation.

ASan successfully detects this double-free (report details
are in Figure 12 in Appendix due to space limit). The patch
synthesized from the ASan report, as shown in the figure,
adds a NULL pointer check which is actually redundant with
the check inside VIM_CLEAR. GPT 4.0’s “explanation” is “The
key function in the stack trace is dialog_changed ... called mul-
tiple times.” We infer that GPT 4.0 is misled by the repeated
appearance of dialog_changed in the call stacks at both first
and second free sites. ASan fails to indicate that buf->b_fname
and buf->b_sfname are aliases.

In contrast, FCS detects this double-free vulnerability 14 in-
structions earlier, where the dangling pointer is used for arith-
metic operation before being dereferenced. This is achieved
by applying the EXPIREDREAD rule. Further, FCS extends
Lancet to annotate double-free by searching for where the
dangling pointer is created and whether there are other point-
ers sharing the same pointee owner. Therefore, FCS is able
to report that buf->b_fname and buf->b_sfname are aliases. As
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Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary2: P[rax] = {“buf”}, C[R[rax]] = {“buf”}, 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}, V[rcx] = {“color”}

FCS Report 

007 int main () {
050    intptr_t *a = malloc(0x38);
070    uint8_t *b = (uint8_t *)malloc(0x28);
080    uint8_t *c = (uint8_t *)malloc(0xf8);
092    b[real_b_size] = 0; // off-by-one
108    a[1] = fake_size;
125    free(c);
130    intptr_t *d = malloc(0x158);
140    free(b);
146    d[0x30/8] = (long)target ^ ...;

Code Snippet Demonstrating House of Einherjar

; 092: b[real_b_size] = 0;
OOBW: C={“b”} -> C={-1}, heap metadata corruption
; 130: intptr_t *d = malloc(0x158);
Mem overlap: C={“a”}, C={“b”} <=> C{“d”}
; 140: free(b)
Invalid free in the middle: C={“b”,“d”}
; 146: d[0x30/8] = (long)target ^ ...;
UAF: C={-1, “d”}

PF Report 

a b c

d
fake

Heap Layout off-by-one

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed 0x896be5 /vim/
src/ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed 0x896be5 /vim/
src/ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

endbuf

Change of heap layout in CVE-2023-33476 exploit

endptr tcache chunk payload

endptr tcache data payload

Before memmove

After memmove overwrite

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

Figure 8: The official patch, synthesized patch using ASan report
and FCS report respectively, for CVE-2024-41965.

illustrated in Figure 8, the patch synthesized from the FCS
report, though more verbose, is equivalent to the official patch.
Readers can refer to Figure 12 in Appendix for report details.

Patching CPV15 in Nginx CP. This is a buffer overflow
in Nginx CP, released by DARPA after the semi-final [13].
According to the competition log, our CRS was the only
system to discover this vulnerability but failed to synthesize a
working patch. This makes it an ideal case to understand the
strengths and limitations of FCS.

This vulnerability is an internal overflow, from one sub-
field uint32_t uid_got[4] to another subfield ngx_str_t cookie

in the ngx_http_userid_ctx_t structure, triggered in the func-
tion ngx_decode_base64. As ASan doesn’t insert poisoned red-
zones within structure, it fails to detect the overflow initially.
Instead, it reports a SEGV on unknown address later when the
overwritten u_char* data in ngx_str_t cookie is dereferenced.

Figure 9 shows the official patch, which mitigates the over-
flow by limiting the length of the ngx_str_t src before calling
ngx_decode_base. The patch synthesized using ASan report,
however, mistakenly focuses on examining whether pointers,
conf->cookie and uid_data, are NULL. GPT 4.0’s “explana-
tion” is “address the segmentation fault by ensuring pointers

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary2: P[rax] = {“buf”}, C[R[rax]] = {“buf”}, 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}, V[rcx] = {“color”}

FCS Report 

007 int main () {
050    intptr_t *a = malloc(0x38);
070    uint8_t *b = (uint8_t *)malloc(0x28);
080    uint8_t *c = (uint8_t *)malloc(0xf8);
092    b[real_b_size] = 0; // off-by-one
108    a[1] = fake_size;
125    free(c);
130    intptr_t *d = malloc(0x158);
140    free(b);
146    d[0x30/8] = (long)target ^ ...;

Code Snippet Demonstrating House of Einherjar

; 092: b[real_b_size] = 0;
OOBW: C={“b”} -> C={-1}, heap metadata corruption
; 130: intptr_t *d = malloc(0x158);
Mem overlap: C={“a”}, C={“b”} <=> C{“d”}
; 140: free(b)
Invalid free in the middle: C={“b”,“d”}
; 146: d[0x30/8] = (long)target ^ ...;
UAF: C={-1, “d”}

PF Report 

a b c

d
fake

Heap Layout off-by-one

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch from ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch from FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed 0x896be5 /vim/
src/ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed 0x896be5 /vim/
src/ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

endbuf

Change of heap layout in CVE-2023-33476 exploit

endptr tcache chunk payload

endptr tcache data payload

Before memmove

After memmove overwrite

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

Figure 9: The official patch, synthesized patches using ASan report
and FCS report respectively, for CPV15 in Nginx CP.

are valid and memory allocations are checked”. We infer that
GPT 4.0 was misled by the SEGV message in ASan’s report.
Note that, sophisticated root cause diagnosis tools like POMP
and REPT cannot handle this case well either, as they rely on
reverse execution and backward taint analysis, making them
unable to diagnose situation where there is no direct data flow
between the corruption site and the actual root cause.

Unlike ASan, FCS reports that the segment fault occurs
due to the untrusted dereferencing of ctx->cookie.data (CWE-
822), with the last write in the function ngx_decode_base64

(See Figure 13 in Appendix). GPT 4.0 interprets this as a
“potential OOB write, leading to an invalid memory address”.
This patch synthesized using this information in the prompt
attempts to ensure src.len is at most MAX_BASE64_INPUT. Un-
fortunately, MAX_BASE64_INPUT is not a valid macro in Nginx;
it was instead fabricated by GPT 4.0, causing a compilation
failure after applying the patch.

Though the patch synthesized using FCS report is closer
to the ground-truth, the result reveals a limitation in the cur-
rent FCS: it uses one single subject ID to represent the entire
structure and fails to detect internal overflow. As a result,
GPT 4.0 is left to infer potential OOB by using implicit infor-
mation. In addition, the lack of information about the offset
of ctx->cookie.data within ngx_http_userid_ctx_t forces GPT
4.0 to create a hypothetical MAX_BASE64_INPUT to cap the length.
We plan to solve this problem in our future work.

Extended AI-Tool Comparison. To add a deeper AI-tool
comparison, we extended our evaluation to Claude 3.7 and
Grok3 for the two cases above—across three prompt con-
figurations: (1) a baseline prompt enriched with UAF/SEGV
knowledge, (2) UAF/SEGV knowledge augmented with ASan
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reports and targeted hints, and (3) UAF/SEGV knowledge sup-
plemented by FCS reports. We scored each model on reason-
ing accuracy and patch validation. Regardless of the LLM or
prompt used, FCS consistently outperforms ASan in guiding
the patch generation procedure. Detailed results are presented
in Table 4 and discussed in the Appendix.

7 Limitations and Future Work

Support for Kernel and Other Architectures. The cur-
rent implementation of Lancet, FCS and EPF, only supports
userspace analysis. Our future work aims to extend support
to kernel-specific artifacts. This will include transitioning
privileged instructions to LancetISA, expanding the list of
allocator interfaces by covering kmalloc, kfree, and other KPIs
of SLAB/SLUB allocator, and defining kernel exploitation
techniques like hijacking to usermodehelper. Besides, we plan
to extent our architecture support to ARM64 and RISC-V.

Open the Blackbox of Allocator. Our current implementa-
tion treats the allocator as a black box, bypassing the analysis
of instructions behind malloc and free. This simplification
allows our design to be allocator-independent and enhances
efficiency by avoiding the need to process a substantial num-
ber of instructions. However, this approach limits FCS in triag-
ing allocator-specific errors and prevents EPF from disclosing
finer details of primitive transition inside the allocator, for
example, the consolidation of two chunks. To open the box,
we will split a specific allocator into several subjects based on
the metadata structure so that we can observe how they are
corrupted internally.

Internal Overflow. Another problem in the current im-
plementation of FCS is it considers a structural variable as a
single subject without distinguishing between subfields. As
a result, FCS fails to detect the internal overflow in CPV15
of Nginx CP. We will solve this problem by mapping the
structure layouts to memory cells, provided that source code
is available.

Concurrency and Symbolization. While the Lancet
framework can analyze traces of concurrent software, it cur-
rently cannot triage concurrency bugs due to the absence of
a concurrency model. We plan to develop such a model to
extend Lancet. Besides, Lancet analyzes program in a con-
crete execution context. Therefore, we are not able to define
and differentiate between primitives like restricted write and
arbitrary write in EPF. Moving forward, we plan to symbolize
Lancet, allowing the use of predicate logic to describe poten-
tial value stored in corrupted memory cells. This advancement
will offer the opportunity to quantify exploitability. Specifi-
cally, we can define a partial order based on the number of
corrupted memory cells as well as the entailment between
potential value stored in them. It will allow us to formally
determine whether exploitability is effectively escalated by
an action, ultimately facilitating automate exploit generation.

More Applications. FCS and EPF are straight applications
under the Lancet framework and they are limited. For exam-
ple, FCS is designed for a rapid crash triaging, without aiming
to diagnose the root cause. To enhance its capability, we plan
to integrate algorithms from prior works, such as hypothesis
testing in POMP, iterative analysis in REPT, and explanation
synthesis in Aurora. In addition, we will make the output
message more user-friendly, reducing the extra effort needed
for interpretation. While FCS is efficient in triaging crashes,
it is unsuitable for intensive fuzzing and thus was not used
to discover new bugs in AIxCC. In the future, we plan to
optimize it and explore its integration with AFL.

8 Conclusion

This work introduces Lancet, a formalization framework to
dissect the cause, development, and impact of memory cor-
ruption vulnerabilities. The utility of Lancet is demonstrated
through two downstream tools: FCS, a fast crash triaging
tool and EPF, which fingerprints primitive transition. We im-
plement them on x86 architecture and deployed FCS in the
DARPA AIxCC semi-final to support patch synthesis. Exper-
imental results validate the efficiency and effectiveness of
these tools.

9 Open Science

To encourage further research in this area, we open source
code of Lancet on GitHub [1] under the GPLv2 License.
Additionally, we participated in the artifact evaluation process
to validate the availability, reproducibility, and functionality
of our work.

10 Ethics Considerations

This research involves a formalization framework to dissect
the cause, development, and impact of memory corruption vul-
nerabilities. The downstream applications under this frame-
work can better triage crashes for patch development and
fingerprint primitive transitions for protection design. Our
evaluation used reported and fixed vulnerabilities and well-
known exploit artifacts. It was conducted in a controlled envi-
ronment, ensuring that it does not impact external systems or
environments.
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A Appendix

a = R[r] H[a] =⊥ ∨ |C[a]|> 1
InvalidFree ∈Vulns(⟨free r⟩, ...) INVALIDFREE

a = R[r]
∃ i, a ≤ i < a+n, C[i] ̸= {allocator}

MemOverlap ∈Vulns(⟨malloc r⟩, ...) OVERLAP

Figure 10: More example definitions of common exploitation
primitives and techniques in EPF.

More Example Definitions of Primitives and Explana-
tion. Figure 10 presents two more example definitions of
primitives. For invalid free, though the domain of memory
cells to be freed could vary among stack (House of Spirit in
this case), global, or heap (with Double Free being a subcase),
their common characteristic is that H is marked as ⊥. In the
case of freeing the middle of a heap object, the cell owner of
related cells won’t be changed to the allocator, as the opera-
tional semantics of free in Lancet requires H to be defined.
Therefore, when these cells are recycled in a sequential malloc,
memory overlap is identified because a cell is co-owned by
two subjects simultaneously.

Remote Code Execution of CVE-2023-33476. This is a
heap out-of-bound write in the HTTP chunk parsing code of
the minidlna server, leading to remote code execution [18].
Figure 11 illustrates the heap layout after the heap grooming:
a tcache chunk is positioned right after the endptr buffer, with
the payload placed following this tcache chunk.

When memmove(endbuf, endptr, b->req_chunklen) is exe-
cuted, the b->req_chunklen parameter is excessively large, trig-
gering an overflow. As a result, the payload is moved to
modify the tcache chunk, especially its fd pointer to point
to the Global Offset Table (GOT). Then through spraying the
tcache, the exploit tampers with the free entry in the GOT to
ultimately hijack the control flow.

ASan reports the initial heap out-of-bonud read from endptr

into its red zone but misses all subsequent errors, because its
changes to the glibc allocator’s management logic fails heap
grooming. Even if heap grooming succeeded, the payload’s
overwrite of the tcache chunk would be noisily flagged as
a use-after-free, as the corresponding shadow memory for
the tcache chunk would record it as freed based on ASan’s
mechanism.

In contrast, EPF doesn’t interfere with the exploit. Users
can use cell owners of involved memory cells in its tracing
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Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary: P[rax] = {“buf”}, C[R[rax]] = {“buf”} => 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}

FCS Report 

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

Heap Layout in CVE-2023-33476 Exploit

tcache chunk payload

endbuf

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
CrossBoundary: P={“endbuf”} => C={“endptr”}
CrossBoundary: P={“endbuf”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“allocator”}
CrossBoundary: P={“endptr”} => C={“payload”}
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Overlap: C={“GOT”,“h->req_buf”}

EPF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c45e0: mov byte ptr [rax], cl ; in 
ngx_decode_base64()
W to 0x555556264760, P = {ctx->cookie.data}
                . . . . . . . . . .
0x5555558c4f52: mov rcx, word ptr [rcx+0x28]
R from 0x555556264760, P = {ctx->cookie.data}
0x5555558c4f56: mov rdx, qword ptr [rcx]
R from  0xcccccccc

FCS Report  for CPV15 in Nginx CP

r 2 Registers
a 2 Addresses
s 2 Subjects
i 2 Instructions
x 2 Operands ::= v | r | [r]
d 2 Domains ::= heap | stack | global
R 2 Registers ! Values
M 2 Addresses ! Values
H 2 Addresses ! Values
C 2 Addresses ! P(Subjects)
V 2 Addresses ! P(Subjects)
P 2 Registers [ Addresses ! P(Subjects)

Figure 13: (Partial) Syntax

r 2 Registers a 2 Addresses s 2 Subjects v 2 Values

x 2 Operands ::= v | r | [r]

bin 2 Binary Instructions ::= cmp | add | sub | imul | and | or | xor

i 2 Instructions ::= store [r0], r | load r,0 [r] | mov r, v | mov r0, r |
bin r0, r | jeq r | push r | pop r |
call r | malloc r | free r |

Figure 14: Lancet RISC Syntax

(hii, R, M, H, C, V, P ) + (R0, M 0, H 0, C 0, V 0, P 0)

(hmov rl, rri, R, M, H, C, V, P ) + (R[rl 7! R[rr]], M, H, C, V, P [rl 7! P [rr]])
MOVREGROREG

(hmov rl, vi, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! C[v]])
MOVVALTOREG

w = sizeof(rl) a = R[rb] a0 = a + w v = M [a : a0]

(hmov rl, [rb]i, R, M, H, C, V, P ) + (R[rl 7! v], M, H, C, V, P [rl 7! P [a]])
MOVMEMTOREG

KL: Should the MovRegToMem V update instead be V [a : a0 7! R[rr]]?

w = sizeof(rr) a = R[rb] a0 = a + w v = R[rr]

(hmov [rb], rri, R, M, H, C, V, P ) + (R, M [a : a0 7! v], H, C, V [a : a0 7! R[rr]], P [a 7! P [rr]])
MOVREGTOMEM

op 2 {add,sub,imul,and,or,xor} vl = R[rl]

(hop rl, vri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGVAL

op 2 {add,sub,imul,and,or,xor} rl 6= sp vl = R[rl] vr = R[rr]

(hop rl, rri, R, M, H, C, V, P ) + (R[rl 7! op(vl, vr)], M, H, C, V, P [rl 7! Prl [ C[op(vl, vr)]])
BINARYOPREGREG

Figure 15: Concrete Instruction Semantics
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050   intptr_t *a = malloc(0x38);
070   uint8_t *b = (uint8_t *)malloc(0x28);
080   uint8_t *c = (uint8_t *)malloc(0xf8);
092   b[real_b_size] = 0; // off-by-one

108   a[1] = fake_size;
125   free(c);

130   intptr_t *d = malloc(0x158);

140   free(b);
{A, D} {“allocator”,D} {D}

146   d[0x30/8] = (long)target ^ …;

{A, D} {B, D} {D}

{A} {B} {“allocator”}

{A} {B} {C}

Change of Cell Owners in the House of Einherjar

endptr

Figure 11: Heap layout after heap grooming in CVE-2023-33476
exploit and critical part of EPF report.

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary2: P[rax] = {“buf”}, C[R[rax]] = {“buf”}, 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}, V[rcx] = {“color”}

FCS Report 

007 int main () {
050    intptr_t *a = malloc(0x38);
070    uint8_t *b = (uint8_t *)malloc(0x28);
080    uint8_t *c = (uint8_t *)malloc(0xf8);
092    b[real_b_size] = 0; // off-by-one
108    a[1] = fake_size;
125    free(c);
130    intptr_t *d = malloc(0x158);
140    free(b);
146    d[0x30/8] = (long)target ^ ...;

Code Snippet Demonstrating House of Einherjar

; 092: b[real_b_size] = 0;
OOBW: C={“b”} -> C={-1}, heap metadata corruption
; 130: intptr_t *d = malloc(0x158);
Mem overlap: C={“a”}, C={“b”} <=> C={“d”}
; 140: free(b)
Invalid free in the middle: C={“b”,“d”}
; 146: d[0x30/8] = (long)target ^ ...;
UAF: C={-1, “d”}

PF Report 

a b c

d
fake

Heap Layout off-by-one

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

endbuf

Change of heap layout in CVE-2023-33476 exploit

endptr tcache chunk payload

endptr tcache data payload

Before memmove

After memmove overwrite

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
OOBW: P={“endbuf”} -> C={-1}, heap metadata corruption
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Mem overlap: C={“GOT”} <=> C{“h->req_buf”}

PF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c4f56: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CPV15 in Nginx CP

Figure 12: Snippets of ASan report and FCS report for CVE-2024-
41965. The 4576 is the ID of the subject referred by buf->b_sfname

and buf->fname.

record to understand how heap grooming is achieved. Further,
as shown in Figure 11, EPF reports that the tcache chunk is
overwritten on line 906, not because of a bogus use-after-free
but because it is mistakenly treated as part of endbuf according
to its pointee owner. In addition, when the GOT is overwritten
on line 1129, EPF reports a memory overlap between it and
the newly allocated h->req_buf.

Overhead and Instruction Distribution. We compared
the four most frequent instructions (MOV, ADD, LEA, CMP)
in PHP (1.059 B instructions) versus FFmpeg (326 M). With
full analysis, PHP runs in 150 s (vs. 18 s baseline) and FFm-
peg in 80 s (vs. 63 s). PHP’s extra overhead is driven largely
by MOVs (737 M vs. 150 M) and, to a lesser extent, LEAs
(101 M vs. 59 M). Therefore, analysis time grows with in-
struction volume and handler complexity but isn’t strictly
linear.

Effectiveness of FCS and ASan on Juliet Test Suite. Ta-
ble 5 in the Appendix summarizes our results on selected
Juliet variants. For the heap-overflow case CWE129_fgets_01,
ASan fails to detect the cross-boundary write: once the ma-
licious input index falls outside ASan’s red zone, no error is

Pointer p (subject A)

Heap object (subject B)

cell owner = {A}, value owner = {A}, pointee owner = {B}

cell owner = {B}, value owner = {allocator}, pointee owner = {…}

AddressSanitizer: heap-buffer-overflow on address 
0x7fffed61b7e0 …
READ of size 8 at 0x7fffed61b7e0 thread T0
  #0 0x896be5 in php_gd_gdImageColorMatch /php-src/
ext/gd/libgd/gd_color.c:44:13
                . . . . . . . . . .

0x7fffed61b7e0 is located 32 bytes to the left of 
262144-byte region [0x7fffed61b800, 0x7fffed65b800) 
allocated by thread T0 here: 
  #0 0x4b243d in malloc (/php-src/sapi/cli/
php+0x4b243d)
                . . . . . . . . . .
  #6 0x86828a in php_gd_gdImageCreateTrueColor /php-
src/ext/gd/libgd/gd.c:207:28

AddressSanitizer: SEGV on unknown address
  #0 0xc64a7a in zend_mm_del_segment /php-src/Zend/
zend_alloc.c:923:9
                . . . . . . . . . .

ASan Report 1 (“color” == 248)

ASan Report 2 (“color”== 150)

<?php $img1 = imagecreatetruecolor(0xfff, 0xfff); 
$img2 = imagecreate(0xfff, 0xfff); 
imagecolorallocate($img2, 0, 0, 0); 
imagesetpixel($img2, 0, 0, 255); // “color” == 255
imagecolormatch($img1, $img2);

PoC

15 int gdImageColorMatch (…) {
17    unsigned long *buf, *bp;
19    int color;
36    buf = safe_emalloc(8, 5*im2->colorsTotal, 0);
41    color = im2->pixels[y][x];
43    bp = buf + (color * 5);
44    (*(bp++))++;

Vulnerable Code of CVE-2019-1977

Irrelevant Info

Incorrect Info

Evade ASan

; 43: bp = buf + (color * 5)
0x668092: imul edx, [rbp+color’s offset], 5
0x668096: movsxd rcx, edx
0x668099: shl rcx, 3
0x66809D: add rax, rcx
CrossBoundary2: P[rax] = {“buf”}, C[R[rax]] = {“buf”}, 
C[R[rax]+R[rcx]] = {134}, C[rcx] = {“color”}, V[rcx] = {“color”}

FCS Report 

007 int main () {
050    intptr_t *a = malloc(0x38);
070    uint8_t *b = (uint8_t *)malloc(0x28);
080    uint8_t *c = (uint8_t *)malloc(0xf8);
092    b[real_b_size] = 0; // off-by-one
108    a[1] = fake_size;
125    free(c);
130    intptr_t *d = malloc(0x158);
140    free(b);
146    d[0x30/8] = (long)target ^ ...;

Code Snippet Demonstrating House of Einherjar

; 092: b[real_b_size] = 0;
OOBW: C={“b”} -> C={-1}, heap metadata corruption
; 130: intptr_t *d = malloc(0x158);
Mem overlap: C={“a”}, C={“b”} <=> C={“d”}
; 140: free(b)
Invalid free in the middle: C={“b”,“d”}
; 146: d[0x30/8] = (long)target ^ ...;
UAF: C={-1, “d”}

PF Report 

a b c

d
fake

Heap Layout off-by-one

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
+   // prevent double free
+   if (buf->b_sfname != buf->b_ffname)
+       VIM_CLEAR(buf->b_sfname);
+   buf->b_fname = NULL;
    VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);

Official Patch of CVE-2024-41965

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_fname != NULL)
+       VIM_CLEAR(buf->b_fname);
+   if (buf->b_ffname != NULL)
+       VIM_CLEAR(buf->b_ffname);
+   if (buf->b_sfname != NULL)
+       VIM_CLEAR(buf->b_sfname);

Synthesized Patch using ASan Report

@@ -197,9 + 197,11 @@ dialog_changed () {
-   VIM_CLEAR(buf->b_fname);
-   VIM_CLEAR(buf->b_ffname);
-   VIM_CLEAR(buf->b_sfname);
+   if (buf->b_ffname != buf->b_fname)
+       VIM_CLEAR(buf->b_ffname);
+   else
+       buf->b_ffname = NULL;
+   if (buf->b_sfname != buf->b_fname && 
        buf->b_sfname != buf->b_ffname)
+       VIMC_CLEAR(buf->b_sfname);
+   else
+       buf->b_sfname = NULL;

Synthesized Patch using FCS Report

AddressSanitizer: attempting double-free on 
0x0x502000019510 … in thread T0:
                . . . . . . . . . .
  #3 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6
                . . . . . . . . . .
freed by thread T0 here:
                . . . . . . . . . .
  #2 0x5555559625bf in dialog_changed /vim/src/
ex_cmds2.c:202:6

ASan Report for  CVE-2024-41965

0x5555557496fa: cmp word ptr [rax+98h], 0
ExpiredRead: P[buf->b_sfname] = {4576}, C[R[rax]+98h] = 
{allocator}, P[buf->b_fname] = {4576}

FCS Report  for CVE-2024-41965

endbuf

Change of heap layout in CVE-2023-33476 exploit

endptr tcache chunk payload

endptr tcache data payload

Before memmove

After memmove overwrite

@@ -443,12 +443,18 @@ ngx_http_userid_set_uid (…) {
+   if(conf == NULL || conf->cookie == NULL) {
+       ngx_log_error(…);
+       return NGX_ERROR;
+   }
    uid.data = ngx_pnalloc(r->pool, uid.len);
    if(uid.data == NULL) {
+       return NGX_ERROR;

Snippet of Synthesized Patch using ASan Report

@@ -358,7 +358,12 @@ ngx_http_userid_get_uid (…) {
    src = ctx->cookie; 
+   if (src.len > MAX_BASE64_INPUT)
+       src.len = MAX_BASE64_INPUT;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Snippet of Synthesized Patch using FCS Report

@@ -356,6 +356,18 @@ ngx_http_userid_get_uid (…) {
    ngx_str_t src;
    src = ctx->cookie;
+   src.len = 22;
   if(ngx_decode_base64(&dst, &src) == NGX_ERROR)

Official Patch of CPV15 in Nginx CP 

; 906: memmove(endbuf, endptr, h->req_chunklen);
OOBW: P={“endbuf”} -> C={-1}, heap metadata corruption
; 1129: h->req_buf = (char *)realloc(h->req_buf, …);
Mem overlap: C={“GOT”} <=> C{“h->req_buf”}

PF Report 

AddressSanitizer: SEGV on unknown address
                . . . . . . . . . .
  #2 0x5555558c4f56 in ngx_htpp_userid_set_uid /src/
http/modules/ngx_http_userid_filter_module.c:446:13
                . . . . . . . . . .

ASan Report for  CPV15 in Nginx CP

0x5555558c45e0: mov byte ptr [rax], cl ; in 
ngx_decode_base64()
W to 0x555556264760, P = {ctx->cookie.data}
                . . . . . . . . . .
0x5555558c4f52: mov rcx, word ptr [rcx+0x28]
R from 0x555556264760, P = {ctx->cookie.data}
0x5555558c4f56: mov rdx, qword ptr [rcx]
R from  0xcccccccc

FCS Report  for CPV15 in Nginx CP

Figure 13: Snippets of ASan report and FCS report for CPV15 in
Nginx CP during the AIxCC semi-final.

PHP, CVE-2019-6977 FFmpeg, 10749
Opcode Count Percent Opcode Count Percent
MOV 737,043,750 43.47% MOVSS 188,480,226 10.34%

STOSB 235,221,642 13.87% MOV 150,550,587 8.26%
ADD 202,827,926 11.96% ADD 117,849,028 6.46%

MOVSXD 117,484,793 6.93% STOSB 81,022,011 4.44%
LEA 101,910,312 6.01% LEA 59,184,595 3.25%

MOVZX 84,862,336 5.01% MOVSXD 43,031,408 2.36%
SHL 67,501,328 3.98% ADDSS 39,807,324 2.18%
SAR 50,321,614 2.97% SUB 35,177,523 1.93%
CMP 19,136,417 1.13% SHL 30,885,691 1.69%
AND 17,255,163 1.02% MOVAPS 28,819,934 1.58%

Table 3: Statistics of the most frequent selected instruction
opcodes in the PHP and FFmpeg cases

reported. In contrast, FCS always flags this CrossBoundary
access by applying the ownership rule. For variants that per-
form arbitrary writes to legally addressable memory, neither
tool reports an error, as no ownership invariant is violated. For
non-memory-corruption variants, both ASan and FCS report
as expected.

Discussion of AI-Tool Comparison. Table 4 presents the
results of extending our evaluation to Claude 3.7 and Grok 3.
While FCS ’s report generally outperforms the ASan report,
it fails to generate a valid patch for the CPV15 case due to
its current single-ID struct limitation (Section 5.3). When
provided only with UAF knowledge and ASan hints for the
Vim case, Grok 3 succeeds in both reasoning and validation.
We attribute this success to Grok 3’s more recent training,
which likely included the Vim case in its dataset.
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(⟨i⟩,R,M,H,S,C,V,P) ⇓ (R′,M′,H ′,S′,C′,V ′,P′)

(⟨mov rl ,rr⟩,R,M,H,S,C,V,P) ⇓ (R[rl 7→ R[rr]],M,H,S,C,V,P[rl 7→ P[rr]])
MOVREGTOREG

(⟨mov rl ,v⟩,R,M,H,S,C,V,P) ⇓ (R[rl 7→ v],M,H,S,C,V,P[rl 7→C[v]])
MOVVALTOREG

w = sizeo f (addressbus) a = R[sp] a′ = a−w ret = R[ip] f resh s
(⟨call r⟩,R,M,H,S,C,V,P) ⇓ (R[sp 7→ a′][ip 7→ R[r]],M[a′ : a 7→ ret],H,S[a′ 7→ s],
C[a′ : a 7→C[a′ : a][s//stack]],V [a′ : a 7→ {s}],P[a′ 7→ P[r]][sp 7→ P[a]][ip 7→ P[r]])

CALL

a = R[sp] vr = R[rr] a′ = a− vr f resh s C′ =C[a′ : a 7→C[a′ : a][s//stack]]
(⟨sub sp,rr⟩,R,M,H,S,C,V,P) ⇓ (R[sp 7→ a′],M,H,S[a′ 7→ s],C′,V,P[sp 7→ P[a′]])

SUBSP

a = R[sp] vr = R[rr] a′ = a+ vr C′ =C[a : a′ 7→C[a : a′][stack//S[a]]]
(⟨add sp,rr⟩,R,M,H,S,C,V,P) ⇓ (R[sp 7→ a′],M,H,S[a 7→ ⊥],C′,V,P[sp 7→ P[a′]])

ADDSP

Figure 14: The remaining operational semantics rules of LancetISA.

LLM Patch Evaluation for CVE-2024-41965 with UAF knowledge and fix prompt
ASAN report ASAN report + Weak hint1 FCS report

GPT-4.0 Claude3.7 Grok3.0 GPT-4.0 Claude3.7 Grok3.0 GPT-4.0 Claude3.7 Grok3.0
R V R V R V R V R V R V R V R V R V
✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

LLM Patch Evaluation for CPV15 in Nginx CP with SEGV knowledge and fix prompt
ASAN report ASAN report + Weak hint2 FCS report

GPT-4.0 Claude3.7 Grok3.0 GPT-4.0 Claude3.7 Grok3.0 GPT-4.0 Claude3.7 Grok3.0
R V R V R V R V R V R V R V R V R V
✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗

Table 4: Comparative Evaluation of Foundation Models across Prompt Variations for Two Vulnerability Cases. R: Reasoning
(analysis success / failure); V: Validation (functional correct / incorrect); weak hint1: rule out one mistaken fix—directly nullifying
the pointer; weak hint2: a dereferenced pointer is not pointing to a valid address.
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vuln ∈Vulns(⟨i⟩,R,M,H,S,C,V,P)

sizeo f (rl) = w a = R[rb] a′ = a+w |P[rb]|> 1 ∨ (P[rb] =C[a] ∧ P[rb] ̸=C[a′−1])
OutOfBoundRead(CWE-125) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

OOBR

a = R[rb] P[rb] ̸=C[a]
ExpiredPointerDereference(CWE-825) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

EXPIREDREAD

a = R[r] P[r] ̸=C[a]
ExpiredPointerDereference(CWE-825) ∈Vulns(⟨free r⟩,R,M,H,S,C,V,P)

EXPIREDFREE

a = R[rb] P[rb] ̸=C[a] dom(rb) = heap
UseAfterFree(CWE-416) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

UAFR

a = R[rb] P[rb] ̸=C[a] dom(rb) = stack
StackUseAfterScope (CWE-562) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

STACKREADUSEAFTERSCOPE

vr = R[rr] P[rr] ̸=C[vr]

DanglingPtrOccur ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)
DANGLINGPTR2

vl = R[rl ] vr = R[rr] (P[rl ] ̸=C[vl ]) ∨ (P[rr] ̸=C[vr])

DanglingPtrOccur ∈Vulns(⟨bin rl ,rr⟩,R,M,H,S,C,V,P)
DANGLINGPTR3

a = R[rb] v = M[a] (P[a] ̸=C[v])
DanglingPtrOccur ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

DANGLINGPTR4

NULL < R[rb] R[rb]< NULL+0x1000
NULLPtrDereference(CWE-476) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

NLLPTRDEREF1

NULL < R[rb] R[rb]< NULL+0x1000
NULLPtrDereference(CWE-476) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

NLLPTRDEREF2

a = R[rb] C[a] = {}
UntrustedPointerDereference(CWE-822) ∈Vulns(⟨load rl , [rb]⟩,R,M,H,S,C,V,P)

UNTRUSTEDPTRDEREF1

a = R[rb] C[a] = {}
UntrustedPointerDereference(CWE-822) ∈Vulns(⟨store [rb],rr⟩,R,M,H,S,C,V,P)

UNTRUSTEDPTRDEREF2

Figure 15: The remaining vulnerability definitions in Lancet.
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Memory Corruption CWEs
CWE ASan FCS Variant ( Trace Length / LoC / Time(s) )

121 stack-buffer-overflow
OOB W

CrossBoundary

CWE129_fgets_01G#(160.5K/168/0.05), CWE193_char_declare_loop_01(150.2K/111/0.02),
CWE805_int_alloca_loop_13(147.7K/138/0.15), CWE805_int_alloca_loop_13_variantG#(147.7K/138/0.02)

CWE805_struct_alloca_memmove_01(148.7K/107/0.17)

122 heap-buffer-overflow
OOB W

CrossBoundary

CWE131_memcpy_66(152.8K/139/0.08), cpp_CWE129_fgets_09G#(1.8M/316/0.21),
cpp_CWE193_char_cpy_01(1.8M/101/0.37), cpp_CWE805_char_loop_01(1.8M/112/0.26),

cpp_dest_char_cat_01(1.8M/102/0.17)

123 SEGV
UNTRUSTED-
PTRDEREF2

fgets_01G#(149.9K/137/0.05)

124 heap-buffer-overflow
OOB W

CrossBoundary

malloc_char_loop_65(153.3K/167/0.03), malloc_char_loop_65_variantG#(153.3K/167/0.02),
CWE839_fgets_01G#(152.5K/168/0.18), char_declare_cpy_01(148.4K/96/0.20),

malloc_char_memcpy_01(152.2K/112/0.03)

126 heap-buffer-overflow
OOB R

CrossBoundary

malloc_wchar_t_loop_66(154.5K/165/0.18), CWE129_fgets_01G#(152.9K/150/0.07),
malloc_char_loop_01(154.5K/114/0.07), new_char_loop_01(1.8M/118/0.41),

new_char_memmove_01(1.8M/108/0.28)

127 heap-buffer-overflow
OOB R

CrossBoundary

malloc_char_loop_66(152.8K/171/0.12), malloc_char_loop_66_variantG#(152.8K/171/0.20),
CWE839_fgets_01G#(152.5K/150/0.20), CWE839_negative_01(149.8K/126/0.10),

char_alloca_memcpy_01(150.1K/100/0.10)

415 attempting double-free DoubleFree
malloc_free_long_21 ∆106(149.5K/166/0.08), malloc_free_char_72 ∆6355(1.8M/189/0.28),

new_delete_class_01(1.8M/105/0.28), no_assignment_op_01 ∆4(1.8M/187/0.10)
new_delete_array_char_01 ∆2(1.8M/105/0.16)

416 heap-use-after-free UAF R
return_freed_ptr_01 ∆8(151.9K/130/0.18), malloc_free_struct_01 ∆10(153.4K/128/0.18),

new_delete_class_01 ∆1(1.8M/114/0.43), operator_equals_01 ∆36(1.8M/193/0.40)
new_delete_array_struct_01 ∆10(1.8M/132/0.48)

457 Missed UninitRead
double_array_alloca_partial_init_01(175.4K/133/0.55), double_array_malloc_no_init_01(167.0K/124/0.35),

twointsclass_array_malloc_partial_init_01(167.2K/129/0.27), empty_constructor_01(1.8M/119/0.30)
char_pointer_01(149.3K/90/0.15)

476 SEGV
UNTRUSTED-
PTRDEREF1
NllPtrDeref1

long_66(147.1K/162/0.20), binary_if_01(147.1K/81/0.27), class_01(1.8M/111/0.25),
deref_after_check_01(147.1K/79/0.28), struct_01(147.1K/101/0.28)

587 SEGV
UNTRUSTED-
PTRDEREF1

basic_06(147.1K/106/0.10)

590
attempting free on address
which was not malloc()-ed,

stack-use-after-scope
INVALIDFREE

delete_array_char_static_01(1.8M/98/0.40), delete_array_class_declare_01(1.8M/110/0.14),
delete_array_class_static_01(1.8M/110/0.20), delete_char_placement_new_01(1.8M/97/0.30),

int_static_01(1.8M/96/0.28)
665 Missed Missed char_cat_01(151.1K/94/0.22)
672 heap-use-after-free UAF R list_int_54a ∆304(1.8M/379/0.50)

680 heap-buffer-overflow
OOB W

CrossBoundary
malloc_fgets_01G#(154.6K/117/0.15), malloc_fixed_01(10737.6M/106/0.01),

new_fixed_01(10739.2M/110/0.01), new_fgets_01G#(1.8M/121/0.25)

758 SEGV UNINITREAD
int_malloc_use_06(151.6K/120/0.27), char_alloca_use_01(149.8K/78/0.40),

char_malloc_use_01(151.7K/82/0.25), char_new_use_01(1.8M/87/0.38),
char_pointer_new_use_01(1.8M/87/0.30)

761
attempting free on address
which was not malloc()-ed

INVALIDFREE wchar_t_console_66(152.0K/204/0.07), char_fixed_string_01(149.8K/107/0.20)

789 heap-buffer-overflow
OOB W

CrossBoundary
malloc_wchar_t_fgets_01(154.1K/174/0.20), new_wchar_t_fgets_01(1.8M/178/0.36)

Non Memory Corruption CWEs

134 SEGV
UNTRUSTED-
PTRDEREF1/2

char_console_fprintf_01G#(153.6K/143/0.21)

190 Missed Missed
char_max_multiply_01(149.8K/109/0.21), char_max_add_01(149.8K/104/0.33),

char_max_square_01(149.8K/106/0.08)

252 Missed Missed
char_fgets_01(151.6K/91/0.04), char_fread_01(150.7K/86/0.10), char_putchar_01(149.3K/74/0.05),

char_rename_01(149.6K/83/0.10), char_putc_01(149.9K/74/0.12)

401 detected memory leaks Missed
char_calloc_01(150.5K/103/0.22), char_malloc_01(150.5K/103/0.13),

char_realloc_01(150.6K/103/0.01), new_TwoIntsClass_01(1.8M/117/0.23)

562 stack-use-after-return
STACKREADUSE-

AFTERSCOPE
return_buf_01(148.9K/82/0.08), return_local_class_member_01(149.8K/107/0.15),

return_pointer_buf_01(149.3K/88/0.15)
667 Missed Missed basic_01(156.5K/93/0.08)
690 Missed Missed char_calloc_01(150.6K/86/0.23), char_malloc_01(150.6K/86/0.17), int64_t_realloc_01(151.2K/86/0.11)

762 alloc-dealloc-mismatch Missed
calloc_delete_01(1.8M/185/0.33), delete_array_char_malloc_01(1.8M/104/-0.03),

new_array_delete_int64_t_01(1.8M/102/0.27), new_delete_array_class_01(1.8M/102/0.20),
new_free_class_01(1.8M/103/0.28)

Table 5: ASan and FCS on Juliet Test Suite [22]. The "Variant" names drop the CWE prefix—for example,
CWE121_Stack_Based_Buffer_Overflow__CWE129_fgets_01 → CWE129_fgets_01. The meaning of symbols is the same as
Table 1.
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