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Computing has come a long way since Von Neumann introduced his stored-program model of
a computer in 1945. Von Neumann’s architecture is fundamentally compute-centric – a Central Pro-
cessing Unit (CPU) performs all the computation by periodically fetching data and programs from
a passive main memory or a secondary storage. Implicit in this model is the assumption that it is
possible to tread a computation’s data in its entirety through a “central” processor to a compute a
single value that is the canonical result of a computation. This view of computing stands in stark
contrast to the reality of modern applications, which are fundamentally data-centric as opposed
to compute-centric – they operate on large amounts of data organized into multiple data banks,
e.g., databases, shards, and replicas, and perform computations that are essentially distributed in
nature to compute results for which no canonical answer exists. Despite such fundamental differ-
ences in the nature of computing, applications today are nonetheless programmed using the same
language abstractions and programming techniques that trace their origins to the Von Neumann
model. The resultant impedance mismatch between the computation performed and the program-
ming model employed has been a consistent source of negative impact on the security, reliability,
and performance of data-centric applications. For instance, coercing database transactions, which
are concurrent by their very nature, into Von Neumann model of computing, which emphasizes an
orderly execution of instructions, has resulted in an impedance mismatch that effectively exposed
several database-backed commercial applications to concurrency-related attacks [11]. One such
attack has been particularly notorious for it has led to the theft of over half-a-million dollars, and
subsequent closure of an otherwise well-performing Bitcoin exchange named Flexcoin [1]. More
such examples abound in literature and in popular press.

My Research

As evident from above, there is a need for novel computational models, language abstractions
and programming techniques that better suit the nature of modern data-centric applications. De-
veloping such programming infrastructure is indeed one of the focal points of my research, in
particular my most recent work on distributed programming models and replicated data struc-
tures [8, 9, 3]. The more pressing need however is for automated reasoning techniques, program
analyses, and compilation tools that work with the current generation of data-centric applications,
helping them meet the ever so strict goals of scalability and availability without compromising se-
curity and robustness. Developing such automated reasoning infrastructure is another focal point
of my research, and a unifying theme behind most of my work [6, 7, 5, 4, 10]. At a high level, my
research falls at the intersection of programming languages, software engineering, databases,
and distributed systems. In particular, I aim to solve the most pressing problems in the latter
two domains by developing novel approaches that build on top of the conventional wisdom
and technical know-how of the former two. The relevance of my work to the theory and practice
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of contemporary data-centric computing has been recognized through a generous research fellow-
ship from Google. In what follows, I describe my research at a high-level categorizing it into three
broad themes, and conclude by briefly describing my ideas for future research.

Theoretical Foundations of Data Storage and Processing Systems

The theoretical and mental models of data storage systems prevalent among the programming
community are often too simple to match the reality of such systems. For instance, developers com-
monly assume relational databases, such as MySQL and PostgreSQL, to be ACID-compliant with
Serializable transactions, whereas in reality they are not [2]. To accentuate performance, database
systems routinely drop Serializability in favor of weaker isolation guarantees that do not mask the
concurrent nature of database transactions. This mismatch between expectation and reality results
in subtle bugs that manifest as serious violations of safety [1, 11]. The problem is aggravated in case
of distributed “NoSQL” data stores, which, by construction, admit weakly-consistent executions that
defy the commonsense of programming. If programmers were to effectively navigate the complex
reality of modern data storage systems, novel reasoning techniques and automated tool support
are essential. Such tools and techniques should necessarily be based on sound proof theory and ac-
curate formal models of modern data storage systems, which are among the major contribution of
my research. In [6], I present the first ever high-level formal semantics of weak isolation as it occurs
in the real world. Based on this semantics, I develop a deductive proof system that admits rigorous
proofs of correctness for database-backed applications composed of weakly-isolated transactions.
In a follow-up to this work [7], I extend the formal treatment to distributed “NoSQL” data stores
and their applications composed of weakly-consistent operations. A distinguishing feature of both
the formalisms is their remarkable simplicity notwithstanding their comprehensive treatment of
complex real-world data systems. Such simplicity is indeed what makes the formal reasoning to be
automated and applied at scale to identify concurrency-related vulnerabilities and verify correct-
ness of realistic (distributed) database applications, as shall be explained in the next subsection.

My work in theoretical foundations extends to data processing systems as well. In [5], I demon-
strate how stream processing systems (Microsoft’s Naiad in particular) can take advantage of GC-
free memory regions to significantly increase overall throughput of the system without compro-
mising memory safety. The region type system I present in the paper, albeit grounded in sound
theory, is an exercise in pragmatism for it strikes a fine balance between static type checking and
lightweight run-time checks to ensure that the type system does not “get in the way” of Naiad’s
expert developers. Such productive collaborations with systems and database researchers is, I be-
lieve, how my research can have the most impact going forward.

Automatic Verification and Synthesis for Data-Centric Applications

My theoretical work in [6, 7, 5] gave me an excellent framework within which I could develop novel
techniques in automated verification, modelchecking, type inference, and program synthesis for
data-centric applications. Building on the proof system in [6], I built a tool called ACIDifier that
can automatically analyze MySQL and PostgreSQL applications with weakly-isolated transactions
to either detect concurrency-related vulnerabilities or certify them correct. ACIDifier can also infer
the weakest (hence most scalable) isolation configurations at which it is safe to run these applica-
tions. For instance, for the TPC-C OLTP benchmark, ACIDifier discovered that none of the trans-
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actions need to be run at Serializable isolation in order to guarantee the correct behavior, which
turned out to be accurate. Another tool I built, called Q9 is based on a novel operational semantics
of weakly-consistent replicated data stores I present in [7], and extends automated (bounded) ver-
ification to distributed “NoSQL” applications. Q9 analyzes distributed applications under a finite
concurrency bound by reducing the application logic and data store semantics into set-theoretic
constraints that can be very efficiently solved using off-the-shelf SMT solvers. This approach helped
Q9 discover a range of weak-consistency bugs in large-scale applications, including the distributed
variants of TPC-C and TPC-E OLTP benchmarks in just under two minutes, and subsequently re-
pair the applications through selective consistency strengthening.

Beyond verification, my work also spans synthesis of replicated data types (RDTs), such as
replicated queues and document trees, which are the building blocks of an emerging class of peer-
to-peer and interactive distributed applications, including blockchains and collaborative editors.
The theoretical foundations were laid in [4], where I show that any functional data structure can
be reduced to a collection of structural relations for which automatic reasoning is decidable. In [4],
I built a dependent type system called Catalyst that performs the aforementioned relational rea-
soning to automatically verify the correctness of data structure transformations, such as AST trans-
formations in a compiler. The ideas were further developed in [8] to automatically synthesize data
structure transformations, in particular a merge transformation that merges concurrent versions of
a given data type in the context of their common ancestor. This crucial result made it possible
to automatically derive replicated data types from first principles, thus providing a simpler and
more principled alternative to the currently-popular variants of replicated data types that insist
on commutativity of operations (i.e., CRDTs). The synthesis approach was used in practice to au-
tomatically derive a standard library of mergeable replicated data types (MRDTs) from ordinary
OCaml data types, which were then used to build decentralized (peer-to-peer) variants of large
OLTP benchmarks [8].

Novel Programming Models for Data-Centric Computation

Another focal point of my research work is the development of novel language abstractions and
programming models that better suit the nature of data-centric computing. I made two major con-
tributions towards this end. In [10], my collaborators and I present a Haskell domain-specific lan-
guage (DSL) called Quelea that liberates application development on weakly-consistent “NoSQL”
stores from the Von Neumann style. Quelea starts with a clean-slate design where, unlike the
Von Neumann model, no order is guaranteed between any two operations, i.e., no consistency is
assumed whatsoever. Instead, applications are required to declare their consistency requirements
as a series of high-level ordering constraints on their operations, which will then be then be com-
piled down to efficient low-level code that handles systems and networking concerns (analogous
to how declarative Haskell programs are compiled to efficient low-level imperative code by GHC).
As we demonstrate in [10], Quelea drastically reduces the effort required to build highly-scalable
distributed applications on top of off-the-shelf NoSQL data stores, e.g., Cassandra.

The second contribution is an OCaml DSL, named Carmot, for building peer-to-peer decen-
tralized applications [9, 8]. Key to Carmot is the observation that a distributed computation (on
data) is not fundamentally different from the collaborative development (of source code), hence
familiar version control protocols, e.g, Git, which have been successfully used to manage the lat-
ter, can be profitably employed in the context of the former. Indeed, Carmot lets programmers
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orchestrate a distributed computation very much like a Git workflow, namely by forking branches,
committing concurrent versions, and periodically merging versions to keep the branches in sync.
As we demonstrate in [9, 8], the novel version control-inspired programming model of Carmot is
indispensable in bringing the benefits of Mergeable Replicated Data Types (MRDTs), in particular
automatic synthesis, to fully-decentralized data-centric applications, taking us one step closer to
the goal of automatically deriving such applications from their sequential counterparts.

Future Work

I see many opportunities for future research in data-centric computing, which I would like to pur-
sue in collaboration with researchers in Systems, Databases, Cryptography, and Machine Learning.
I sketch a few possibilities below.

Formal models of complex software systems In [6] and [7], I demonstrate the utility of employing
simple formal models of (distributed) database systems in lieu of their complex implementations
to reason about application safety. I see this approach being useful in the context of file systems,
lock-free data structures, data processing libraries – basically any real-world software system that
accrues code and optimizations from decades of engineering effort, and becomes too complex to be
analyzed directly by the verification tools tasked with establishing the safety of their clients. Build-
ing high-fidelity formal models of such systems, however, requires considerable domain knowl-
edge, which is often scattered through API and informal documentation, unit tests, configuration
files, logs, and commit messages. Mining structured knowledge from these sources, and (mostly)
automating the task of synthesizing formal models that act as proxies for these systems during
verification is a challenging-yet-worthwhile exercise, and one that I plan to take up in near future.

Programming models for fully-decentralized and privacy-conscious computing Users of internet ser-
vices are becoming increasingly vocal about their (justifiable) privacy concerns on the internet.
Ambitious initiatives have sought to address this issue by promoting full decentralization in ap-
plication and network protocol design (e.g., Blockchains and IPFS), and by putting people in charge
of their data in their own premises (e.g., TRVE Data). Well-intended as they may be, such initiatives
nonetheless have systemic issues for there are currently no languages and tools that can bridge the
wide chasm between the limited human cognition of the programmer, and planet-scale workings
of the underlying system. In [9], I show that a distributed programming model inspired by version
control workflow can significantly reduce the cognitive burden involved in building highly decen-
tralized applications. However, the questions about performance (at internet-scale) and privacy
are yet unanswered, and addressing them may require a significant re-think of how computation
should be performed over the internet. I would like to collaborate with Systems, Database, and
Cryptography researchers towards answering this question.

Distributed vector representations of data-centric computations Following the runaway success of
“word2vec” in natural language processing, there have been attempts to build distributed vector
representations of code snippets (“code2vec”) with the aim of comparing and predicting the se-
mantic properties of code. While the approach is promising, the success so far has been limited
owing to the high semantic complexity of general-purpose computations in a Turing-complete lan-
guage compared to words in a natural language. I believe more success can be had by restricting
our attention to data-centric computations of which most are expressible in a Turing-incomplete lan-
guage such as Datalog (A case in the point is SQL, which is a subset of Datalog. Another example
is the TPC-C benchmark we used in evaluating ACIDifier [6], which was completely written in a
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Turing-incomplete OCaml DSL). I am therefore interested in evaluating the possibility of building
distributed vector representations of data-centric computations expressed in (a variant of) Datalog
– “Datalog2Vec”, in collaboration with researchers in Databases, Machine Learning, and NLP.
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