
Declarative Programming over
Eventually Consistent Data Stores

KC Sivaramakrishnan!

University of Cambridge, UK
sk826@cl.cam.ac.uk

Gowtham Kaki
Purdue University, USA
gkaki@cs.purdue.edu

Suresh Jagannathan
Purdue University, USA
suresh@cs.purdue.edu

Abstract
User-facing online services utilize geo-distributed data stores to
minimize latency and tolerate partial failures, with the intention
to provide a fast, always-on experience. However, geo-distribution
does not come for free; application developers have to contend
with weak consistency behaviors, and the lack of abstractions to
composably construct high-level replicated data types, necessitating
the need for complex application logic and invariably exposing
inconsistencies to the user. Some commercial distributed data stores
and several academic proposals provide a lattice of consistency
levels, with stronger consistency guarantees incurring increased
latency and throughput costs. However, correctly assigning the right
consistency level for an operation requires subtle reasoning and is
often an error-prone task.

In this paper, we presentQUELEA, a declarative programming
model for eventually consistent data stores (ECDS), equipped with
a contractlanguage, capable of specifying Þne-grained application-
level consistency properties. Acontract enforcement systemanalyses
contracts, andautomaticallygenerates the appropriate consistency
protocol for the method protected by the contract. We describe
an implementation ofQUELEA on top of an off-the-shelf ECDS,
and provide support forcoordination-freetransactions. Several
benchmarks including two large web applications, illustrate the
effectiveness of our approach.

Categories and Subject DescriptorsD.1.3 [Concurrent Program-
ming]: Distributed Programming; C.2.4 [Distributed Systems]: Dis-
tributed databases; D.3.2 [Language ClassiÞcations]: Applicative
(Functional) Languages; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms Languages, Performance

Keywords Eventual Consistency, Availability, CRDTs, Axiomatic
Contracts, Contract ClassiÞcation, Distributed Transactions, SMT
solvers, Decidable Logic, Quelea, Cassandra, Haskell

! This work was done at Purdue University, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proÞt or commercial advantage and that copies bear this notice and the full citation
on the Þrst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciÞc permission and/or a
fee. Request permissions from permissions@acm.org.
PLDIÕ15, , June 13Ð17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnn

1. Introduction
Many real-world web services Ñ such as those built and maintained
by Amazon, Facebook, Google, Twitter, etc. Ñ replicate applica-
tion state and logic across multiplereplicaswithin and across data
centers. Replication is intended not only to improve application
throughput and reduce user-perceived latency, but also to tolerate
partial failures without compromising overall service availability.
Traditionally programmers have relied onstrong consistencyguar-
antees such as linearizability [15] or serializability [21] in order
to build correct applications. While strong consistency is an eas-
ily stated property, it masks the reality underlying large-scale dis-
tributed systems with respect to non-uniform latency, availability
and network partitions [8, 14]. Indeed, modern web services, which
aim to provide an "always-on" experience, overwhelmingly favor
availability and partition tolerance over strong consistency. To this
end, severalweak consistencymodels such as eventual consistency,
causal consistency, session guarantees, and timeline consistency
have been proposed.

Under weak consistency, the developer needs to be aware of
concurrent conßicting updates, and has to pay careful attention
to avoid unwanted inconsistencies (e.g., negative balances in a
bank account, or having an item appear in a shopping cart after
it has been removed [13]). Oftentimes, these inconsistencies leak
from the application and is witnessed by the user. Ultimately,
the developer must decide the consistency level appropriate for
a particular operation; this is understandably an error-prone process
requiring intricate knowledge of both the application as well as the
semantics and implementation of the underlying data store, which
typically have only informal descriptions. Nonetheless, picking the
correct consistency level is critical not only for correctness but
also for scalability of the application. While choosing a weaker
consistency level than required may introduce program errors and
anomalies, choosing a stronger one than necessary can negatively
impact program scalability and performance.

Weak consistency also hinders compositional reasoning about
programs. Although an application might be naturally expressed
in terms of well-understood and expressive data types such as
maps, trees, queues, or graphs, geo-distributed stores typically only
provide a minimal set of data types with in-built conßict resolution
strategies such as last-writer-wins (LWW) registers, counters, and
sets [16, 25]. Furthermore, while traditional database systems
enable composability through transactions, geo-distributed stores
typically lack unrestricted serializable transactional access to the
data. Working in this environment thus requires application state
to be suitably coerced to function using only the capabilities of the
store.

To address these issues, we describeQUELEA, a declarative
programming model and implementation for ECDS. The key novelty
of QUELEA is an expressivecontract languageto declare and

Eventually Consistent Data Store

Replica!Replica! Replican

!!!!!!x ! { wx
� ,wx

� }
y ! {wy

! ,wy
" }

!
!
!

wy
!

wx
!

y ! { wy
! } x ! { wx

! }

!
!
!

Session! Session!

!
!
! !!!!Session

Order

v! ! x. f oo(arg!) ; !wx
" "

v! ! x.bar(arg!); !wx
" "

Figure 1: QUELEA system model.

verify Þne-grained application-level consistency properties. The
programmer uses the contract language to axiomatically specify
the set of legal executions allowed over the replicated data type.
Contracts are constructed using primitive consistency relations
such asvisibility and session orderalong with standard logical
and relational operators. Acontract enforcement systemstatically
maps operations over the datatype to a particular consistency level
available on the store, and provably validates the correctness of the
mapping. The paper makes the following contributions:

¥ We introduceQUELEA, a shallow extension of Haskell that sup-
ports the description and validation of replicated data types found
on ECDS. Contracts are used to specify Þne-grained application-
level consistency properties, and are statically analyzed to assign
the most efÞcient and sound store consistency level to the corre-
sponding operation.

¥ QUELEA supports coordination-free transactions over arbitrary
datatypes. We extend our contract language to express Þne-
grained transaction isolation guarantees, and utilize the contract
enforcement system to automatically assign the correct isolation
level for a transaction.

¥ We provide meta-theory that certiÞes the soundness of our
contract enforcement system, and ensures that an operation is
only executed if the required conditions on consistency are met.

¥ An implementation ofQUELEA as a transparent shim layer
over Cassandra [16], a well-known general-purpose data store.
Experimental evaluation over a set of real-world applications,
including a Twitter-like micro-blogging site and an eBay-like
auction site illustrates the practicality of our approach.

The rest of the paper is organized as follows. The next section
describes the system model. We describe the challenges in program-
ming under eventual consistency, and introduceQUELEA contracts
as a proposed solution to overcome these issues in ¤ 3. ¤ 4 provides
more details on the contract language, and its mapping to the store
consistency levels, along with meta-theory for certifying the cor-
rectness of the mapping. ¤ 5 introduces transaction contracts and
their classiÞcation. ¤ 6 describes the implementation ofQUELEA on
top of Cassandra. ¤ 7 discusses experimental evaluation. ¤ 8 and 9
present related work and conclusions.

2. System Model
In this section, we describe the system model and introduce the
primitive relations that our contract language is seeded with. Figure 1
presents a schematic diagram of our system model. The distributed
store is composed of a collection ofreplicas, each of which stores a
set ofobjects(x, y, . . .). We assume that every object is replicated
at every replica in the store. The state of an object at any replica is

the set of all updates (effects) performed on the object. For example,
the state ofx at replica 1 is the set composed of effectswx

1 andwx
2 .

Each object is associated with a set ofoperations. The clients
interact with the store by invoking operations on objects. The
sequence of operations invoked by a particular client on the store
is called asession. The data store is typically accessed by a large
number of clients (and hence sessions) concurrently. Importantly,
the clients are oblivious to which replica an operation is applied
to; the data store may choose to route the operation to any replica
in order to minimize latency, balance load, etc. For example, the
operationsfoo andbar invoked by the same session on the same
object, might end up being applied to different replicas because
replica 1 (to whichfoo was applied) might be unreachable when the
client invokesbar.

When foo is invoked on a objectx with argumentsarg1 at
replica 1, it simplyreducesover the current set of effects at that
replica on that object (wx

1 andwx
2), produces a resultv1 that is

sent back to the client, and emits asinglenew effectwx
4 that is

appended to the state ofx at replica 1. Thus, every operation is
evaluated over asnapshotof the state of the object on which it is
invoked. In this case, the effectswx

1 andwx
2 arevisibleto wx

4 , written
logically asvis(wx

1 , wx
4) ! vis(wx

2 , wx
4), wherevis is the visibility

relation between effects. Visibility is an irreßexive and asymmetric
relation, and only relates effects produced by operations on the same
object. Executing a read-only operation is similar except that no
new effects are produced. The effect added to a particular replica
is asynchronously sent to other replicas, and eventually merged
into all other replicas. Observe that this model does not assume
a particular resolution strategy for concurrent conßicting updates,
and instead preserveseveryupdate. Update conßicts are resolved
when an operation reduces over the set of effects on an object at a
particular replica.

Two effectswx
4 andwx

5 that arise from the same session are said
to be insession order(written logically asso(wx

4 , wx
5)). Session

order is an irreßexive, transitive relation. The effectswx
4 andwx

5
arising from operations applied to the same objectx are said to be
under thesame objectrelation, writtensameobj(wx

4 , wx
5). Finally,

we can associate every effect with the operation that generated
the effect with the help of a relationoper. In the current example,
oper(wx

4 , foo) andoper(wx
5 , bar) hold. For simplicity, we assume

all operation names across all object are distinct.
This model admits all the inconsistencies associated with even-

tual consistency. The goal of this work is to identify the precise
consistency level for each operation such that application-level con-
straints are not violated. In the next section, we will concretely
describe the challenges associated with constructing a consistent
bank account on top of an ECDS. Subsequently, we will illustrate
how our contract and speciÞcation language, armed with the primi-
tive relationsvis, so, sameobj andoper, mitigates these challenges.

3. Motivation
Consider how we might implement a highly available bank account
on top of an ECDS, with theintegrity constraint that the balance
must be non-negative. We begin by implementing a bank account
replicated data type (RDT) inQUELEA, and then describe the
mechanisms to obtain the desired correctness guarantees.

3.1 RDT SpeciÞcation

A key novelty inQUELEA is that it allows the addition of new RDTs
to the store, which obviates the need for coercing the application
logic to utilize the store provided data types. In addition,QUELEA
treats the convergence semantics (i.e.,how conßicting updates
are resolved) of the data type separately from its consistency
properties (i.e.,whenupdates become visible). This separation of
concerns permitsoperationalreasoning for conßict resolution, and

data Acc = Deposit Int | Withdraw Int | GetBal

getBalance :: [Acc] " () " (Int , Maybe Acc)
getBalance hist _ =

let res = sum [x | Deposit x # hist]
- sum [x | Withdraw x # hist]

in (res, Nothing)

deposit :: [Acc] " Int " ((), Maybe Acc)
deposit hist amt = ((), Just $ Deposit amt)

withdraw :: [Acc] " Int " (Bool , Maybe Acc)
withdraw hist v =

if sel1 $ getBalance hist () $ v
then (True , Just $ Withdraw v)
else (False , Nothing)

Figure 2: DeÞnition of a bank account expressed in Quelea.

declarativereasoning for consistency. The combination of these
techniques enhances the programmability of the store.

Let us assume that the bank account object provides three opera-
tions:deposit , withdraw andgetBalance , with the assumption
that the withdraw fails if the account has insufÞcient balance. Every
operation inQUELEA is of the following type, written in Haskell
syntax:

type Operation e a r = [e] " a " (r, Maybe e)

An operation takes a list of effects (thehistoryof updates to that
object), and an input argument, and returns a result along with
an optional effect (read-only operations returnNothing). The
new effect (if emitted) is added to the state of the object at the
current replica, and asynchronously sent to other replicas. The
implementation of the bank account operations inQUELEA is given
in Figure 2.

The datatypeAcc represents the effect type for the bank account.
The functionsum returns the sum of elements in the list, andsel1
returns the Þrst element of a tuple. For each operation,hist is a
snapshotof the state of the object at some replica. In this sense, every
operation on the RDT is atomic, and thus amenable to sequential
reasoning. Here,getBalance is a read-only operation,deposit
always emits an effect, andwithdraw only emits an effect if there
is sufÞcient balance in the account. We have implemented a large
corpus of RDTs for realistic benchmarks including shopping carts,
auction and micro-blogging sites, etc. in a few tens of lines of code,
expressed in this style.

3.1.1 Summarization

Observe that the deÞnition ofgetBalance reduces over theentire
history of updates to an account. If we are to realize an efÞcient
implementation of this bank account RDT, we need asummaryof the
account history. Intuitively, the current account balance summarizes
the state of an account. A bank account with the history[Deposit
10, Withdraw 5] is observably equivalentto a bank account with
a single deposit operation[Deposit 5] ; we can replace the earlier
history with the latter and a client of the store would not able to tell
the difference between the two.

This notion of observable equivalence can be generalized to
other RDTs as well. For example, a last-writer-wins register with
multiple updates is equivalent to a register with only the last write.
Similarly, a set with a collection of add and remove operations
is equivalent to a set with a series of additions of live elements
from the original set. Since the notion of observable equivalence is
speciÞc to each RDT, programmers can provide a summarization
function - (summarize) of type[e] -> [e] - as a part of the RDT
speciÞcation. The summarization function for the bank account is:

summarize hist =
[Deposit $ sel1 $ getBalance hist ()]

Given a bank account historyhist , thesummarize function returns
a new history with a single deposit of the current account balance.
Our implementation invokes the summarization function associated
with an RDT to reduce the size of the effect sets maintained by
replicas.

3.2 Anomalies under Eventual Consistency

Our goal is to choose the correct consistency level for each of
the bank account operations such that (1) the balance remains non-
negative and (2) thegetBalance operation never incorrectly returns
a negative balance.

Session 1

withdraw (70)

Session 2

vis

getBalance ! -50

withdraw (80)

deposit (100)
vis so

vis

vis so

(a) Unsafe withdraw

deposit (100)

Session 1

withdraw (50)

Session 2

getBalance ! -50

Session 3

vis

vis

(b) Negative balance

deposit (100)

withdraw (50)

getBalance ! 100

vis, so

so

vis

Session 1

(c) Missing update

Figure 3: Anomalies possible under eventual consistency for the
get balance operation.

Consider the execution shown in Figure 3(a). Assume that all
operations in the Þgure are on the same bank account object with
the initial balance being zero. Session 1 performs adeposit of 100,
followed by awithdraw of 80 in the same session. Thewithdraw
operation witnesses the deposit and succeeds1. Subsequently, session
2 perform awithdraw operation, but importantly, due to eventual
consistency, only witnesses thedeposit from session 1, but not the
subsequent withdraw. Hence, thiswithdraw alsoincorrectlysuc-
ceeds, violating the integrity constraint. A subsequentgetBalance
operation, that happens to witness all the previous operations, would
report a negative balance.

It is easy to see that preventing concurrentwithdraw opera-
tions eliminates this anomaly. This can be done by insisting that
withdraw be executed as a strongly consistent operation. Despite
this strengthening, thegetBalance operation may still incorrectly
report a negative balance to the user. Consider the execution shown
in Þg. 3(b), which consists of three concurrent sessions performing a
deposit , awithdraw , and agetBalance operation, respectively,
on the same bank account object. As thevis edge indicates, operation
withdraw (50) in session 2 witnesses the effects ofdeposit (100)
from session 1, concludes that there is sufÞcient balance, and com-
pletes successfully. However, thegetBalance operation may only
witness this successful withdraw, but not the causally preceding
deposit , and reports the balance of negative 50 to the user.

Under eventual consistency, the users may also be exposed to
other forms of inconsistencies. Figure 3(c) shows an execution
where thegetBalance operation in a session does not witness
the effects of an earlierwithdraw operation performed in the
same session, possibly because it was served by a replica that has
not yet merged thewithdraw effect. This anomaly leads the user
to incorrectly conclude that thewithdraw operation failed to go
through.

1 Although visibility and session order relations relate effects, we have abused
the notation in these examples to relate operations, with the idea that the
relations relate the effect emitted by those operations

Although it is easy to understand the reasons behind the occur-
rence of the aforementioned anomalies, Þnding the appropriate Þxes
is not readily apparent. MakinggetBalance a strongly consistent
operation is deÞnitely sufÞcient to avert anomalies, but is it really
necessary? Given the cost of enforcing strong consistency [25, 28],
it is preferable to avoid it unless there are no viable alternatives.
Exploring the space of these alternatives requires understanding the
subtle differences in semantics of various kinds of weak consistency
alternatives.

3.3 Contracts

QUELEA helps facilitate the mapping of operations to appropriate
consistency levels by letting the programmer declare application-
level consistency constraints ascontracts2 (Figure 4) that axiomati-
cally specify the set of allowed executions involving this operation.
In the case of the bank account, any execution that does not exhibit
the anomalies described in the previous section is awell-formed
execution on the bank account object. By specifying the set of legal
executions for each data type in terms of a trace of operation invo-
cations on that type,QUELEA ensures that all executions over that
type are well-formed.

In our running example, it is clear that in order to preserve
the integrity constraint, thewithdraw operation must be strongly
consistent. That is, given twowithdraw operationsa andb, either
a is visible tob or vice-versa. We express this application-level
consistency requirement as a contract (! w) overwithdraw :

" (a : withdraw).
sameobj(a, "̂) # a = "̂ $ vis(a, "̂) $ vis("̂, a)

Here,"̂ stands for the effect emitted by thewithdraw operation.
The syntaxa : withdraw states thata is an effect emitted by a
withdraw operation i.e.,oper(a, withdraw) holds. The contract
speciÞes that if the current operation emits an effect"̂ , then for
any operationa which was emitted by awithdraw operation, it
is the case thata = "̂ or a is visible to "̂ , or vice versa. Any
execution on a bank account object that preserves the above contract
for a withdraw operation is said to be derived from a correct
implementation ofwithdraw .

To preventgetBalance from ever showing a negative balance,
it is necessary to prevent the scenario depicted in Þg. 3(b). Let"̂
stand for the effect emitted by thegetBalance operation. If the
effect (b) of a withdraw operation is visible tô" , and the effect (a)
of a deposit operation is visible to the effect (b) of the withdraw
operation, then it must be the case thata is also visible to"̂ . A
contract (! 1

gb) for getBalance operation that precisely captures
this application-level consistency requirement can be written thus:

" (a : deposit), (b : withdraw).
(vis(a, b) ! vis(b,"̂) # vis(a, "̂))

To prevent the missing update anomaly described in Þg. 3(c), it is
necessary for agetBalance operation on a bank account to witness
the effects of all previousdeposit and withdraw operations
performed on the same bank account in the same session. We can
express an additional contract (! 2

gb) for getBalance that captures
this consistency requirement:

" (c : deposit $ withdraw).
((so %sameobj)(c, "̂) # vis(c, "̂))

Our contract language provides operators to compose relations.
The syntax(R1 %R2)(a, b) is equivalent toR1(a, b) ! R2(a, b).
The above contract (! 2

gb) says that if adeposit or a withdraw
operation precedes agetBalance operation in session order, and

2 QUELEA exposes the contract construction language as a Haskell library

x, y, ö! %EffVar Op %OperName
" % Contract ::= &(x : #)." | &x." | $
% EffType ::= Op | # '
$ % Prop ::= true | R(x, y) | $ ' $

| $ ($ | $) $
R % Relation ::= vis | so | sameobj | =

| R * R | R + R | R+

Figure 4: Contract language.

is applied on the same object as thegetBalance operation, then
it must be the case that thegetBalance operation witnesses the
effects of the preceding operations.

The Þnal contract (! gb) of thegetBalance operation is merely
a conjunction of the previous two versions (! 1

gb and! 2
gb):

" (a : deposit), (b : withdraw), (c : deposit $ withdraw).
(vis(a, b) ! vis(b,"̂) # vis(a, "̂))
! ((so %sameobj)(c, "̂) # vis(c, "̂))

Intuitively, this prevents both thegetBalance anomalies described
in Þgs. 3(b) and 3(c) from ever occurring.

Finally, since there are no restrictions on when or how adeposit
operation can execute, its contract is simplytrue.

3.4 From Contracts to Implementation

Notice that the contracts forwithdraw and getBalance only
express application-level consistency requirements, and make no
reference to the semantics of the underlying store. To write contracts,
a programmer only needs to reason about the semantics of the
application under theQUELEA system model. The mapping of
application-level consistency requirements to appropriate store-level
guarantees is done automatically behind-the-scene. How might
one go about ensuring that an execution adheres to a contract?
The challenge is that a contract provides a declarative (axiomatic)
speciÞcation of an execution, while what is required is an operational
procedure forenforcingits implicit constraints.

One strategy would be to execute operations speculatively. Here,
operations are tentatively applied as they are received from the
client or other replicas. We can maintain a runtime manifestation
of executions, and check well-formedness conditions at runtime,
rolling back executions if they are ill-formed. However, the overhead
of state maintenance and the complexity of user-deÞned contracts is
likely to make this technique infeasible in practice.

We devise a static approach instead. Contracts are analyzed with
the help of a theorem prover, and statically mapped to a particular
store-level consistency property that the prover guarantees preserves
contract semantics. We call this procedurecontract classiÞcation.
Given the variety and complexity of store level consistency prop-
erties, the idea is that the system implementer parameterizes the
classiÞcation procedure by describing the store semantics in the
samecontract language as the one used to express the contract on
the operations. In the next section, we describe the contract language
in detail and describe the classiÞcation procedure for a particular
store semantics.

4. Contract Language
4.1 Syntax

The syntax of our core contract language is shown in Figure 4. The
language is based on Þrst-order logic (FOL), and admits prenex
universal quantiÞcation over typed and untyped effect variables.
We use a special effect variable ("̂) to denote the effect ofcurrent
operation- the operation for which a contract is being written.
Notice that"̂ occurs free in the contract. We will Þx its scope when

! %Effect " %Contract ! %Effect Set
A % EffSoup ::= !
vis, so, sameobj % Relations ::= A , A
E % ExecState ::= (A,vis,so,sameobj)

Figure 5: Axiomatic execution.

classifying the contracts (¤ 4.4). The type of an effect is simply
the name of the operation (eg:withdraw) that induced the effect.
We admit disjunction in types to let an effect variable range over
multiple operation names. The contract" (a : #1 $ #2). ! is just
syntactic sugar for" a.(oper(a, #1)$ oper(a, #2)) # ! . An untyped
effect variable ranges over all operation names.

QuantiÞer-free propositions in our contract language are con-
junctions, disjunctions and implications of predicates expressing
relations between pairs of effect variables. The syntactic class of
relations is seeded with primitivevis, so, andsameobj relations,
and also admits derived relations that are expressible as union,
intersection, or transitive closure3 of primitive relations. Com-
monly used derived relations are thesame object session order
(soo = so % sameobj), happens-before order(hb = (so & vis)+)
and thesame object happens-before order(hbo = (soo & vis)+).

4.2 Semantics

QUELEA contracts are constraints over axiomatic deÞnitions of
program executions. Figure 5 summarizes artifacts relevant to deÞne
an axiomatic execution. We formalize an axiomatic execution as a
tuple (A,vis,so,sameobj), whereA, called theeffect soup, is the
set of all effects generated during the program execution, and
vis, so, sameobj ' A (A arevisibility, session order, andsame
objectrelations, respectively, witnessed over generated effects at
run-time.

Note that the axiomatic deÞnition of an execution (E) provides
interpretations for primitive relations (eg:vis) that occur free in
contract formulas, and also Þxes the domain of quantiÞcation to set
of all effects (A) observed during the program execution. As such,
E is a potential model for any Þrst-order formula (!) expressible in
our contract language. IfE is indeed a valid model for! (written as
E |= !), we say that the executionE satisÞed the contract! :

DeÞnition 1. An axiomatic executionE satisÞes a contract! if and
only if E |= ! .

4.3 Capturing Store Semantics

An important aspect of our contract language is its ability to capture
store-level consistency guarantees, along with application-level
consistency requirements. Similar to [10], we can rigorously deÞne
a wide variety of store semantics including those that combine any
subset of session and causality guarantees, and multiple consistency
levels. However, for our purposes, we identify three particular
consistency levels Ð eventual, causal, and strong, commonly offered
by many distributed stores with tunable consistency, with increasing
overhead in terms of latency and availability.

¥ Eventual consistency: Eventually consistent operations can be
satisÞed as long as the client can reach at least one replica. In
the bank account example,deposit is an eventually consistent
operation. While an ECDS typically offerbasiceventual con-
sistency with all possible anomalies, we assume that our store
provides stronger semantics that remain highly-available [2, 19];

3 Strictly speaking,R+ is not the transitive closure ofR, as transitive closure
is not expressible in FOL. Instead,R+ in our language denotesa superset of
transitive closure ofR. Formally,R+ is any relationR" such that forallx, y,
andz, a)R(x, y)) R"(x, y), and b)R"(x, y) (R"(y, z)) R"(x, z)

" - " sc

WellFormed(")

" - " ec

EventuallyConsistent(")

" .- " ec " - " cc

CausallyConsistent(")

" .- " cc " - " sc

StronglyConsistent(")

Figure 6: Contract classiÞcation.

the store always exposes acausal cutof the updates. This seman-
tics can be formally captured in terms of the following contract
deÞnition:

! ec = " a, b. hbo(a, b) ! vis(b,"̂) # vis(a, "̂)

¥ Causal consistency: Causally consistent operations are required
to see a causally consistent snapshot of the object state, including
the actions performed on the same session. The latter require-
ment implies that if two operationso1 ando2 from the same
session are applied to two different replicasr 1 andr 2, the second
operation cannot be discharged until the effect ofo1 is included
in r 2. ThegetBalance operation requires causal consistency,
as it requires the operations from the same session to be visible,
which cannot be guaranteed under eventual consistency. The
corresponding store semantics is captured by the contract! cc

deÞned below:

! cc = " a. hbo(a, "̂) # vis(a, "̂)

¥ Strong consistency: Strongly consistent operations may block
indeÞnitely under network partitions. An example is the total-
order contract onwithdraw operation. The corresponding store
semantics is captured by the! sc contract deÞnition:

! sc = " a. sameobj(a, "̂) # vis(a, "̂) $ vis("̂, a) $ a = "̂

4.4 Contract ClassiÞcation

Our goal is to map application-level consistency constraints on
operations to appropriate store-level consistency guarantees capable
of satisfying these constraints. The ability to express both these
kinds of constraints as contracts in our contract language lets us
compare and determine if contract (! op) of an operation (op) is
weak enough to be satisÞed under a store consistency level identiÞed
by the contract! st . Towards this end, we deÞne a binaryweaker
thanrelation for our contract language as following:

DeÞnition 2. A contract! op is said to be weaker than! st (written
! op) ! st) if and only if� * " "̂.! st # ! op .

The quantiÞer in the sequent binds"̂ that occurs free in! st and
! op . Context (�) of the sequent is a conjunction of assumptions
about the nature of primitive relations. Awell-formedaxiomatic
execution (E) is expected to satisfy these assumptions (i.e.,E |= �).

DeÞnition 3. An axiomatic executionE = (A,vis,so,sameobj) is
well-formed if the following axioms (�) hold:

¥ The happens-before relation is acyclic:" a. Âhb(a, a).
¥ Visibility only relates actions on the same object:

" a, b.vis(a, b) # sameobj(a, b).
¥ Session order is a transitive relation:

" a, b, c.so(a, b) ! so(b, c) # so(a, c).
¥ Same object is an equivalence relation:

" a. sameobj(a, a).
" a, b.sameobj(a, b) # sameobj(b, a).
" a, b, c.sameobj(a, b) ! sameobj(b, c) # sameobj(a, c).

If the contract (! op) of an operation (op) is weaker thana store
contract (! st), then constraints expressed by the former are implied
by guarantees provided by the latter. The completeness of Þrst-order
logic allows us to assert that any well-formed execution (E) that
satisÞes! st (i.e., E |= ! st) also satisÞes! op (i.e., E |= ! op).
Consequently, it is safe to execute operationop under a store
consistency level captured by! st .

Observe that the contracts! sc, ! cc and! ec are themselves totally
ordered with respect to the) relation: ! ec) ! cc) ! sc. This
concurs with the intuition that any contract satisÞable under! ec

or ! cc is satisÞable under! sc, and any contract that is satisÞable
under! ec is satisÞable under! cc. We are interested in theweakest
guarantee (among! ec, ! cc, and! sc) required to satisfy the contract.
We deÞne the corresponding consistency level as theconsistency
classof the contract.

The classiÞcation scheme, presented formally in Figure 6, deÞnes
rules to judge the consistency class of a contact. For example, the
scheme classiÞes thegetBalance contract (! gb) from ¤ 3 as a
CausallyConsistent contract, because the sequent� * ! cc # ! gb is
valid in Þrst-order logic (therefore,! gb) ! cc), whereas the sequent
� * ! ec # ! gb is invalid (therefore,! gb +) ! ec). Since we conÞne
our contract language to a decidable subset of the logic, validity of
such sequents can be decided mechanically allowing us to automate
the classiÞcation scheme in QUELEA.

Along with three straightforward rules that classify contracts into
consistency classes, the classiÞcation scheme also presents a rule
that judges well-formedness of a contract. A contract is well-formed
if and only if it is satisÞable under! sc - the strongest possible
consistency guarantee that the store can provide. Otherwise, it is
considered ill-formed, and rejected statically.

4.5 Generality of Contracts

It is important to note that our contract language provides a generic
way to capture application-level consistency properties and is
not tied to a particular store semantics. In particular, the same
application-level contracts can easily be mapped to a different store
with a varied consistency lattice. To illustrate this, let us consider
the consistency lattice proposed by Terry et al. [27] based on session
guarantees. Terry et al. propose the following four incomparable
session guarantees, whose semantics is captured in the contracts
below:

Read Your Writes (RYW) ::= &a, b. soo(a, b)) vis(a, b)
Monotonic Reads (MR) ::= &a, b, c. vis(a, b) (soo(b, c)

) vis(a, c)
Monotonic Writes (MW) ::= &a, b, c. soo(a, b) (vis(b, c)

) vis(a, c)
Writes Follow Reads (WFR) ::= &a, b, c, d. vis(a, b) (vis(c, d)

((soo * =)(b, c)) vis(a, d)

In this scheme, the consistency level of an operation is any
combination of the above guarantees, which form a partially ordered
consistency lattice show in Figure 7. Each element in this lattice
corresponds to a store-consistency level, and is represented by
its contract. An edge from an upper level element to a lower
level element corresponds to weaker than relation between their
corresponding contracts. Classifying a contract under this scheme
is a directed search in the lattice, starting from the bottom, and
determining the weakest consistency level under which the contract
can be satisÞed. Under this scheme,deposit operations does
not need any guarantees,getBalance needs RYW and WFR
(� * RYW ! WFR # ! gb), andwithdraw cannot be satisÞed
(� * RYW ! MW ! MR ! WFR +# ! w).

true

RYW MW MR WFR

RYW ! MW RYW ! MR RYW ! WFRMW ! MR MW ! WFR MR ! WFR

RYW ! MW
 ! MR

RYW ! MW
 ! WFR

RYW ! MR
 ! WFR

MW ! MR
 ! WFR

RYW ! MW ! MR ! WFR

Figure 7: Lattice of consistency levels under session guarantees.

4.6 Soundness of Contract ClassiÞcation

We now present a meta-theoretic result that certiÞes the soundness
of classiÞcation-based contract enforcement. To help us state the
result, we deÞne an operational semantics of the system described
informally in ¤ 2:

op % Operation
% ConsistencyClass ::= ec, cc, sc
% % Session ::= á | /op, #0; %
! % Session Soup ::= %1 ! | 2

Config ::= E, !

We model the system as a tupleE,⌃, where the axiomatic
executionE captures the data storeÕs current state, and session soup
⌃ is the set of concurrent client sessions interacting with the store.
A session$ is a sequence of pairs composed of replicated data type
operationsop, tagged with the consistency class# of their contracts
(as determined by the contract classiÞcation scheme). We assume a
reduction relation of form:

E, /op, #0; %1 !
!

3" E", %1 !

on the system state. The relation captures the progress of the
execution (fromE to E") due to the successful completion of a
client operationop from one of the sessions in⌃, generating a new
effect" . If the resultant executionE" satisÞes the store contract! "

(i.e.,E |= ! "), then we say that the store hasenforcedthe contract
! " in the executionE". With help of the operational semantics, we
now state the soundness of contract enforcement as follows:

Theorem 4(Soundness of Contract Enforcement). Let ! be a well-
formed contract of a replicated data type operationop, and let#
denote the consistency class of! as determined by the contract
classiÞcation scheme. For all well-formed execution statesE, E"

such thatE, ,op, #-; $. ⌃
!
/0 E", $. ⌃, if E" |= ! " ["/ "̂], then

E" |= ! ["/ "̂]

The theorem states that if a data store correctly enforces! sc,
! cc, and! ec contracts in all well-formed executions, then the same
store, extended with the classiÞcation scheme shown in Figure 6,
can enforce all well-formedQUELEA contracts. The proof of the
theorem is given in the supplementary material4.

4 The supplementary material also provides the concrete reduction rules for
enforcing the consistency classes.

5. Transaction Contracts
While contracts on individual operations offer the programmer
object-level declarative reasoning, real-world scenarios often in-
volve operations that span multiple objects. In order to address this
problem, several recent systems [2, 9, 26] have proposed eventually
consistent transactions in order to compose operations on multiple
objects. However, given that classical transaction models such as
serializability and snapshot isolation require inter-replica coordi-
nation, these systems espousecoordination-free transactionsthat
remain available under network partitions, but only provide weaker
isolation guarantees. Coordination-free transactions have intricate
consistency semantics and widely varying runtime overheads. As
with operation-level consistency, the onus is on the programmer to
pick the correct transaction kind. This choice is further complicated
by consistency semantics of individual operations.

5.1 Syntax and Semantics Extensions

QUELEA automates the choice of assigning the correct and most
efÞcient transaction isolation level. Similar to contracts on individual
operations, the programmer associates contracts with transactions,
declaratively expressing its consistency speciÞcation. We extend the
contract language with a new term under quantiÞer-free propositions
- txn S1 S2, whereS1 andS2 are sets of effects, and introduce a
new primitive equivalence relationsametxn that holds for effects
from the same transaction.txn{ a, b}{ c, d} is just syntactic sugar for
sametxn(a, b) ! sametxn(c, d) ! Â sametxn(a, c), wherea andb
considered to belong to thecurrenttransaction.

We assume that operations not part of any transaction belong to
their own unique transaction. While transactions may have varying
isolation guarantees, we make the standard assumption that all
transactions provide atomicity. Hence, we include the following
axiom in�:

" a, b, c.txn{ a}{ b, c} ! sameobj(b, c) ! vis(b, a) # vis(c, a)

The semantics of this contract is illustrated in Figure 8(a).

5.2 Transactional Bank Account

In order to illustrate the utility of declarative reasoning for trans-
actions, consider an extension of our running example to use two
accounts (objects) Ð current (c) and savings (s). Each account pro-
vides operationswithdraw , deposit andgetBalance , with the
same contracts as deÞned previously. We consider two transactions
Ðsave(amt) , which transfersamt from current to savings, and
totalBalance , which returns the sum of the balances of individ-
ual accounts. Our goal is to ensure thattotalBalance returns the
result obtained from a consistent snapshot of the object states. The
QUELEA code for the transactions is given below:

save amt =
x # $(classify " sv)
atomically x $ do

b # withdraw c amt
when b $ deposit s amt

totalBalance =
x # $(classify " tb)
atomically x $ do

b1 # getBalance c
b2 # getBalance s
return b1 + b2

! sv and! tb are the contracts on the corresponding transactions.
The functionclassify assigns the contractsstatically to one of
the transaction isolation levels offered by the store;$() is meta-
programming syntax for splicing the result into the program. The
atomically construct invokes the enclosing operations at the given
isolation levelx, ensuring that the effects of the operations are made
visible atomically.

While making both transactions serializable would ensure cor-
rectness, distributed stores rarely offer serializable transactions since
it is unavailable and hinders scalability [2]. As we will see, these

x.b x.c

Txn 2
x.a

vis vis

Txn 1

(a) Atomicity

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b
so

(b) Monotonic
Atomic View

x.c y.d

Txn 2
x.a

vis vis

Txn 1

y.b

(c) Repeatable
Read

Figure 8: Semantics of transaction contracts.x andy are distinct
objects. The dotted line represents the visibility requested by the
contracts.

transactions can be satisÞed with much weaker isolation guaran-
tees. Despite the atomicity offered by the transaction, anomalies
are still possible. For example, the twogetBalance operations in
totalBalance transactions might be served by different replicas
with distinct set of committedsave transactions. If the Þrst(second)
getBalance operation witness asave transaction that is not wit-
nessed by the second(Þrst)getBalance operation, then the balance
returned will be less(greater) than the actual balance. It is not imme-
diately apparent which weakest isolation guarantee will be sufÞcient
to prevent the anomaly.

Instead,QUELEA requires the programmer to simply state
the consistency requirement as a contract. Since we would like
both thegetBalance operations to witness the same set ofsave
transactions, we deÞne the constraint ontotalBalance transaction
! tb as:

! tb = " a : getBalance , b : getBalance ,
(c : withdraw $ deposit), (d : withdraw $ deposit).
txn{ a, b}{ c, d} ! vis(c, a) ! sameobj(d, b) # vis(d, b)

The key idea in the above deÞnition is that thetxn primitive allows
us to relate operations on different objects.

Thesave transaction only needs to ensure that the two writes
it performs are made visible atomically. Since this is ensured
by combining them in a transaction,save does not require any
additional constraints, and! 1 is simplytrue.

5.3 Coordination-free Transactions

In order to illustrate the utility of transaction contract classiÞcation,
we identify three well-understood coordination-free transaction se-
mantics Ð Read Committed (RC) [7], Monotonic Atomic View
(MAV) [2] and Repeatable Read (RR) [7], and illustrate the classiÞ-
cation strategy. Our technique can indeed be applied to a different
isolation level lattice.

A transaction with ANSI RC semantics only witnesses commit-
ted operations. Let us assume that a replica will buffer transactional
updates until all the updates from the same transaction are available
at that replica. Once all the updates from a transaction are available,
the buffered updates are made visible to subsequent client requests.
This ensure atomicity of transactions. Importantly, RC does not
entail any other guarantees. As a result, a store implementing RC
does not require inter-replica coordination. We can express RC as
follows:

! rc = " a, b, c.txn{ a}{ b, c} ! sameobj(b, c)
! vis(b, a) # vis(c, a)

Notice that the above deÞnition is the same as the atomicity guar-
antee of transaction described in ¤ 5.1. Thesave is an example for
RC transaction.

MAV semantics ensures that if some operation in a transaction
T1 witnesses the effects of another transactionT2, then subsequent

Quelea Replicated Store

O! -the-shelf Distributed Store ¥ O! -the-shelf store
¥ Failure handling
¥ Persistence (on-disk)
¥ Eventual consistency

¥ So" -state (in-mem)
¥ Datatype operations
¥ Summarization
¥ Stronger consistency

select insert

Shim Layer (RDTs)

Clients

obj.oper(args)

res Business Logic
(incl. Txns)

REST API

Figure 9: Implementation Model.

operations inT1 will also witness the effects ofT2. MAV semantics
is useful for maintaining the integrity of foreign key constraints,
materialized views and secondary updates [2]. In order to implement
MAV, a store only needs to keep track of the set of transactions
St witnessed by the running transaction, and before performing
an operation at some replica, ensure that the replica includes all
the transactions inSt . Hence, MAV is coordination-free. MAV
semantics is captured with the following contract:

! mav = " a, b, c, d.txn{ a, b}{ c, d} ! so(a, b) ! vis(c, a)
! sameobj(d, b) # vis(d, b)

whose semantics is illustrated in the Figure 8(b).
ANSI RR semantics requires that the transaction witness a

snapshot of the data store state. Importantly, this snapshot can be
obtained from any replica, and hence RR is coordination-free. An
example for such a transaction is thetotalBalance transaction.
The semantics of RR is captured by the following contract:

! rr = " a, b, c, d.txn{ a, b}{ c, d} ! vis(c, a)
! sameobj(d, b) # vis(d, b)

whose semantics is illustrated in the Figure 8(c).

5.4 ClassiÞcation

Similar to operation-level contracts, with respect to) relation, the
coordination-free transaction semantics described here form a total
order: ! rc) ! mav) ! rr . The transaction classiÞcation is also
similar to the operation-level contract classiÞcation presented in
Figure 6; given a contract! on a transaction, we start from the
weakest transaction contract! rc, and progressively compare its
strength to the known transaction contracts until we Þnd a isolation
level under which! can be safely discharged. Otherwise, we report
a type error.

6. Implementation
QUELEA is implemented as a shallow extension of GHC Haskell
and runs on top of Cassandra, an off-the-shelf eventually consistent
distributed data (or backing) store responsible for all data man-
agement issues (i.e., replication, fault tolerance, availability, and
convergence). Template Haskell is used to implement static contract
classiÞcation, and proof obligations are discharged with the help
of the Z3 [30] SMT solver. Figure 9 illustrates the overall system
architecture.

Replicated data types and various consistency semantics are
implemented and enforced in theshim layer. Our implementation
supports eventual, causal, and strong consistency for data type
operations, and RC, MAV, and RR semantics for transactions. This
functionality is implemented entirely on top of the standard interface
exposed by Cassandra. From an engineering perspective, leveraging
an off-the-shelf data store enables an implementation comprising
roughly only 2500 lines of Haskell code, which is packaged as a
library.

m

e1 e2 e3

 atomically {

 o1.oper1(v1); //Emits effect e1

 o2.oper2(v2); //e2

 o3.oper3(v3); //e3

 }

m

e1 e2

During transaction execution After transaction completion

Figure 10: Implementing atomicity semantics. Dotted circle repre-
sents effects not yet inserted into the backing store.

6.1 Operation Consistency

The shim layer maintains a causally consistent in-memory snapshot
of a subset of objects in the backing store, by explicitly tracking
dependencies introduced between effects due to visibility, session
and same transaction relations. Dependence tracking is similar to the
techniques presented in [3] and [20]. Because Cassandra provides
durability, convergence, and fault tolerance, each shim layer node
simply acts as a soft-state cache, with no inter-node communication,
and can safely be terminated at any point. Similarly, new shim layer
nodes can be spawned on demand.

Each effect generated as a result of an effectful operation on
an object inserts a new row(o, e, txn, val, deps) into the backing
store, whereo ande are object anduniqueeffect identiÞers,txn
is an optional transaction identiÞer, andval is the value associated
with the effect (eg:Withdraw 50). deps is the set of identiÞers
of dependenciesof this operation and is deÞned asdeps(e) =
{ e1 | vis(e1, e) ! Â (1e2.vis(e1, e2) ! vis(e2, e))} . At any shim
layer node, an effect is included only if all of its dependencies are
also included in that node. This ensures that the state maintained by
the shim layer node is causally consistent. Our dependence tracking
strategy ensures thatQUELEA does not track every effect as the
number of writes in the system grows.

The shim layer nodes periodically fetch updates from the back-
ing store for eventually consistent operations, and on-demand for
causally consistent and strongly consistent operations. Strongly con-
sistent operations are performed after obtaining exclusive leases
on objects. The lease mechanism is implemented with the help of
CassandraÕs support for conditional updates and expiring columns.

6.2 Transactions

Cassandra does not provide general-purpose transactions. Since
the transaction guarantees provided byQUELEA are coordination-
free [2], we realize efÞcient implementations by explicitly tracking
dependencies between operations and transactions. Importantly,
the weaker isolation semantics of transactions inQUELEA permit
transactions to be discharged if at least one shim layer node is
reachable.

QUELEA implements atomic visibility by exploiting shim layer
causality guarantee Ð an effect is included only if all the effects
if depends on are also included. Consider the example given in
Figure 10. For every transaction inQUELEA, we instantiate a special
transaction marker effectm. But importantly, do not insert into
the backing store.m is included as a dependence to every effect
generated in the transaction. In the Þgure, the graph on the left
shows the state of the store in the middle of a transaction. Each
circle represents an effect. The dotted circle indicates that the effect
has been instantiated, but has not yet been inserted into the store.

summarize [o1,o2,o3] = [n1,n2]

o1 o2

o3

Before summarization

o1 o3o2

During summarization

sn2 n2

After summarization, before deletion

o1 o3o2

sn2 n2

Figure 11: Summarization in the backing store. Dotted circle
represents effects not yet inserted into the backing store.

Since the causally preceding effectm has not yet been written to the
store, no operation will witnesse1 ande2 while the transaction in
progress. After the transaction has Þnished execution, we insertm
into the backing store, marking all the effects from the transactions
as a dependence form. Now any replica which includes one of the
effects from the transaction must includem, and transitively must
include every effect from the transaction. This ensures atomicity
and satisÞes the RC requirement.

The above scheme prevents a transaction from witnessing its
own effects. This might conßict with the causality requirement
on the operations. Hence, transactions piggy-back the previous
effects from the same transaction for each request. MAV semantics
is implemented by keeping track of the set of transaction markersM
witnessed by the transaction, and before performing an operation at
some replica, ensuring thatM is a subset of the transaction markers
included at that replica. If not, the missing effects are synchronously
fetched. RR semantics is realized by capturing a optimized snapshot
of the state of some replica; each operation from an RR transaction
is applied to this snapshot state. Any generated effects are added to
this snapshot.

6.3 Summarization

We utilize thesummarize function (¤ 3.1.1) to summarize the object
state both in the shim layer node and the backing store, typically
when the number of effects on an object crosses a tunable threshold.
Shim layer summarization is straight-forward; a summarization
thread takes the local lock on the cached object, and replaces its
state with the summarized state. The shim layer node only remains
unavailable for that particular object during summarization (usually
a few milliseconds).

Performing summarization in the backing store is more compli-
cated since the whole process needs to be atomic from a clientÕs
perspective, but Cassandra does not provide multi-row transactions.
Summarization in the backing store involves deleting previously
inserted rows and inserting new rows, where each row corresponds
to an effect. It is essential that concurrent client operations are per-
mitted, but are not allowed to witness the intermediate state of the
summarization process.

To this end, we adopt a novel summarization strategy that builds
on the causality property of the store. Figure 11 illustrates the
summarization strategy. Suppose the original set of effects on an
object areo1, o2 ando3. When summarized, the new effects yielded
aren1 andn2. We Þrst instantiate a summarization markers, and
similar to transaction marker, we do not insert it into the store
immediately. We insert the new effectsn1 and n2, with strong
consistency, includings as a dependence. Sinces is not yet in the
store, the new effects are not made visible to the clients. Then we
inserts with strong consistency, including the original effectso1,
o2 ando3 as dependence. Strongly consistent insertions ensure that
a shim layer node witnessings on some object must also witnessn1
andn2 on the same object. A shim layer node which witnesses all
the effects removes the original effects from its cache since they are
superseded by the new effects. Finally, the old effects are deleted

Table 1: The distribution of classiÞed contracts. #T refers to the
number of tables in the application. The columns 4-6 (7-9) represent
operations (transactions) assigned to this consistency (isolation)
level.

Benchmark LOC #T EC CC SC RC MAV RR
LWW Reg 108 1 2 2 2 0 0 0

DynamoDB 126 1 3 1 2 0 0 0
Bank Account 155 1 1 1 1 1 0 1
Shopping List 140 1 2 1 1 0 0 0

Online store 340 4 9 1 0 2 0 1
RUBiS 640 6 14 2 1 4 2 0

Microblog 659 5 13 6 1 6 3 1

from the backing store. This process ensures that clients either
witness the old or the new effects, but not both; the summarization
process appears to be atomic from the clients perspective.

7. Evaluation
We present an evaluation study of our implementation, report con-
tract proÞles of benchmark programs, and illustrate the performance
beneÞts of Þne-grained consistency classiÞcation on operations and
transactions. We also evaluate the impact of the summarization. We
have implemented the following applications, which includes in-
dividual RDTs as well as larger applications composed of several
RDTs:

¥ LWW register : A last-write-wins register that provides read and
write operations, where the read returns the value of the latest
write.

¥ DynamoDB register: An integer register that allows eventual
and strong puts and gets, conditional puts, increment and decre-
ment operations.

¥ Bank account: Our running example.

¥ Shopping list: A collaborative shopping list that allows concur-
rent addition and deletion of items.

¥ Online store: An online store with shopping cart functionality
and dynamically changing item prices. The checkout process
veriÞes that the customer only pays the accepted price.

¥ RUBiS: An eBay-like auction site [23]. The application allows
users to browse items, bid for items on sale, and pay for items
from a wallet modeled after a bank account.

¥ Microblog: A twitter-like microblogging site, modeled after
Twissandra [29]. The application allows adding new users,
adding and replying to tweets, following, unfollowing and
blocking users, and fetching a userÕs timeline, userline, followers
and following.

The distribution of contracts in these applications is given in
Table 1. We see that majority of the operations and transactions are
classiÞed as eventually consistent and RC, respectively. Operation
contracts are used to enforce integrity and visibility constraints on
individual Þelds in the tables. Transactions are mainly used to con-
sistently modify and access related Þelds across tables. InQUELEA,
the contract classiÞcation process is completely performed at com-
pile time and has no overheads at runtime. The proof obligations
associated with contract classiÞcation is discharged through the Z3
SMT Solver. Across our benchmarks, classifying a contract took
11.5 milliseconds on average.

For our performance evaluation, we deployQUELEA applications
in clusters, where each cluster is composed of Þve fully replicated

Cassandra replicas within the same datacenter. We instantiate one
shim layer node co-located on the same VM as a Cassandra replica.
Clients are instantiated within the same data center as the store,
and run transactions. We deploy each cluster and client node on
anc3.4xlarge Amazon EC2 instance. We call this a1DCconÞg-
uration. For our geo-distributed experiments (2DC), we instantiate
2 clusters, each with Þve nodes, and place the clusters on US-east
(Virginia) and US-west (Oregon) locations. The average inter-region
latency was 85ms.

Figure 12(a) shows throughput vs. latency of operations in the
bank account example as we increase the number of clients in a
1DC conÞguration. Our client workload was generated using the
YCSB benchmark [12]. The benchmark uniformly chooses from
100,000 keys, where the operation spread was 25% withdraw, 25%
deposit and 50% getBalance, which corresponds to the default 50:50
read:write mix in YCSB. We increased the number of clients from
128 to 1024, and each experiment ran for 180 seconds.

The lines marked EC and CC correspond to all operations
(including withdraw) being assigned EC and CC consistency
levels. These levels compromise correctness aswithdraw has to
be an SC operation. The SC line corresponds to a conÞguration
where all operations are strongly consistent; this ensures application
correctness, at the cost of performance.QUELEA corresponds to our
implementation, which classiÞes operations based on their contract
speciÞcations. With 512 clients, theQUELEA implementation was
within 41% of the latency and 18% of the throughput of EC, whereas
SC operations had 162% higher latency and 52% lower throughput
than EC operations. Observe that there is a point in each case
after which the latency increases while the throughput decreases;
these correspond to points where the store becomes saturated
with client requests. In a2DCconÞguration (not shown here), the
average latency of SC operations with 512 clients increased by 9.4(
due to the cost of geo-distributed coordination, whereasQUELEA
operations were only 2.2(slower, mainly due to the increased cost
of withdraw operations. Importantly, the latency ofgetBalance
anddeposit remained almost the same, illustrating the beneÞt of
Þne-grained contract classiÞcation.

We compare the performance of different transaction isolation
level choices in Figure 12(b) using the LWW register. The numbers
were obtained under a 1DC conÞguration. The YCSB workload
was modiÞed to issue 10 operations per transaction, with a default
50:50 read:write mix. Each operation is assumed to be eventually
consistent. NoTxn corresponds to a conÞguration that does not
use transactions. Compared to this, RC is only 12% shower in
terms of latency with 512 clients, whereas RR is 2.3X slower. The
difference between RC and NoTxn is due to the meta-data overhead
of recording transaction information in the object state. For RR
transactions, the cost of capturing and maintaining a snapshot is the
biggest source of overhead.

We also compared (not shown) the performance of EC LWW
operations directly against Cassandra, which uses last-writer-wins
as the only convergence semantics. While Cassandra provides no
stronger-than-eventual consistency properties,QUELEA was within
30%(20%) of latency(throughput) of Cassandra with 512 clients,
supporting our thesis that programmers only have to incur relatively
low overhead for a more expressive programming model which
provides stronger provable consistency guarantees.

Figure 12(c) compares theQUELEA implementation of RUBiS in
a 1DCconÞguration against a single replica (NoRep) and a strongly
replicated (StrongRep)1DCdeployment. The benchmark uses the
default RUBiS bidding mix, which has 15% read-write interactions,
which is representative of the auction workload. Without replication,
NoRep trivially provides strong consistency. However, this deploy-
ment does not scale beyond 1750 operations per second. Strong
replication offers better throughput at the cost of greater latency due

to inter-replica coordination. TheQUELEA deployment offers the
beneÞt of replication, while only paying the cost of coordination
when necessary.

Finally, we study the impact of summarization in Figure 12(d).
We use 128 clients and a singleQUELEA replica, with all clients
operating on thesameLWW register to stress test the summarization
mechanism. The shim layer cache (memory) is summarized every
64 updates, while the updates in the backing store (disk) are sum-
marized every 4096 updates. Each point in the graph represents the
average latency of the previous 1000 operations. Each experiment is
run for one minute. Without summarization, the average latency of
operations increases exponentially to almost one second, and only
13K operations were performed in a minute. Since every operation
has to reduce over the set of all previous operations, operations take
increasingly more time to complete since they must contend with
an ever growing set. With summarization only in memory, perfor-
mance still degrades due to the cost of fetching all previous updates
from the backing store into the shim layer. Fetching the latest up-
dates from the backing store is essential for SC operations. With
summarization enabled on both disk and memory, latency does not
increase over time, and the implementation realizes throughput of
67K operations/minute.

8. Related Work
Operation-based RDTs have been widely studied in terms of their
algorithmic properties [10, 24], and several systems utilize this
model to construct distributed data structures [5, 16, 22]. These
systems typically propose to implement the datatypes directly over
a cluster of nodes, and only focus on basic eventual consistency.
Hence, these systems implement custom solutions for durability and
fault-tolerance.QUELEA realizes RDTs stronger consistency models
on top of off-the-shelf eventually consistent distributed stores. In
this respect,QUELEA is similar to [3] where causal consistency is
achieved through a shim layer on Cassandra, which explicitly tracks
and enforces dependencies between updates. However, [3] does not
support user-deÞned RDTs, automatic contract classiÞcation and
transactions.

Since eventual consistency alone is insufÞcient to build cor-
rect applications, several systems [17, 22, 28] propose a lattice of
stronger consistency levels. Similarly, traditional database process-
ing systems [7] and their replicated variants [2] propose weaker
isolation levels for performance. In these systems, the onus is on
the developer to choose the correct consistency(isolation) level for
operations(transactions).QUELEA relieves the developer of this bur-
den, and instead expects contracts expressing declarative visibility
requirements.

Our contract language and system model is inspired by the
axiomatic description of RDT semantics proposed by [10]. While
they use axioms for formal veriÞcation of correctness of an RDT
implementation, we utilize them as a means for the user to express
the desired consistency guarantees in the application. Operational
semantics ofQUELEA (described in the accompanying tech report [?
]) describe an operational manifestation of our system model.
[11] also presents an operational model of a replicated data store
that is based on the abstract system model presented in [10].
Their claims about the expressivity and practicality of the system
model vindicate ours. However, both differ in the way they aim
to empower the application programmer. In [11], they expose
their operational model to the application programmer, along with
primitives, such aspush , pull and fetch , that make it easy
to implementthe required consistency and isolation guarantees.
In contrast,QUELEA completely abstracts its operational model,
and instead relies on contract classiÞcation tochooseappropriate
consistency and isolation levels. Similar to [10] and [11], our system
model does not incorporate real (i.e., wall-clock) time. Hence, our

�� �� �� �� �� �� �� �� �� ��
�7�K�U�R�X�J�K�S�X�W�����;�������������R�S�V���V��

��

����

����

����

����

������

������

������

������

������

�/�
D

�W
�H

�Q
�F

�\�
���

�P
�V

�� �(�&

�&�&

�6�&

�4

(a) Bank account

�� �� �� �� �� �� �� �� �� ��
�7�K�U�R�X�J�K�S�X�W�����;�������������R�S�V���V��

��

����

����

����

����

������

������

������

������

������

�/�
D

�W
�H

�Q
�F

�\�
���

�P
�V

�� �1�R�7�[�Q

�5�&

�0�$�9

�5�5

(b) LWW transactions

�� �� �� �� �� �� �� ��
�7�K�U�R�X�J�K�S�X�W�����;�������������R�S�V���V��

��

����

����

����

����

������

������

������

������

������

�/�
D

�W
�H

�Q
�F

�\�
���

�P
�V

�� �4�X�H�O�H�D

�1�R�5�H�S

�6�W�U�R�Q�J�5�H�S

(c) RUBiS bidding mix

�� �� �� �� �� �� �� ��
�2�S�H�U�D�W�L�R�Q�V�����;����������������

��

��

��

��

��

����

�/�
D

�W
�H

�Q
�F

�\�
���

�;�
���

���
���

�P
�V

��

�1�R���6�X�P

�0�H�P���2�Q�O�\

�0�H�P���	���'�L�V�N

(d) Impact of summarization

Figure 12: Quelea Performance.

contract language cannot describe store semantics such as recency
or bounded-staleness guarantees offered by certain stores [28].

Several conditions have been proposed to judge whether an op-
eration on a replicated data object needs coordination or not. [1]
deÞneslogical monotonicityas a sufÞcient condition for coordi-
nation freedom, and proposes a consistency analysis that marks
code regions performing non-monotonic reasoning (eg: aggrega-
tions, such asCOUNT) as potential coordination points. [4] and [18]
deÞneinvariant conßuenceandinvariant safety, respectively, as con-
ditions for safely executing an operation without coordination. [18]
also proposes a program analysis that conservatively marks certain
operations asblue(coordination not required), while marking the
remaining asred (coordination required). [6] requires programmers
to declare application semantics, and the desired application-speciÞc
invariants as formulas in Þrst-order logic. It performs static analysis
on these formulas to determineI -offender sets - sets of operations,
which, when performed concurrently, result in violation of one or
more of the stated invariants. For each offending set of operation, if
programmer chooses invariant-violation avoidance over violation
repair, the system employs various techniques, such as escrow reser-
vation, to ensure that the offending set of operations are effectively
serialized. Unlike QUELEA, these works focus on a coarse-grained
classiÞcation of consistency as eventual or strong, and do not focus
on Þner-grained transaction isolation levels. However, the analyses
that some of them propose relieve programmers of the burden to
tag operations with consistency levels. Indeed, we do consider auto-
matic inference of consistency contracts from application-speciÞc
integrity constraints as the next step for QUELEA.

9. Conclusions
This paper presentsQUELEA, a shallow Haskell extension for
declarative programming over ECDS. The key idea underlying
QUELEAÕs design is the automatic classiÞcation of Þne-grained
consistency contracts on operations and distributed transactions
with respect to the consistency and isolation levels offered by the
store. Our contract language is carefully crafted from a decidable
subset of Þrst-order logic, enabling the use of automated veriÞcation
tools to discharge the proof obligations associated with contract
classiÞcation. We realize an instantiation ofQUELEA on top of off-
the-shelf distributed store, Cassandra, and illustrate the beneÞt of
Þne-grained contract classiÞcation by implementing and evaluating
several scalable applications.

References
[1] P. Alvaro, N. Conway, J. Hellerstein, and W. R. Marczak. Consistency

Analysis in Bloom: a CALM and Collected Approach. InCIDR
2011, Fifth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, pages
249Ð260, 2011. URLhttp://www.cidrdb.org/cidr2011/
Papers/CIDR11_Paper35.pdf .

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Highly Available Transactions: Virtues and Limitations.
PVLDB, 7(3):181Ð192, 2013.

[3] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on Causal
Consistency. InProceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD Õ13, pages 761Ð772,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2037-5. doi:10.
1145/2463676.2465279 .

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. Coordination-Avoiding Database Systems.CoRR,
abs/1402.2237, 2014. URLhttp://arxiv.org/abs/1402.
2237 .

[5] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed
Data Structures over a Shared Log. InProceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP Õ13, pages
325Ð340, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8.
doi: 10.1145/2517349.2522732 .

[6] V. Balegas, N. Pregui•a, R. Rodrigues, S. Duarte, C. Ferreira,
M. Najafzadeh, and M. Shapiro. Putting the consistency back
into eventual consistency. InEuroSys, Bordeaux, France, Apr.
2015. URL http://lip6.fr/Marc.Shapiro/papers/
putting-consistency-back-EuroSys-2015.pdf .

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. OÕNeil, and P. OÕNeil.
A Critique of ANSI SQL Isolation Levels. InProceedings of the 1995
ACM SIGMOD International Conference on Management of Data,
SIGMOD Õ95, pages 1Ð10, New York, NY, USA, 1995. ACM. ISBN
0-89791-731-6. doi:10.1145/223784.223785 .

[8] E. Brewer. Towards Robust Distributed Systems (Invited Talk), 2000.

[9] S. Burckhardt, D. Leijen, M. FŠhndrich, and M. Sagiv. Eventually
Consistent Transactions. InProceedings of the 21st European Confer-
ence on Programming Languages and Systems, ESOPÕ12, pages 67Ð86,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28868-5.
doi: 10.1007/978-3-642-28869-2_4 .

[10] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
Data Types: SpeciÞcation, VeriÞcation, Optimality. InProceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL Õ14, pages 271Ð284, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8. doi:10.1145/
2535838.2535848 .

[11] S. Burckhardt, D. Leijen, J. Protzenko, and M. FŠhndrich. Global
sequence protocol: A robust abstraction for replicated shared state. In
ECOOP, Prague, Czech Republic, 2015. URLhttp://research.
microsoft.com/pubs/240462/gsp-tr-2015-2.pdf .

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. InProceedings
of the 1st ACM Symposium on Cloud Computing, SoCC Õ10, pages
143Ð154, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0.
doi: 10.1145/1807128.1807152 .

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
AmazonÕs Highly Available Key-value Store. InProceedings of Twenty-
Þrst ACM SIGOPS Symposium on Operating Systems Principles, SOSP

http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://dx.doi.org/10.1145/2463676.2465279
http://dx.doi.org/10.1145/2463676.2465279
http://arxiv.org/abs/1402.2237
http://arxiv.org/abs/1402.2237
http://dx.doi.org/10.1145/2517349.2522732
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://lip6.fr/Marc.Shapiro/papers/putting-consistency-back-EuroSys-2015.pdf
http://dx.doi.org/10.1145/223784.223785
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1145/2535838.2535848
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://research.microsoft.com/pubs/240462/gsp-tr-2015-2.pdf
http://dx.doi.org/10.1145/1807128.1807152

Õ07, pages 205Ð220, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-591-5. doi:10.1145/1294261.1294281 .

[14] S. Gilbert and N. Lynch. BrewerÕs conjecture and the feasibility of
consistent, available, partition-tolerant web services.SIGACT News,
33(2):51Ð59, June 2002. ISSN 0163-5700. doi:10.1145/564585.
564601 .

[15] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Con-
dition for Concurrent Objects.ACM Transactions on Programming
Languages and Systems, 12(3):463Ð492, July 1990. ISSN 0164-0925.
doi: 10.1145/78969.78972 .

[16] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured
Storage System.SIGOPS Operating Systems Review, 44(2):35Ð40, Apr.
2010. ISSN 0163-5980. doi:10.1145/1773912.1773922 .

[17] C. Li, D. Porto, A. Clement, J. Gehrke, N. Pregui•a, and R. Rodrigues.
Making Geo-replicated Systems Fast As Possible, Consistent when
Necessary. InProceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDIÕ12, pages 265Ð
278, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-
1-931971-96-6. URLhttp://dl.acm.org/citation.cfm?
id=2387880.2387906 .

[18] C. Li, J. a. Leit‹o, A. Clement, N. Pregui•a, R. Rodrigues, and
V. Vafeiadis. Automating the Choice of Consistency Levels in Repli-
cated Systems. InProceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATCÕ14, pages 281Ð
292, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-
1-931971-10-2. URLhttp://dl.acm.org/citation.cfm?
id=2643634.2643664 .

[19] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. DonÕt
settle for eventual: Scalable causal consistency for wide-area storage
with cops. InProceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP Õ11, pages 401Ð416, New York,
NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi:10.1145/
2043556.2043593 .

[20] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. InProceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation, nsdiÕ13, pages 313Ð328, Berkeley, CA, USA, 2013.
USENIX Association. URLhttp://dl.acm.org/citation.
cfm?id=2482626.2482657 .

[21] C. H. Papadimitriou. The Serializability of Concurrent Database
Updates.Journal of the ACM, 26(4):631Ð653, Oct. 1979. ISSN 0004-

5411. doi:10.1145/322154.322158 .

[22] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
mers. Flexible Update Propagation for Weakly Consistent Replication.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles, SOSP Õ97, pages 288Ð301, New York, NY, USA, 1997.
ACM. ISBN 0-89791-916-5. doi:10.1145/268998.266711 .

[23] RUBiS. Rice University Bidding System, 2014. URLhttp://
rubis.ow2.org/ . Accessed: 2014-11-4 13:21:00.

[24] M. Shapiro, N. Pregui•a, C. Baquero, and M. Zawirski. Conßict-
Free Replicated Data Types. In X. DŽfago, F. Petit, and V. Villain,
editors,Stabilization, Safety, and Security of Distributed Systems,
volume 6976 ofLecture Notes in Computer Science, pages 386Ð
400. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7.
doi: 10.1007/978-3-642-24550-3_29 .

[25] S. Sivasubramanian. Amazon dynamoDB: A Seamlessly Scalable Non-
relational Database Service. InProceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD Õ12, pages
729Ð730, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9.
doi: 10.1145/2213836.2213945 .

[26] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional Storage
for Geo-replicated Systems. InProceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP Õ11, pages 385Ð
400, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.
doi: 10.1145/2043556.2043592 .

[27] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. W. Welch. Session guarantees for weakly consistent repli-
cated data. InProceedings of the Third International Conference on
Parallel and Distributed Information Systems, PDIS Õ94, pages 140Ð
149, Washington, DC, USA, 1994. IEEE Computer Society. ISBN
0-8186-6400-2. URLhttp://dl.acm.org/citation.cfm?
id=645792.668302 .

[28] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh. Consistency-based Service Level Agreements for
Cloud Storage. InProceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP Õ13, pages 309Ð324, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi:10.1145/
2517349.2522731 .

[29] Twissandra. Twitter clone on Cassandra, 2014. URLhttp://
twissandra.com/ . Accessed: 2014-11-4 13:21:00.

[30] Z3. High-performance Theorem Prover, 2014. URLhttp://z3.
codeplex.com/ . Accessed: 2014-11-4 13:21:00.

http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dl.acm.org/citation.cfm?id=2643634.2643664
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dx.doi.org/10.1145/322154.322158
http://dx.doi.org/10.1145/268998.266711
http://rubis.ow2.org/
http://rubis.ow2.org/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
http://dl.acm.org/citation.cfm?id=645792.668302
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
http://twissandra.com/
http://twissandra.com/
http://z3.codeplex.com/
http://z3.codeplex.com/

	Introduction
	System Model
	Motivation
	RDT Specification
	Summarization

	Anomalies under Eventual Consistency
	Contracts
	From Contracts to Implementation

	Contract Language
	Syntax
	Semantics
	Capturing Store Semantics
	Contract Classification
	Generality of Contracts
	Soundness of Contract Classification

	Transaction Contracts
	Syntax and Semantics Extensions
	Transactional Bank Account
	Coordination-free Transactions
	Classification

	Implementation
	Operation Consistency
	Transactions
	Summarization

	Evaluation
	Related Work
	Conclusions

