Declarative Programming over
Eventually Consistent Data Stores

KC Sivaramakrishnan Gowtham Kaki Suresh Jagannathan
University of Cambridge, UK Purdue University, USA Purdue University, USA
sk826@cl.cam.ac.uk gkaki@cs.purdue.edu suresh@cs.purdue.edu
Abstract 1. Introduction

User-facing online services utilize geo-distributed data stores to Many real-world web services N such as those built and maintained
minimize latency and tolerate partial failures, with the intention by Amazon, Facebook, Google, Twitter, etc. N replicate applica-
to provide a fast, always-on experience. However, geo-distribution tion state and logic across multipgieplicaswithin and across data
does not come for free; application developers have to contendcenters. Replication is intended not only to improve application
with weak consistency behaviors, and the lack of abstractions to throughput and reduce user-perceived latency, but also to tolerate
composably construct high-level replicated data types, necessitatingpartial failures without compromising overall service availability.
the need for complex application logic and invariably exposing Traditionally programmers have relied sttong consistencguar-
inconsistencies to the user. Some commercial distributed data storesantees such as linearizability] or serializability R1] in order
and several academic proposals provide a lattice of consistencyto build correct applications. While strong consistency is an eas-
levels, with stronger consistency guarantees incurring increasedily stated property, it masks the reality underlying large-scale dis-
latency and throughput costs. However, correctly assigning the right tributed systems with respect to non-uniform latency, availability
consistency level for an operation requires subtle reasoning and isand network partitionsg, 14]. Indeed, modern web services, which
often an error-prone task. aim to provide an "always-on" experience, overwhelmingly favor
In this paper, we prese@QUELEA, a declarative programming availability and partition tolerance over strong consistency. To this
model for eventually consistent data stores (ECDS), equipped with end, severalveak consistenayodels such as eventual consistency,
acontractlanguage, capable of specifying Pne-grained application- causal consistency, session guarantees, and timeline consistency
level consistency properties.@ntract enforcement systemalyses have been proposed.
contracts, andutomaticallygenerates the appropriate consistency Under weak consistency, the developer needs to be aware of
protocol for the method protected by the contract. We describe concurrent conRicting updates, and has to pay careful attention
an implementation oQUELEA on top of an off-the-shelf ECDS, to avoid unwanted inconsistencies (e.g., negative balances in a
and provide support focoordination-freetransactions. Several bank account, or having an item appear in a shopping cart after
benchmarks including two large web applications, illustrate the it has been removed §]). Oftentimes, these inconsistencies leak
effectiveness of our approach. from the application and is witnessed by the user. Ultimately,
the developer must decide the consistency level appropriate for
a particular operation; this is understandably an error-prone process
requiring intricate knowledge of both the application as well as the
semantics and implementation of the underlying data store, which
typically have only informal descriptions. Nonetheless, picking the
correct consistency level is critical not only for correctness but
also for scalability of the application. While choosing a weaker
consistency level than required may introduce program errors and

Categories and Subject DescriptorsD.1.3 [Concurrent Program-
ming: Distributed Programming; C.2.Djstributed SystenjsDis-
tributed databases; D.3.Rdnguage Classibcatioh®pplicative
(Functional) Languages; F.3.ldgics and Meanings of Prografs
Specifying and Verifying and Reasoning about Programs

General Terms Languages, Performance anomalies, choosing a stronger one than necessary can negatively
impact program scalability and performance.

Keywords Eventual Consistency, Availability, CRDTs, Axiomatic Weak consistency also hinders compositional reasoning about

Contracts, Contract Classibcation, Distributed Transactions, SMT programs. Although an application might be naturally expressed

solvers, Decidable Logic, Quelea, Cassandra, Haskell in terms of well-understood and expressive data types such as

maps, trees, queues, or graphs, geo-distributed stores typically only
provide a minimal set of data types with in-built conBict resolution
" This work was done at Purdue University, USA. strategies such as last-writer-wins (LWW) registers, counters, and
sets [L6, 25]. Furthermore, while traditional database systems
Permission to make digital or hard copies of all or part of this work for personal or ena.'ble composablllty throth. trgnsactlons, gep-dlstrlbuted stores
classroom use is granted without fee provided that copies are not made or distributed tyPically lack unrestricted serializable transactional access to the
for probt or commercial advantage and that copies bear this notice and the full citation data. Working in this environment thus requires application state
on the prst page. Copyrights for components of this work owned by others than ACM tg be suitably coerced to function using only the capabilities of the
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, store

to post on servers or to redistribute to lists, requires prior specibc permission and/or a . .
fee. Request permissions from permissions@acm.org. To address these issues, we desceELEA, a declarative

PLDIO15 | June 13D17, 2015, Portland, OR, USA. programming model and implementation for ECDS. The key novelty

Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00. of QUELEA is an expressiveontract languageo declare and
http://dx.doi.org/10.1145/nnnnnnn.nnnnnn

Eventually Consistent Data Store

Replica Replicg | w Replicg
x{ww} | |y {w) g‘,j”'!\‘x! {wit]:
L {wl, wl} J :
! \/ i \/

X1

:v!! x.foaarg);!w

Session| !

JvI L x.bar(arg);twi”
Order !

)
]
| Sessior

Session,

Figure 1: QUELEA system model.

verify Pne-grained application-level consistency properties. The

the set of all updateffect3 performed on the object. For example,
the state ok at replica 1 is the set composed of effests andws3 .

Each object is associated with a sebpkrations The clients
interact with the store by invoking operations on objects. The
sequence of operations invoked by a particular client on the store
is called asessionThe data store is typically accessed by a large
number of clients (and hence sessions) concurrently. Importantly,
the clients are oblivious to which replica an operation is applied
to; the data store may choose to route the operation to any replica
in order to minimize latency, balance load, etc. For example, the
operationdoo andbar invoked by the same session on the same
object, might end up being applied to different replicas because
replica 1 (to whichfoowas applied) might be unreachable when the
client invokesbar.

Whenfoo is invoked on a objeck with argumentsarg; at
replica 1, it simplyreducesover the current set of effects at that

programmer uses the contract language to axiomatically specify replica on that objecti andw;), produces a resullxl that is
the set of legal executions allowed over the replicated data type.sent back to the client, and emitssengle new effectw; that is
Contracts are constructed using primitive consistency relations appended to the state ®fat replica 1. Thus, every operation is

such asvisibility and session ordealong with standard logical
and relational operators. dontract enforcement systestatically

evaluated over anapshobf the state of the object on which it is
invoked. In this case, the effectg andwj arevisibletow; , written

maps operations over the datatype to a particular consistency levellogically asvis(wi, wj) ! vis(wz, w3), wherevis is the visibility
available on the store, and provably validates the correctness of therelation between effects. Visibility is an irre3exive and asymmetric

mapping. The paper makes the following contributions:

¥ We introduceQUELEA, a shallow extension of Haskell that sup-
ports the description and validation of replicated data types found

relation, and only relates effects produced by operations on the same
object. Executing a read-only operation is similar except that no

new effects are produced. The effect added to a particular replica
is asynchronously sent to other replicas, and eventually merged

on ECDS. Contracts are used to specify Pne-grained application-into all other replicas. Observe that this model does not assume
level consistency properties, and are statically analyzed to assigna particular resolution strategy for concurrent conficting updates,
the most efbcient and sound store consistency level to the corre2nd instead preserveseryupdate. Update conficts are resolved

sponding operation.
¥ QUELEA supports coordination-free transactions over arbitrary

datatypes. We extend our contract language to express Pne;
grained transaction isolation guarantees, and utilize the contract

enforcement system to automatically assign the correct isolation
level for a transaction.

when an operation reduces over the set of effects on an object at a
particular replica.

Two effectsw} andw? that arise from the same session are said
0 be insession ordefwritten logically asso(w},ws)). Session
order is an irreRexive, transitive relation. The effasfs andw?
arising from operations applied to the same objeate said to be
under thesame objectelation, writtensameobj(w} , ws). Finally,

¥We provide meta-theory that certibes the soundness of ourwe can associate every effect with the operation that generated
contract enforcement system, and ensures that an operation ighe effect with the help of a relatiasper. In the current example,

only executed if the required conditions on consistency are met.

¥ An implementation ofQUELEA as a transparent shim layer
over Cassandrd.pl, a well-known general-purpose data store.
Experimental evaluation over a set of real-world applications,
including a Twitter-like micro-blogging site and an eBay-like
auction site illustrates the practicality of our approach.

The rest of the paper is organized as follows. The next section

describes the system model. We describe the challenges in program

ming under eventual consistency, and introdQueELEA contracts

as a proposed solution to overcome these issues in @ 3. & 4 provide
more details on the contract language, and its mapping to the store<-

oper(wy , foo) andoper(ws , bar) hold. For simplicity, we assume
all operation names across all object are distinct.

This model admits all the inconsistencies associated with even-
tual consistency. The goal of this work is to identify the precise
consistency level for each operation such that application-level con-
straints are not violated. In the next section, we will concretely
describe the challenges associated with constructing a consistent
bank account on top of an ECDS. Subsequently, we will illustrate
how our contract and specibcation language, armed with the primi-
tive relationsvis, so, sameobj andoper, mitigates these challenges.

Motivation

consistency levels, along with meta-theory for certifying the cor- Consider how we might implement a highly available bank account
rectness of the mapping. =@ 5 introduces transaction contracts ancbn top of an ECDS, with thintegrity constraint that the balance

their classibcation. & 6 describes the implementaticQuéLEA on

must be non-negative. We begin by implementing a bank account

top of Cassandra. o 7 discusses experimental evaluation. @ 8 and Qeplicated data type (RDT) iQUELEA, and then describe the

present related work and conclusions.

2. System Model

mechanisms to obtain the desired correctness guarantees.
3.1 RDT Specibcation

A key novelty inQUELEA is that it allows the addition of new RDTs

In this section, we describe the system model and introduce theto the store, which obviates the need for coercing the application
primitive relations that our contract language is seeded with. Figure 1 logic to utilize the store provided data types. In additiQuELEA
presents a schematic diagram of our system model. The distributedtreats the convergence semantics (iteaw confBicting updates

store is composed of a collection @fplicas each of which stores a
set ofobjects(x, y, . . .). We assume that every object is replicated

are resolved) of the data type separately from its consistency
properties (i.e.whenupdates become visible). This separation of

at every replica in the store. The state of an object at any replica is concerns permiteperationalreasoning for conRict resolution, and

data Acc = Deposit Int | Withdraw Int | GetBal
getBalance :: [Acc] 0 (Int , Maybe Acc)
getBalance hist _ =
let res = sum [x | Deposit x # hist]
- sum [x | Withdraw x # hist]
in (res, Nothing)
deposit :: [Acc] Int O, Maybe Acc)

deposit hist amt = ((), Just $ Deposit amt)

withdraw :: [Acc] Int (Bool , Maybe Acc)
withdraw hist v =
if sell $ getBalance hist () $ v

then (True,
else (False ,

Just $ Withdraw v)
Nothing)

Figure 2: Debnition of a bank account expressed in Quelea.

declarativereasoning for consistency. The combination of these
technigues enhances the programmability of the store.

Let us assume that the bank account object provides three opera

tions:deposit , withdraw andgetBalance , with the assumption
that the withdraw fails if the account has insufbcient balance. Every
operation iNQUELEA is of the following type, written in Haskell
syntax:

type Operation e a r a "

e] (r
An operation takes a list of effects (théstory of updates to that

Maybe e)

object), and an input argument, and returns a result along with

an optional effect (read-only operations retwnathing). The
new effect (if emitted) is added to the state of the object at the

current replica, and asynchronously sent to other replicas. The

implementation of the bank account operationQInELEA is given
in Figure 2.

The datatypeé\cc represents the effect type for the bank account.
The functionsum returns the sum of elements in the list, awetl
returns the prst element of a tuple. For each operatiisn, is a

snapshobf the state of the object at some replica. In this sense, every
operation on the RDT is atomic, and thus amenable to sequential

reasoning. HerggetBalance is a read-only operatiomeposit
always emits an effect, andithdraw only emits an effect if there

is sufbcient balance in the account. We have implemented a large

corpus of RDTs for realistic benchmarks including shopping carts,
auction and micro-blogging sites, etc. in a few tens of lines of code,
expressed in this style.

3.1.1 Summarization

Observe that the debnition gétBalance reduces over thentire
history of updates to an account. If we are to realize an efpcient
implementation of this bank account RDT, we neastimmmaryof the

summarize hist =
[Deposit $ sell $ getBalance hist ()]

Given a bank account histohyst , thesummarize function returns

a new history with a single deposit of the current account balance.
Our implementation invokes the summarization function associated
with an RDT to reduce the size of the effect sets maintained by
replicas.

3.2 Anomalies under Eventual Consistency

Our goal is to choose the correct consistency level for each of
the bank account operations such that (1) the balance remains non-
negative and (2) thgetBalance operation never incorrectly returns

a negative balance.

! deposit (100) i
:

deposit (100)
VIS | SO

vis deposit (100)

withdraw (80)

______________ vis vis, so vis

1
1
1
1
;
withdraw (50) i
1
1
1
1
1
1
1

SO

getBalance ! 100

(a) Unsafe withdraw

(b) Negative balance (c) Missing update

Figure 3: Anomalies possible under eventual consistency for the
get balance operation.

Consider the execution shown in Figure 3(a). Assume that all
operations in the bgure are on the same bank account object with
the initial balance being zero. Session 1 perforrdgposit of 100,
followed by awithdraw of 80 in the same session. Théthdraw
operation witnesses the deposit and succe&@igsequently, session
2 perform awithdraw operation, but importantly, due to eventual
consistency, only witnesses teposit from session 1, but not the
subsequent withdraw. Hence, thigthdraw alsoincorrectly suc-
ceeds, violating the integrity constraint. A subsequg@iBalance
operation, that happens to witness all the previous operations, would
report a negative balance.

It is easy to see that preventing concurresithdraw opera-
tions eliminates this anomaly. This can be done by insisting that
withdraw be executed as a strongly consistent operation. Despite
this strengthening, thgetBalance operation may still incorrectly
report a negative balance to the user. Consider the execution shown
in Pg. 3(b), which consists of three concurrent sessions performing a
deposit , awithdraw , and agetBalance operation, respectively,
on the same bank account object. Astlsedge indicates, operation
withdraw (50) in session 2 witnesses the effectgleposit (100)
from session 1, concludes that there is sufpcient balance, and com-

account history. Intuitively, the current account balance summarizes pletes successfully. However, thetBalance operation may only

the state of an account. A bank account with the histbeposit

10, Withdraw 5] isobservably equivalerib a bank account with

a single deposit operatigbeposit 5] ; we can replace the earlier
history with the latter and a client of the store would not able to tell
the difference between the two.

witness this successful withdraw, but not the causally preceding
deposit , and reports the balance of negative 50 to the user.

Under eventual consistency, the users may also be exposed to
other forms of inconsistencies. Figure 3(c) shows an execution
where thegetBalance operation in a session does not witness

This notion of observable equivalence can be generalized 10 tne effects of an earliewithdraw operation performed in the

other RDTs as well. For example, a last-writer-wins register with
multiple updates is equivalent to a register with only the last write.
Similarly, a set with a collection of add and remove operations
is equivalent to a set with a series of additions of live elements

same session, possibly because it was served by a replica that has
not yet merged thevithdraw effect. This anomaly leads the user

to incorrectly conclude that theithdraw operation failed to go
through.

from the original set. Since the notion of observable equivalence is
specibc to each RDT, programmers can provide a summarizationt ajthough visibility and session order relations relate effects, we have abused

function - Gummarize) of type[e] -> [e] -asapartofthe RDT the notation in these examples to relate operations, with the idea that the
specibcation. The summarization function for the bank account is: relations relate the effect emitted by those operations

Although it is easy to understand the reasons behind the occur-

rence of the aforementioned anomalies, Pnding the appropriate bxes ks b%Effvar Op %OperName

is not readily apparent. MakingetBalance a strongly consistent % Contract = &(x:#)." | &7 | $
operation is dePnitely sufbcient to avert anomalies, but is it really # % EffType = Op|# #
necessary? Given the cost of enforcing strong consistency [25, 28], $ % Prop n= o true | R(xy) [878
it is preferable to avoid it unless there are no viable alternatives. [$($1%) 3
Exploring the space of these alternatives requires understanding the R % Relaton = vis | so | sameobj | =
subtle differences in semantics of various kinds of weak consistency | R*R|R+R | R
alternatives.

Figure 4: Contract language.
3.3 Contracts

QUELEA helps facilitate the mapping of operations to appropriate IS @pplied on the same object as geBalance operation, then
consistency levels by letting the programmer declare application-it Must be the case that tiyetBalance operation witnesses the
level consistency constraints esntractg (Figure 4) that axiomati- ~ €€cts of the preceding operations. .

cally specify the set of allowed executions involving this operation. 1he Pnal contract () of thegetBalance operatzlon is merely
In the case of the bank account, any execution that does not exhibit& conjunction of the previous two versiog;; and! 5,):

the anomalies described in the previous sectionvset-formed " (a: deposit), (b: withdraw), (c : deposit $ withdraw).
execution on the bank account object. By specifying the set of legal (vis(a,b) ! vis(b,") # vis(a,"))

executions for each data type in terms of a trace of operation invo- | o L R

cations on that typeQUELEA ensures that all executions over that ! ((so %sameobj)(c,”) # vis(c,"))

type are well-formed. Intuitively, this prevents both thgetBalance anomalies described
In our running example, it is clear that in order to preserve in bgs. 3(b) and 3(c) from ever occurring.

the integrity constraint, theithdraw operation must be strongly Finally, since there are no restrictions on when or haleposit

consistent. That is, given twaeithdraw operations andb, either operation can execute, its contract is simgalg.

a is visible tob or vice-versa. We express this application-level

consistency requirement as a contragt Y overwithdraw : 3.4 From Contracts to Implementation

Notice that the contracts fowithdraw and getBalance only
express application-level consistency requirements, and make no
reference to the semantics of the underlying store. To write contracts,
Here," stands for the effect emitted by théthdraw operation. a programmer only needs to reason about the semantics of the
The syntaxa : withdraw states thah is an effect emitted by a application under th€UELEA system model. The mapping of
withdraw operation i.e.pper(a, withdraw) holds. The contract application-level consistency requirements to appropriate store-level
specibes that if the current operation emits an effechen for guarantees is done automatically behind-the-scene. How might
any operatiora which was emitted by aithdraw operation, it one go about ensuring that an execution adheres to a contract?
is the case thaa = " or a is visible to™, or vice versa. Any The challenge is that a contract provides a declarative (axiomatic)
execution on a bank account object that preserves the above contracspecibcation of an execution, while what is required is an operational
for a withdraw operation is said to be derived from a correct procedure foenforcingits implicit constraints.
implementation ofvithdraw . One strategy would be to execute operations speculatively. Here,
To prevenigetBalance from ever showing a negative balance, operations are tentatively applied as they are received from the
it is necessary to prevent the scenario depicted in bg. 3(b); Let client or other replicas. We can maintain a runtime manifestation
stand for the effect emitted by tlgetBalance operation. If the of executions, and check well-formedness conditions at runtime,

" (a: withdraw).
sameobj(a,”) # a="=9% vis(a,") $ vis(", a)

effect (o) of a withdraw operation is visible to, and the effectd) rolling back executions if they are ill-formed. However, the overhead
of a deposit operation is visible to the effeb} 6f the withdraw of state maintenance and the complexity of user-debned contracts is
operation, then it must be the case thds also visible to". A likely to make this technique infeasible in practice. _
contract { éb) for getBalance operation that precisely captures We devise a static approach instead. Contracts are analyzed with

this application-level consistency requirement can be written thus: the help of a theorem prover, and statically mapped to a particular
store-level consistency property that the prover guarantees preserves

" (a: deposit), (b: withdraw). contract semantics. We call this procedaoatract classiPcatian
(vis(a,b)! vis(b,") # vis(a,")) Given the variety and complexity of store level consistency prop-
erties, the idea is that the system implementer parameterizes the
necessary for getBalance operation on a bank account to witness classibcation procedure by describing the store semantics in the
samecontract language as the one used to express the contract on

the effects of all previousleposit an(_:i withdraw operations the operations. In the next section, we describe the contract language
performed on the same bank account in the same session. We car)

express an additional contrattég) for getBalance that captures in detail and _descrlbe the classibcation procedure for a particular
X i ! - store semantics.
this consistency requirement:

To prevent the missing update anomaly described in bg. 3(c), itis

" (c: deposit $ withdraw). 4. Contract Language
((so %sameobj)(c,") # vis(c,")) 4.1 Syntax
Our contract language provides operators to compose relationsThe syntax of our core contract language is shown in Figure 4. The
The syntax(R1 %Rz)(a, b) is equivalent tR1(a, b) ! Rz(a,b). language is based on brst-order logic (FOL), and admits prenex
The above contract §,) says that if adeposit or awithdraw universal quantiPcation over typed and untyped effect variables.

operation precedesgetBalance operation in session order, and We use a special effect variabl®) to denote the effect afurrent
operation- the operation for which a contract is being written.
2 QUELEA exposes the contract construction language as a Haskell library Notice that™ occurs free in the contract. We will bx its scope when

I 9% Effect " % Contract T % Effect Set

A % EffSoup = r

vis, so, sameobj % Relations = A, A

E % ExecState 1= (Avis,so,sameobj)

Figure 5: Axiomatic execution.

- sc -

WellFormed(") EventuallyConsistent(")

ec

L ec - cc - cc -

. sc
CausallyConsisten{") StronglyConsistent(")

classifying the contracts (= 4.4). The type of an effect is simply
the name of the operation (egithdraw) that induced the effect.
We admit disjunction in types to let an effect variable range over
multiple operation names. The contrddh : # $ #).! is just
syntactic sugar fot a.(oper(a, #1) $ oper(a, #)) # ! . An untyped
effect variable ranges over all operation names.

Quantiber-free propositions in our contract language are con-
junctions, disjunctions and implications of predicates expressing
relations between pairs of effect variables. The syntactic class of
relations is seeded with primitiwgs, so, andsameobj relations,
and also admits derived relations that are expressible as union,
intersection, or transitive closuref primitive relations. Com-
monly used derived relations are thame object session order
(soo = so % sameobyj), happens-before ordéhb = (so & vis)")
and thesame object happens-before ordeiio = (soo & vis)*).

4.2 Semantics

QUELEA contracts are constraints over axiomatic debnitions of
program executions. Figure 5 summarizes artifacts relevant to debne
an axiomatic execution. We formalize an axiomatic execution as a
tuple (A,vis,so,sameobj), whereA, called theeffect soupis the
set of all effects generated during the program execution, and
vis, so, sameobj ' A (A arevisibility, session orderandsame
objectrelations, respectively, withessed over generated effects at
run-time.

Note that the axiomatic debnition of an executi&h grovides
interpretations for primitive relations (egis) that occur free in

Figure 6: Contract classibcation.

the store always exposesausal cuf the updates. This seman-
tics can be formally captured in terms of the following contract
debnition:

!'ec="a,b.hbo(a,b)! vis(b,”) # vis(a,™)

¥ Causal consistencyCausally consistent operations are required
to see a causally consistent snapshot of the object state, including
the actions performed on the same session. The latter require-
ment implies that if two operations ando, from the same
session are applied to two different replicasandr », the second
operation cannot be discharged until the effeabofs included
in r,. ThegetBalance operation requires causal consistency,
as it requires the operations from the same session to be visible,
which cannot be guaranteed under eventual consistency. The
corresponding store semantics is captured by the corteact
debned below:

lcc="a.hbo(a,") # vis(a,")

¥ Strong consistency Strongly consistent operations may block
indePnitely under network partitions. An example is the total-
order contract omithdraw operation. The corresponding store
semantics is captured by the. contract debnition:

_w

| ¢« ="a.sameobj(a,”) # vis(a,") $ vis(",a) $ a

contract formulas, and also bxes the domain of quantibcation to set4.4 Contract Classibcation

of all effects @) observed during the program execution. As such

" Our goal is to map application-level consistency constraints on
operations to appropriate store-level consistency guarantees capable
of satisfying these constraints. The ability to express both these
kinds of constraints as contracts in our contract language lets us
compare and determine if contrattyf) of an operationdp) is
weak enough to be satisbed under a store consistency level identiped
by the contract s . Towards this end, we debne a binargaker

4.3 Capturing Store Semantics thanrelation for our contract language as following:

An important aspect of our contract language is_its abilit_y to capture pepnjtion 2. A contract! op IS Said to be weaker thang, (written
store-level consistency guarantees, along with application-level | o) st)ifandonly A *" "1 ¢ # ! op

consistency requirements. Similar t0], we can rigorously dePne

a wide variety of store semantics including those that combine any ~ The quantiber in the sequent birltithat occurs free ith ¢ and
subset of session and causality guarantees, and multiple consistency op. Context () of the sequent is a conjunction of assumptions
levels. However, for our purposes, we identify three particular about the nature of primitive relations. Well-formedaxiomatic
consistency levels D eventual, causal, and strong, commonly offeredexecution E) is expected to satisfy these assumptions (Ed= A).

by many distributed stores with tunable consistency,
overhead in terms of latency and availability.

E is a potential model for any brst-order formula) xpressible in
our contract language. E is indeed a valid model fdr (written as
E !), we say that the executidhsatisPed the contratt

DePnition 1. An axiomatic executioB satispes a contract if and
onlyifE =1 .

with increasing DePnition 3. An axiomatic executioE = (A,vis,so,sameobj) is
well-formed if the following axiomsY) hold:
¥ Eventual consistency Eventually consistent operations can be
satisbed as long as the client can reach at least one replica. In
the bank account exampleeposit is an eventually consistent ¥ Visibility only relates actions on the same object:
operation. While an ECDS typically offérasiceventual con- » "a,b.vis(a,b) # sameobj(a, b).
sistency with all possible anomalies, we assume that our store ¥ Session order is a transitive relation:
provides stronger semantics that remain highly-availahl&9; ="a,b,c.s0(a,b) | so(b,0)# so(a,c).
¥ Same object is an equivalence relation:
* " a. sameobj(a, a).
» " a,b.sameobj(a, b) # sameobj(b, a).
»"a,b, c.sameobj(a, b) ! sameobj(b,C) # sameobj(a,c).

¥ The happens-before relation is acyclica. Ahb(a, a).

3 Strictly speakingR* is not the transitive closure &, as transitive closure
is not expressible in FOL. Insteal," in our language denotessuperset of
transitive closure oR. Formally,R* is any relatiorR" such that foralk, y,
andz, a)R(x,y)) R'(x,y),andb)R'(x,y) (R'(Y,2)) R'(x,2)

If the contract { op) of an operationdp) is weaker thara store [true]
contract [s), then constraints expressed by the former are implied
by guarantees provided by the latter. The completeness of brst-order
logic allows us to assert that any well-formed executiBnthat

satisped g (i.e.,E |= ! &) also satisbes oy (i.e., E = ! op). [RYWJ [Mw] [MR] [WFRJ

Consequently, it is safe to execute operatamnunder a store
consistency level captured by; .
Observe that the contradts, ! .c and! ¢ are themselves totall
ordered with respect to the relation:! ¢) !c) ! s This y @YW! M@ [RYW! MR] [MW! MR] GYW! W@ @'W! WF@ [MR! WF@
concurs with the intuition that any contract satispable uthder
or! . is satispable undérs., and any contract that is satisbable
under! ¢ is satisPable undér... We are interested in theeakest [RYw! MW
guarantee (amongec, ! cc, and! sc) required to satisfy the contract. -
We debne the corresponding consistency level asdhsistency
classof the contract.
The classibcation scheme, presented formally in Figure 6, debnes RYW! MW ! MR! WFR
rules to judge the consistency class of a contact. For example, the
scheme classibes tlyetBalance contract [gv) from & 3 as a
CausallyConsistent contract, because the sequént ! o # ! gy is
valid in Prst-order logic (thereforé,g,) ! c), whereas the sequent
A* Lo # | gpisinvalid (therefore! g, +)! ec). Since we conbPne
our contract language to a decidable subset of the logic, validity of We now present a meta-theoretic result that certipes the soundness
such sequents can be decided mechanically allowing us to automatedf classiPcation-based contract enforcement. To help us state the
the classibcation scheme irUELEA. result, we debPne an operational semantics of the system described
Along with three straightforward rules that classify contracts into informally in o 2:
consistency classes, the classibcation scheme also presents a rule

RYW! MW
! WFR

RYW! MR MW! MR
! WFR ! WFR

Figure 7: Lattice of consistency levels under session guarantees.

4.6 Soundness of Contract Classibcation

that judges well-formedness of a contract. A contract is well-formed op % Operation
if and only if it is satisPable unders. - the strongest possible # % ConsistencyClass 1= ec cc,sc
cons_lstency_ guarantee that t_he store can provide. Otherwise, it is % % Session = 4| fop, #0,%
considered ill-formed, and rejected statically. | % Session Soup = oLl | 2
Config = E,!
4.5 Generality of Contracts We model the system as a tugie 3, where the axiomatic

executiorE captures the data storeOs current state, and session soup
Y is the set of concurrent client sessions interacting with the store.
A sessiorf is a sequence of pairs composed of replicated data type
operationop, tagged with the consistency claésf their contracts

(as determined by the contract classipcation scheme). We assume a
reduction relation of form:

It is important to note that our contract language provides a generic
way to capture application-level consistency properties and is
not tied to a particular store semantics. In particular, the same
application-level contracts can easily be mapped to a different store
with a varied consistency lattice. To illustrate this, let us consider
the consistency lattice proposed by Terry et2F] pased on session

guarantees. Terry et al. propose the following four incomparable L
session guarantees, whose semantics is captured in the contracts E,/op,#0,%1! 3 E ,%1!

below: _
on the system state. The relation captures the progress of the

execution (fromE to E’) due to the successful completion of a

Read Your Writes (RYW) :: client operatiorop from one of the sessions 1, generating a new

&a, b.soo(a,b)) vis(a,b)

Monotonic Reads (MR) == &a,b,c.vis(a, b) (soo(b,) effect” . If the resultant executioB satispes the store contraot
) vis(a,c) (i.e.,E = !), then we say that the store hasforcedthe contract
Monotonic Writes (MW) = &a, b, c.soo(a, b) (vis(b, c) ! . in the executiorE . With help of the operational semantics, we
) vis(a,c) now state the soundness of contract enforcement as follows:
Writes Follow Reads (WFR) ::= &a, b, c,d.vis(a,b) (vis(c,d)
((so0* =)(b)) vis(a d) Theorem 4(Soundness of Contract Enforcemeniet! be a well-

formed contract of a replicated data type operatmm and let#

. . . denote the consistency class!ofas determined by the contract
In this scheme, the consistency level of an operation is any

S) - classibcation scheme. For all well-formed execution states
combination of the above guarantees, which form a partially ordered h thate w5, 50 E.$. SIfE 1. " th
consistency lattice show in Figure 7. Each element in this lattice SYC | ‘?}/ 2 0P, 759 8. NfE [7], then
corresponds to a store-consistency level, and is represented b E i
:ts clonltract. An edge frgm an upEer Ik:evel eller_neng . Iowher_ The theorem states that if a data store correctly enfdrggs
evel element corresponds to weaker than relation between theiry 541 contracts in all well-formed executions, then the same
corresponding contracts. Classifying a contract under this schemeg, e extended with the classiPcation scheme shown in Figure 6,
is a directed search in the lattice, starting from the bottom, and .5 enforce all well-forme@UELEA contracts. The proof of the
determlnlng_ the weakest consistency level l_mder whlqh the contract o srem is given in the supplementary matérial
can be satisbed. Under this scherdeposit operations does
not need any guaranteegetBalance needs RYW and WFR
(A* RYW! WFR# ! g), andwithdraw cannot be satisPed 4The supplementary material also provides the concrete reduction rules for
(A* RYW! MW! MR! WFR+#!). enforcing the consistency classes.

5. Transaction Contracts
While contracts on individual operations offer the programmer

object-level declarative reasoning, real-world scenarios often in- :

volve operations that span multiple objects. In order to address this
problem, several recent syster2s9, 26] have proposed eventually

consistent transactions in order to compose operations on multiple :

serializability and snapshot isolation require inter-replica coordi-
nation, these systems espogserdination-free transactionthat
remain available under network partitions, but only provide weaker

s s O s
¢ xb x.c : L X.C y.d : LX.C yd :
“{,}S-K;m;’{,}g" vis|[T is vis|[T is
""" S CALEEE N 2PN 2 N 2
X.a D Xa—>yb ©oX.a yb !

[Txn2 | [Txn2 |

(a) Atomicity (b) Monotonic

Atomic View

(c) Repeatable
Read

isolation guarantees. Coordination-free transactions have intricateFigure 8: Semantics of transaction contractsandy are distinct

consistency semantics and widely varying runtime overheads. As
with operation-level consistency, the onus is on the programmer to
pick the correct transaction kind. This choice is further complicated
by consistency semantics of individual operations.

5.1 Syntax and Semantics Extensions

QUELEA automates the choice of assigning the correct and most
efbcient transaction isolation level. Similar to contracts on individual

objects. The dotted line represents the visibility requested by the
contracts.

transactions can be satisped with much weaker isolation guaran-
tees. Despite the atomicity offered by the transaction, anomalies
are still possible. For example, the tgetBalance operations in
totalBalance transactions might be served by different replicas
with distinct set of committedave transactions. If the brst(second)

operations, the programmer associates contracts with transactiongjetBalance operation witness save transaction that is not wit-
declaratively expressing its consistency specibcation. We extend thenessed by the second(PrggtBalance operation, then the balance

contract language with a new term under quantiber-free propositions
-txn S1 Sy, whereS; andS; are sets of effects, and introduce a
new primitive equivalence relaticsametxn that holds for effects
from the same transactionn{ a, b}{ c, d} is just syntactic sugar for
sametxn(a,b) ! sametxn(c,d) ! A sametxn(a, ¢), wherea andb
considered to belong to tlwirrenttransaction.

We assume that operations not part of any transaction belong to
their own unique transaction. While transactions may have varying
isolation guarantees, we make the standard assumption that al
transactions provide atomicity. Hence, we include the following
axiom inA:

"a,b,c.txn{a{ b,g !

The semantics of this contract is illustrated in Figure 8(a).

sameobj(b,c) ! vis(b,a) # vis(c,a)

5.2 Transactional Bank Account

In order to illustrate the utility of declarative reasoning for trans-
actions, consider an extension of our running example to use two
accounts (objects) B currenj &nd savingsy). Each account pro-
vides operationsvithdraw , deposit andgetBalance , with the

returned will be less(greater) than the actual balance. It is not imme-
diately apparent which weakest isolation guarantee will be sufpcient
to prevent the anomaly.

Instead, QUELEA requires the programmer to simply state
the consistency requirement as a contract. Since we would like
both thegetBalance operations to witness the same setafe
transactions, we debne the constraint@aiBalance transaction
I as:

' v, ="a: getBalance,b: getBalance,

(c: withdraw $ deposit), (d : withdraw $ deposit).
txn{a,b{ c,d} ! vis(c,a) ! sameobj(d,b) # vis(d,b)

The key idea in the above dePnition is that tlreprimitive allows
us to relate operations on different objects.

Thesave transaction only needs to ensure that the two writes
it performs are made visible atomically. Since this is ensured
by combining them in a transactiosave does not require any
additional constraints, arid; is simplytrue.

5.3 Coordination-free Transactions

same contracts as debned previously. We consider two transactionsn order to illustrate the utility of transaction contract classibcation,

Dsave(amt) , which transferamt from current to savings, and
totalBalance , which returns the sum of the balances of individ-
ual accounts. Our goal is to ensure ttuadlBalance returns the

we identify three well-understood coordination-free transaction se-
mantics B Read Committed (RC)],[Monotonic Atomic View
(MAV) [2] and Repeatable Read (RR}[and illustrate the classib-

result obtained from a consistent snapshot of the object states. Thecation strategy. Our technique can indeed be applied to a different

QUELEA code for the transactions is given below:

save amt = totalBalance =
X # $(classify "sv) x # $(classify ")
atomically x $ do atomically x $ do

b # withdraw ¢ amt
when b $ deposit s amt

bl # getBalance c
b2 # getBalance s
return bl + b2

I'sy and! y are the contracts on the corresponding transactions.
The functionclassify ~ assigns the contracstaticallyto one of
the transaction isolation levels offered by the st&@®; is meta-
programming syntax for splicing the result into the program. The
atomically ~ construct invokes the enclosing operations at the given
isolation levelx, ensuring that the effects of the operations are made
visible atomically.

While making both transactions serializable would ensure cor-

rectness, distributed stores rarely offer serializable transactions since

it is unavailable and hinders scalabilit®][As we will see, these

isolation level lattice.

A transaction with ANSI RC semantics only withesses commit-
ted operations. Let us assume that a replica will buffer transactional
updates until all the updates from the same transaction are available
at that replica. Once all the updates from a transaction are available,
the buffered updates are made visible to subsequent client requests.
This ensure atomicity of transactions. Importantly, RC does not
entail any other guarantees. As a result, a store implementing RC
does not require inter-replica coordination. We can express RC as
follows:

I« ="a,b,c.txn{a}{ b,d! sameobj(b, ¢
I vis(b,a) # vis(c,a)

Notice that the above debpnition is the same as the atomicity guar-
antee of transaction described in o 5.1. Fhee is an example for

RC transaction.

MAV semantics ensures that if some operation in a transaction
T1 witnesses the effects of another transacienthen subsequent

atomically {

O! -the-shelf Distributed Store ¥ Q -the-shelf store : reg riBiuﬁniessiLioﬁia ol.operi(vl); /Emits effect e1

[

b

f T~ 7] ¥ Failure handling > | (incl. Txns) |

} b <> \tﬂﬁ@ }¥ Persistence (on—dis;k) } AN } 02.0per2(v2); /le2
l) 2 J¥ Eventual consistency | L 9 t §; | ﬁ.opeﬂ(vfﬁ): Ile3
ey : I8 < I

: N N E ! } ﬁ
I Shim Layer (RDTs) ¥ Sb-state (in'mem)i ,,,,,,,,,,,,

=7~ =7 7 '¥ Datatype operationy — 2ie 7N

il I o : M E o ')

i L\g)/L L\g)/L {\9 L\g)/L I¥ Summarization | M Ic;, ;K:QT A\ MY

0o - - ¥ I¥ stronger consisten;c‘y = Clients ‘

During transaction execution After transaction completion

A

Figure 9: Implementation Model.

operations inT; will also witness the effects df,. MAV semantics
is useful for maintaining the integrity of foreign key constraints, Figure 10: Implementing atomicity semantics. Dotted circle repre-
materialized views and secondary updasip order to implement sents effects not yet inserted into the backing store.

MAV, a store only needs to keep track of the set of transactions

St witnessed by the running transaction, and before performing 6.1 Operation Consistency

an operation at some replica, ensure that the replica includes all
the transactions irs;. Hence, MAV is coordination-free. MAV
semantics is captured with the following contract:

The shim layer maintains a causally consistent in-memory snapshot
of a subset of objects in the backing store, by explicitly tracking
dependencies introduced between effects due to visibility, session

I'mav = "a,b,c,d.txn{a,b{ c,d} ! so(a,b) ! vis(c,a) and same transaction relations. Dependence tracking is similar to the
I sameobj(d,b) # vis(d, b) techniques presented i8l][and [20]. Because Cassandra provides
o . i durability, convergence, and fault tolerance, each shim layer node
whose semantics is illustrated in the Figure 8(b). simply acts as a soft-state cache, with no inter-node communication,

ANSI RR semantics requires that the transaction witness a and can safely be terminated at any point. Similarly, new shim layer
shapshot of the data store state. Importantly, this snapshot can bgodes can be spawned on demand.
obtained from any replica, and hence RR is coordination-free. An Each effect generated as a result of an effectful operation on
example for such a transaction is th&lBalance transaction. an object inserts a new rofo, e, txn, val, deps) into the backing

The semantics of RR is captured by the following contract: store, where ande are object andiniqueeffect identiberstxn
lw="ab,cdtxn{abf{cd ! visc,a) is an optional transaction identiPer, aal is the value associated
| sameobj(d, b) # vis(d, b) with the effect (egwithdraw 50). depsis the set of identibers
) ’ ’ of dependenciesf this operation and is debned deps(e) =
whose semantics is illustrated in the Figure 8(c). {e:r | vis(er,e) ! A (lep.vis(er, &) ! vis(ez,€))}. At any shim

layer node, an effect is included only if all of its dependencies are
also included in that node. This ensures that the state maintained by
Similar to operation-level contracts, with respecj toelation, the the shim layer node is causally consistent. Our dependence tracking
coordination-free transaction semantics described here form a totalstrategy ensures thQUELEA does not track every effect as the
order:! «) !mav) !w. The transaction classibcation is also number of writes in the system grows.

similar to the operation-level contract classipcation presented in ~ The shim layer nodes periodically fetch updates from the back-
Figure 6; given a contradt on a transaction, we start from the ing store for eventually consistent operations, and on-demand for
weakest transaction contralct;, and progressively compare its causally consistent and strongly consistent operations. Strongly con-
strength to the known transaction contracts until we bPnd a isolation sistent operations are performed after obtaining exclusive leases
level under whicH can be safely discharged. Otherwise, we report on objects. The lease mechanism is implemented with the help of
atype error. CassandraQs support for conditional updates and expiring columns.

5.4 Classibcation

6. Implementation 6.2 Transactions

QUELEA is implemented as a shallow extension of GHC Haskell Cassandra does not provide general-purpose transactions. Since
and runs on top of Cassandra, an off-the-shelf eventually consistentthe transaction guarantees providedQyeLEA are coordination-
distributed data (or backing) store responsible for all data man-free [2], we realize efbcient implementations by explicitly tracking
agement issues (i.e., replication, fault tolerance, availability, and dependencies between operations and transactions. Importantly,
convergence). Template Haskell is used to implement static contractthe weaker isolation semantics of transactionQUELEA permit
classibcation, and proof obligations are discharged with the help transactions to be discharged if at least one shim layer node is
of the Z3 BO] SMT solver. Figure 9 illustrates the overall system reachable.
architecture. QUELEA implements atomic visibility by exploiting shim layer
Replicated data types and various consistency semantics arecausality guarantee B an effect is included only if all the effects
implemented and enforced in teaim layer Our implementation if depends on are also included. Consider the example given in
supports eventual, causal, and strong consistency for data typerigure 10. For every transaction@UELEA, we instantiate a special
operations, and RC, MAV, and RR semantics for transactions. This transaction marker effeeh. But importantly, do not insert into
functionality is implemented entirely on top of the standard interface the backing storem is included as a dependence to every effect
exposed by Cassandra. From an engineering perspective, leveragingenerated in the transaction. In the bgure, the graph on the left
an off-the-shelf data store enables an implementation comprisingshows the state of the store in the middle of a transaction. Each
roughly only 2500 lines of Haskell code, which is packaged as a circle represents an effect. The dotted circle indicates that the effect
library. has been instantiated, but has not yet been inserted into the store.

summarize [01,02,03] = [n1,n2] Table 1: The distribution of classibed contracts. #T refers to the
number of tables in the application. The columns 4-6 (7-9) represent

e e e operations (transactions) assigned to this consistency (isolation)
level.
—~ Benchmark LOC #T EC CC SC RC MAV RR

@’”\j/‘@ @" e LWW Reg 108

1 2 2 2 0 0 0
— - — — - DynamoDB 126 1 3 1 2 0 0 0

Before summarization During summarization After summarization, before deletion
Bank Account 155 1 1 1 1 1 0 1
Figure 11: Summarization in the backing store. Dotted circle Shopping List 140 1 2 1 1 0 0 0
represents effects not yet inserted into the backing store. Onlinestore 340 4 9 1 0 2 0 1
_ _ _ RUBIS 640 6 14 2 1 4 2 0
Since the causally preceding effesthas not yet been written to the Microblog 659 5 13 6 1 6 3 1

store, no operation will witness ande2 while the transaction in
progress. After the transaction has Pnished execution, we imsert
into the backing store, marking all the effects from the transactions from the backing store. This process ensures that clients either
as a dependence for. Now any replica which includes one of the itness the old or the new effects, but not both; the summarization
effects from the transaction must incluate and transitively must process appears to be atomic from the clients perspective.
include every effect from the transaction. This ensures atomicity
and satispes the RC requirement. .

The above scheme prevents a transaction from witnessing its 7. Evaluation

own effects. This might conRict with the causality requirement e present an evaluation study of our implementation, report con-
on the operations. Hence, transactions piggy-back the previoustract probles of benchmark programs, and illustrate the performance
effects from the same transaction for each request. MAV semantics henebts of bne-grained consistency classibcation on operations and
is implemented by keeping track of the set of transaction maMers ransactions. We also evaluate the impact of the summarization. We
witnessed by the transaction, and before performing an operation athave implemented the following applications, which includes in-

some replica, ensuring thit is a subset of the transaction markers dividual RDTs as well as larger applications composed of several
included at that replica. If not, the missing effects are synchronously rpTs:

fetched. RR semantics is realized by capturing a optimized snapshot

of the state of some replica; each operation from an RR transaction ¥ LWW register : A last-write-wins register that provides read and
is applied to this snapshot state. Any generated effects are added to write operations, where the read returns the value of the latest
this snapshot. write.

¥ DynamoDB register. An integer register that allows eventual

-))) and strong puts and gets, conditional puts, increment and decre-
We utilize thesummarize function (= 3.1.1) to summarize the object ment operations.

state both in the shim layer node and the backing store, typically
when the number of effects on an object crosses a tunable threshold.
Shim layer summarization is straight-forward; a summarization ¥ Shopping list A collaborative shopping list that allows concur-
thread takes the local lock on the cached object, and replaces its rent addition and deletion of items.

state with the summarized state. The shim layer node only remains y opjine store: An online store with shopping cart functionality
unavailable for that particular object during summarization (usually and dynamically changing item prices. The checkout process

afew mllllsgconds). o . . . veribes that the customer only pays the accepted price.
Performing summarization in the backing store is more compli-

cated since the whole process needs to be atomic from a client®s ¥ RUBIS: An eBay-like auction siteZ3]. The application allows

perspective, but Cassandra does not provide multi-row transactions. ~ USers to browse items, bid for items on sale, and pay for items

Summarization in the backing store involves deleting previously ~ from a wallet modeled after a bank account.

inserted rows and inserting new rows, where each row corresponds ¥ Microblog: A twitter-like microblogging site, modeled after

to an effect. It is essential that concurrent client operations are per- Twissandra 29]. The application allows adding new users,

mitted, but are not allowed to witness the intermediate state ofthe adding and replying to tweets, following, unfollowing and

summarization process. blocking users, and fetching a userOs timeline, userline, followers
To this end, we adopt a novel summarization strategy that builds and following.

on the causality property of the store. Figure 11 illustrates the

summarization strategy. Suppose the original set of effects on an The distribution of contracts in these applications is given in

object arenl, 02 ando3. When summarized, the new effects yielded Table 1. We see that majority of the operations and transactions are

6.3 Summarization

¥ Bank account Our running example.

arenl andn2. We brst instantiate a summarization markeasnd classibed as eventually consistent and RC, respectively. Operation
similar to transaction marker, we do not insert it into the store contracts are used to enforce integrity and visibility constraints on
immediately. We insert the new effeatd andn2, with strong individual Pelds in the tables. Transactions are mainly used to con-

consistency, including as a dependence. Singés not yet in the sistently modify and access related belds across tabl€3JinEA,
store, the new effects are not made visible to the clients. Then wethe contract classibPcation process is completely performed at com-

inserts with strong consistency, including the original effeots pile time and has no overheads at runtime. The proof obligations
02 ando3 as dependence. Strongly consistent insertions ensure thatassociated with contract classibcation is discharged through the Z3
a shim layer node witnessirggon some object must also witnass SMT Solver. Across our benchmarks, classifying a contract took

andn2 on the same object. A shim layer node which witnesses all 11.5 milliseconds on average.
the effects removes the original effects from its cache since they are For our performance evaluation, we dep@YELEA applications
superseded by the new effects. Finally, the old effects are deletedin clusters where each cluster is composed of pve fully replicated

Cassandra replicas within the same datacenter. We instantiate on¢o inter-replica coordination. ThHQUELEA deployment offers the
shim layer node co-located on the same VM as a Cassandra replicabenebpt of replication, while only paying the cost of coordination
Clients are instantiated within the same data center as the storewhen necessary.
and run transactions. We deploy each cluster and client node on Finally, we study the impact of summarization in Figure 12(d).
anc3.4xlarge Amazon EC2 instance. We call thisBCconbg- We use 128 clients and a sind@UELEA replica, with all clients
uration. For our geo-distributed experimergbg), we instantiate operating on theameL WW register to stress test the summarization
2 clusters, each with bve nodes, and place the clusters on US-easnechanism. The shim layer cache (memory) is summarized every
(Virginia) and US-west (Oregon) locations. The average inter-region 64 updates, while the updates in the backing store (disk) are sum-
latency was 85ms. marized every 4096 updates. Each point in the graph represents the
Figure 12(a) shows throughput vs. latency of operations in the average latency of the previous 1000 operations. Each experiment is
bank account example as we increase the number of clients in arun for one minute. Without summarization, the average latency of
1DC conbguration. Our client workload was generated using the operations increases exponentially to almost one second, and only
YCSB benchmark]2]. The benchmark uniformly chooses from 13K operations were performed in a minute. Since every operation
100,000 keys, where the operation spread was 25% withdraw, 25%has to reduce over the set of all previous operations, operations take
deposit and 50% getBalance, which corresponds to the default 50:50increasingly more time to complete since they must contend with
read:write mix in YCSB. We increased the number of clients from an ever growing set. With summarization only in memory, perfor-
128 to 1024, and each experiment ran for 180 seconds. mance still degrades due to the cost of fetching all previous updates
The lines marked EC and CC correspond to all operations from the backing store into the shim layer. Fetching the latest up-
(including withdraw) being assigned EC and CC consistency dates from the backing store is essential for SC operations. With
levels. These levels compromise correctneswitiedraw has to summarization enabled on both disk and memory, latency does not
be an SC operation. The SC line corresponds to a conbgurationincrease over time, and the implementation realizes throughput of
where all operations are strongly consistent; this ensures application67K operations/minute.
correctness, at the cost of performanQeELEA corresponds to our
implementation, which classibes operations based on their contract3, Related Work
specibcations. With 512 clients, tRBJELEA implementation was
within 41% of the latency and 18% of the throughput of EC, whereas

i 0, i 0,
SC operations had 162% higher latency and 52% lower throughpuemoclel to construct distributed data structurbsi, 22]. These

than EC operations. Observe that there is a point in each cas - X h

after which the latency increases while the throughput decreasesSYStéms typically propose to implement the datatypes directly over

these correspond to points where the store becomes saturate@ CluSter of nodes, and only focus on basic eventual consistency.

with client requests. In aDC conbguration (not shown here), the eNCe, these systems implement custom solutions for durability and

average latency of SC operations with 512 clients increased by 9.4 ault-toleranceQUELEA realizes RDTSs stronger consistency models

due to the cost of geo-distributed coordination, whef@asLEA on top of off-the-shelf eventually consistent distributed stores. In

operations were only 2(2 slower, mainly due to the increased cost NS FeSPECIQUELEA is similar to [B] where causal consistency is

of withdraw operations. Importantly, the latency gétBalance achieved through a shim !ayer on Cassandra, which explicitly tracks
f and enforces dependencies between updates. How8ydads not

anddeposit remained almost the same, illustrating the benebt o . -)
Dne-grgined contract classibeation 9 support user-debned RDTSs, automatic contract classibcation and
y transactions.

We compare the performance of different transaction isolation S | . | is insufbi build
level choices in Figure 12(b) using the LWW register. The numbers ince eveniual consistency alone is insuibcient to bulld cor-
rect applications, several system§,[22, 28] propose a lattice of

were obtained under a 1DC conbguration. The YCSB workload . - T
was modibPed to issue 10 operations per transaction, with a defaultStronger consistency Ieyels. slmllarly, tr.admonal database process-
50:50 read:write mix. Each operation is assumed to be eventually N9 Systems 1] and their replicated variant2| propose weaker

consistent. NoTxn corresponds to a conbguration that does notiSOIation levels for performance. In thesg systems, thg onus is on
use transactions. Compared to this, RC is only 12% shower in the developer to choose the correct consistency(isolation) level for
terms of latency with 512 clients, whereas RR is 2.3X slower. The operations(transactionsQUELEA relieves the developer of this bur-

difference between RC and NoTxn is due to the meta-data overheadden’ and instead expects contracts expressing declarative visibility
of recording transaction information in the object state. For RR rqulremenis. . d " del is inspired by th
transactions, the cost of capturing and maintaining a snapshot is the ©U" contract language and system mocel IS inspired by the
biggest source of overhead. axiomatic description of RDT semantics proposed 1§}.[While

We also compared (not shown) the performance of EC LWW they use axioms for formal veribcation of correctness of an RDT
operations directly against Cassandra, which uses Iast-writer-wins'mplememat'on’ we utilize them as ameans for_the_user to express
as the only convergence semantics. While Cassandra provides nd'€ desired consistency guarantees in the application. Operational
stronger-than-eventual consistency properf@seLEA was within semantics 0QUELEA (described in the accompanying tech rep@rt |

30%(20%) of latency(throughput) of Cassandra with 512 clients,])11deslcribe an operational _manlifestza\ti?nfof ou:r_ systjegl model.
supporting our thesis that programmers only have to incur relatively [11] also presents an operational model of a replicated data store

low overhead for a more expressive programming model which hat is based on the abstract system model presentedl@h [
provides stronger provable consistency guarantees. Their claims about the expressivity and practicality of the system
Figure 12(c) compares tf@UELEA implementation of RUBIS in model vindicate ours. However, both differ in the way they aim
alDCconbguration against a single replica (NoRep) and a strongly to empower the application programmer. Ibd], they expose .
replicated (StrongReppC deployment. The benchmark uses the thglr_o_peratlonal model to the application programmer, along with
default RUBIS bidding mix, which has 15% read-write interactions, prl_mltl\I/es, su?]h agpush 'dp“” and fetch ’dthatl make it easy
which is representative of the auction workload. Without replication, }0 implementthe require lcor;sstsncy and Isolation gularanctjeelzs.
NoRep trivially provides strong consistency. However, this deploy- n CO_mrasLQUELEA completely abstracts Its operational model,
ment does not scale beyond 1750 operations per second. Stron nd instead relies on contract classibcatioohiooseappropriate

replication offers better throughput at the cost of greater latency due consistency and isolation levels. Similar i@ and [L1], our system
model does not incorporate real (i.e., wall-clock) time. Hence, our

Operation-based RDTs have been widely studied in terms of their
talgorithmic properties10, 24], and several systems utilize this

® e (& A ee 1R7[(’-’ &8 AXHOHD| 2 :
> B > A >
e » mE &8l . =a 58 Fe * B-8 1R5HS f
_ . RaLIP R *® 059 || @ |®® EWURQQ .. d |e— 1R 6XP
o , md A A 4 ‘ o o ; L T » m-@ OHP 2QO|\
: ® " : : n @ 4 ' lee OHP LV
B A \ T . H
° k4 EA e e ne z *
B A L o
. - ! o 5 ,:3 2 o
g — : gute—eo—
7TKURXJKSXW ; RSV 7KURXJKSXW ; RSV ' 7TKURXJKSXW ; RSV ' 2SHUDWLRQV ;
(a) Bank account (b) LWW transactions (c) RUBIS bidding mix (d) Impact of summarization

Figure 12: Quelea Performance.

contract language cannot describe store semantics such as recency?] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
or bounded-staleness guarantees offered by certain stores [28]. I. Stoica. Highly Available Transactions: Virtues and Limitations.
Several conditions have been proposed to judge whether an op- ~ PVLDB, 7(3):1819192, 2013.
eration on a replicated data object needs coordination or dpt. [[3] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on Causal
debnedogical monotonicityas a sufpcient condition for coordi- Consistency. IProceedings of the 2013 ACM SIGMOD International
nation freedom, and proposes a consistency analysis that marks Conference on Management of DaBIGMOD 013, pages 761D772,
code regions performing non-monotonic reasoning (eg: aggrega- New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. daD.
tions, such a€OUNT as potential coordination points4][and [18] 1145/2463676.2465279
debnédnvariant conBuencandinvariant safetyrespectively, as con- [4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
ditions for safely executing an operation without coordinatiatg] | and I. Stoica. Coordination-Avoiding Database Systen@oRR
also proposes a program analysis that conservatively marks certain ~ aPs/1402.2237, 2014. URhttp://arxiv.org/abs/1402.
operations ablue (coordination not required), while marking the 2237
remaining ased (coordination required). 6] requires programmers [5] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
to declare application semantics, and the desired application-specipc M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed
invariants as formulas in brst-order logic. It performs static analysis Eét'\j Sétr“Ct“re_s over aOSharett_:i Logﬂr?ceedllpngs ofthe -';"’g”ltg":o“”h
on these formulas to determiheoffender sets - sets of operations, 3255340, Mow York N USA- 9013, AGH |rslr|]3Cl\llﬁg?és-1- 45030985 8
which, when performed concurrently, result in violation of one or doi: 10.1145/2517349.2522732 ' '
more of the stated invariants. For each offending set of operation, if
programmer chooses invariant-violation avoidance over violation M. Najafzadeh, and M. Shapiro. Putting the consistency back
repair, the system employs various techniques, such as escrow reser- /= o oo (;onsisten'cy. IEu'roSys Bordeaux, France, Apr.
vation, to ensure that the offending set of operations are effectively 2015. URL http:/lip6.fr/Marc.Shapiro/papers/ '
seriallized..UnIike (DE'LEA, these works focus on a coarse-grained putting-consistency-back- EuroSys-2015.pdf
glr??)sr:z(r:at:gir:]g{jct?:r?fggt?gr{ iasf)lfi \{ieonrflljg\llglrssz-rlc())r\:\?e’vir:’dtgce) gggroglej: [7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. OONeil, and P. OONeil.
that som% of them propose relieve prograrﬁmers of the burdeyn to ﬁcc{,l“g}‘g,\‘,"fo’g“ ﬁLZQn;t'iiﬂﬁ“g’;ﬁfgﬁ'ﬁ;ﬁgﬂ?ﬂggz,ﬂfetﬁf Olfggita
tag operations with consistency levels. Indeed, we do consider auto- SIGMOD 095, pages 1910, New York, NY, USA, 1995. ACM. ISBN
matic inference of consistency contracts from application-specibc 0-89791-731-6. doi10.1145/223784.223785

[6] V. Balegas, N. Preguiea, R. Rodrigues, S. Duarte, C. Ferreira,

integrity constraints as the next step fouELEA. [8] E. Brewer. Towards Robust Distributed Systems (Invited Talk), 2000.
[9] S. Burckhardt, D. Leijen, M. FShndrich, and M. Sagiv. Eventually

9. Conclusions Consistent Transa(_:tions. Rroceedings of the 21st European Confer-
ence on Programming Languages and Syst&8©OP012, pages 67D86,

This paper presentQUELEA, a shallow Haskell extension for Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28868-5.
declarative programming over ECDS. The key idea underlying doi: 10.1007/978-3-642-28869-2_4 .
QUELEAOs design is the automatic classiPcation of Pne-grainedg) s. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
consistency contracts on operations and distributed transactions ~ pata Types: Specibcation, Veribcation, Optimality. Ploceedings
with respect to the consistency and isolation levels offered by the of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
store. Our contract language is carefully crafted from a decidable Programming LanguagesPOPL 014, pages 2719284, New York,
subset of Prst-order logic, enabling the use of automated veribcation NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. ddi0.1145/
tools to discharge the proof obligations associated with contract ~ 2535838.2535848
classibcation. We realize an instantiation@fELEA on top of off- [11] S. Burckhardt, D. Leijen, J. Protzenko, and M. FShndrich. Global
the-shelf distributed store, Cassandra, and illustrate the benebt of = sequence protocol: A robust abstraction for replicated shared state. In
Pne-grained contract classiPcation by implementing and evaluating ~ ECOOR Prague, Czech Republic, 2015. URttp://research.
several scalable applications. microsoft.com/pubs/240462/gsp-tr-2015-2.pdf .

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking Cloud Serving Systems with YCSB.Proceedings
References of the 1st ACM Symposium on Cloud Computi8gCC 010, pages
[1] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak. Consistency 1439154, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0.

Analysis in Bloom: a CALM and Collected Approach. @IDR doi: 10.1145/1807128.1807152

2011, Fifth Biennial Conference on Innovative Data Systems Research,[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedipgges A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
249D260, 2011. URNbttp://www.cidrdb.org/cidr2011/ AmazonOs Highly Available Key-value StorePimceedings of Twenty-
Papers/CIDR11_Paper35.pdf . prst ACM SIGOPS Symposium on Operating Systems Princ§ssP

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2463676.2465279
http://arxiv.org/abs/1402.2237
http://arxiv.org/abs/1402.2237
http://dx.doi.org/10.1145/2517349.2522732
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1145/2535838.2535848
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://dx.doi.org/10.1145/1807128.1807152

007, pages 2050220, New York, NY, USA, 2007. ACM. ISBN 978-1- 5411. doi:10.1145/322154.322158

59593-591-5. doi10.1145/1294261.1294281 . [22] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
[14] S. Gilbert and N. Lynch. BrewerOs conjecture and the feasibility of mers. Flexible Update Propagation for Weakly Consistent Replication.
consistent, available, partition-tolerant web servic®SACT News In Proceedings of the Sixteenth ACM Symposium on Operating Systems
33(2):51Bb59, June 2002. ISSN 0163-5700. #0i1145/564585. Principles SOSP 097, pages 288D301, New York, NY, USA, 1997.
564601 . ACM. ISBN 0-89791-916-5. doil0.1145/268998.266711
[15] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Con- [23] RUBIS. Rice University Bidding System, 2014. URiitp:/
dition for Concurrent ObjectsACM Transactions on Programming rubis.ow2.org/ . Accessed: 2014-11-4 13:21:00.
Languages and Systen2(3):463D492, July 1990. ISSN 0164-0925. [24] M. Shapiro, N. Preguisa, C. Baquero, and M. Zawirski. ConRict-
doi: 10.1145/78969.78972 . Free Replicated Data Types. In X. DZfago, F. Petit, and V. Villain,
[16] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured editors, Stabilization, Safety, and Security of Distributed Sysfems
Storage SystenBIGOPS Operating Systems Revid(2):35D40, Apr. volume 6976 ofLecture Notes in Computer Sciengeages 386D
2010. ISSN 0163-5980. dal0.1145/1773912.1773922 . 400. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7.

i:10.1007/978-3-642-24550-3_2
[17] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiea, and R. Rodrigues. doi) 0.1007/9 8_3 6 550-3 29
Making Geo-replicated Systems Fast As Possible, Consistent when [25] S. Sivasubramanian. Amazon dynamoDB: A Seamlessly Scalable Non-

Necessary. InProceedings of the 10th USENIX Conference on relational Database Service. Roceedings of the 2012 ACM SIGMOD

Operating Systems Design and Implementat®8DIO12, pages 265D International Conference on Management of D&6GMOD O12, pages

278, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978- 729D730, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9.

1-931971-96-6. URILhttp://dl.acm.org/citation.cfm? doi: 10.1145/2213836.2213945

id=2387880.2387906 . [26] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional Storage
[18] C. Li, J. a. Leitco, A. Clement, N. Preguisa, R. Rodrigues, and for Geo-replicated Systems. Rroceedings of the Twenty-Third ACM

Symposium on Operating Systems Princip@@SP 011, pages 385D

V. Vafeiadis. Automating the Choice of Consistency Levels in Repli-
400, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.

cated Systems. IRroceedings of the 2014 USENIX Conference on

USENIX Annual Technical Conferend$SENIX ATCO14, pages 281D doi: 10.1145/2043556.2043592

292, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978- [27] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer,

1-931971-10-2. URILhttp://dl.acm.org/citation.cfm? and B. W. Welch. Session guarantees for weakly consistent repli-

id=2643634.2643664 . cated data. IfProceedings of the Third International Conference on
[19] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. DonOt Parallel and Distributed Information Systenf3DIS 094, pages 140D

149, Washington, DC, USA, 1994. IEEE Computer Society. ISBN

settle for eventual: Scalable causal consistency for wide-area storage -
0-8186-6400-2. URLhttp://dl.acm.org/citation.cfm?

with cops. InProceedings of the Twenty-Third ACM Symposium on

Operating Systems PrincipleSOSP 011, pages 401D416, New York, id=645792.668302

NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. ddi0.1145/ [28] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,

2043556.2043593 . and H. Abu-Libdeh. Consistency-based Service Level Agreements for
[20] W. Lioyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger Cloud Storage. IfProceedings of the Twenty-Fourth ACM Symposium

Semantics for Low-latency Geo-replicated StoragePioceedings on Operating Systems PrinCipleSOSP 013, pages 3099324, New York,

of the 10th USENIX Conference on Networked Systems Design and NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. ddi0.1145/
Implementationnsdi®13, pages 313D328, Berkeley, CA, USA, 2013. 2517349.2522731

USENIX Association. URLhttp://dl.acm.org/citation. [29] Twissandra. Twitter clone on Cassandra, 2014. URip://
cfm?id=2482626.2482657 . twissandra.com/ . Accessed: 2014-11-4 13:21:00.

[21] C. H. Papadimitriou. The Serializability of Concurrent Database [30] Z3. High-performance Theorem Prover, 2014. URtp://z3.
Updates.Journal of the ACM26(4):631D653, Oct. 1979. ISSN 0004- codeplex.com/ . Accessed: 2014-11-4 13:21:00.

http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dx.doi.org/10.1145/322154.322158
http://dx.doi.org/10.1145/268998.266711
http://rubis.ow2.org/
http://rubis.ow2.org/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
http://twissandra.com/
http://twissandra.com/
http://z3.codeplex.com/
http://z3.codeplex.com/

	Introduction
	System Model
	Motivation
	RDT Specification
	Summarization

	Anomalies under Eventual Consistency
	Contracts
	From Contracts to Implementation

	Contract Language
	Syntax
	Semantics
	Capturing Store Semantics
	Contract Classification
	Generality of Contracts
	Soundness of Contract Classification

	Transaction Contracts
	Syntax and Semantics Extensions
	Transactional Bank Account
	Coordination-free Transactions
	Classification

	Implementation
	Operation Consistency
	Transactions
	Summarization

	Evaluation
	Related Work
	Conclusions

