
Fine-grained Distributed Consistency Guarantees with
Effect Orchestration

Kia Rahmani
Purdue University

USA
rahmank@purdue.edu

Gowtham Kaki
Purdue University

USA
gowtham@purdue.edu

Suresh Jagannathan
Purdue University

USA
suresh@cs.purdue.edu

ABSTRACT
Highly-available distributed applications typically require data
to be replicated over geo-distributed stores that offer weak
consistency guarantees by default. Unfortunately, undesir-
able behaviors may arise under weak consistency that can
violate application correctness, forcing designers to either
implement complex ad-hoc mechanisms to avoid these an-
omalies, or choose to run applications using stronger levels
of consistency, sacrificing performance. In this paper, we de-
scribe a lightweight runtime system that relieves developers
from having to make such tradeoffs. Instead, our approach
leverages declarative axiomatic specifications that reflect the
necessary constraints any correct implementation must sat-
isfy to guide a runtime consistency enforcement and monit-
oring mechanism. Experimental results show that the per-
formance of our (provably optimal and safe) automatically
derived fine-grained consistency enforcement mechanisms is
better than common store-offered consistency guarantees.

Keywords
Runtime Safety; Weak Consistency; Key-value stores; Haskell

1. INTRODUCTION
Historically, the de facto system abstraction for devel-

oping distributed programs has typically included ACID1

properties [17, 11]. However, for web-scale applications that
need to be“always-on”even in the presence of network parti-
tions, extensive synchronization overhead is often unaccept-
able [10]. Such applications are therefore usually designed
to tolerate certain inconsistencies and thus to be commonly
deployed on eventually consistent data stores.

In order to tolerate the level of inconsistency imposed by
eventual consistency (EC), researchers have introduced nu-
merous add-on consistency control mechanisms to equip ap-
plications with [22, 16, 2, 4, 5]. Unfortunately, such en-
forcement mechanisms are usually closely tied to the ap-
plication logic, confounding standardization and reusability,
while complicating application development and maintain-
ability.

In this paper, we propose an alternative approach to weak
consistency enforcement that circumvents the aforementioned
issues. syncope is a lightweight runtime verification system
for Haskell that allows application developers to take advant-
age of weak consistency without having to re-engineer their
code to accommodate anomaly preemption mechanisms, by

1Atomicity, Consistency, Isolation and Durability

declaratively admitting consistency requirements via a spe-
cification language.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our system model and in Section 3 we dis-
cuss different approaches on distributed consistency enforce-
ment which we collectively refer to as orchestration tech-
niques. In sections 4 and 5 we present evidence for real-
world applications requiring fine-grained consistency guar-
antees and experimental results suggesting the possibility of
performance gain in off-the-shelf datastores deploying fine-
grained consistency guarantees by using our tool. We present
our conclusions and a review of the related works in section
8.

2. SYSTEM MODEL
A data store in our system model is a collection of replicas

(#1,#2,...), each of which maintains a copy of a set of rep-
licated data object (x,y,...). Each data object includes and
maintains a state value (v,v′,...) and is equipped with a set
of operations (op,op′,...). Operations may read the state of
an object residing in a replica, and modify it by generating
update effects (η,η′,...). These effects are then asynchron-
ously sent to all other replicas where they are applied to the
state of the object instance at the recipient replica. Fig. 1(a)
and Fig. 1(b) illustrate this process.

x=v
x=v

x=v
x=v

client
1: op
2: op’

#1
#2

#4
#3

(a) A client op-
eration is routed
to replica #1.

x=v’
⌘⌘x=v’

x=v
x=v

client
1: op
2: op’

#1
#2

#4
#3

(b) An effect
is created and
propagated

x=v’
⌘⌘x=v’

x=v’
x=v’

client
1: op
2: op’

#1
#2

#4
#3

(c) Second oper-
ation is routed to
the replica #4

Figure 1: System Model

In order to admit all inconsistencies and anomalies associ-
ated with EC we assume no direct synchronization between
replicas when an operation is executed and as a result, con-
current and possibly conflicting updates can be generated at
different replicas. Conflict resolution is handled at the point
when an effect is applied to the current state of the object,
and must be designed to ensure that all replicas eventually
converge to the same value.

Clients in our model interact with the store by invoking
operations on objects. A session is a sequence of opera-
tions invoked by a particular client. Consequently, oper-
ations (and effects) can be uniquely identified by their ses-
sion id and their sequence number in that particular session,
which is used by replicas to record the set of all updates that
are locally applied. Due to traffic balancing requirements,
operations (even from the same session) might be routed to
different replicas (Fig. 1(a) and Fig. 1(c)).

Lastly, we define two relations over effects. Session or-
der (so) is an irreflexive, transitive relation that relates an
effect to all subsequent effects from the same session. Vis-
ibility (vis) is an irreflexive and asymetric relation that
relates an effect to all others that are influenced by it (i.e.,
witnesses its update) at the time of their generation. For ex-
ample, in Fig.1(c) vis (η,η′) holds, since η (the effect of op)
has already been delivered and applied to the replica #4,
when op’ is executed and thus has influenced the generation
of η’.

3. EFFECT ORCHESTRATION
In this section, we introduce syncope, a shim-layer for

off-the-shelf EC key-value stores, which extends the basic
consistency guarantees offered by them into a vast set of fine-
grained guarantees (Fig. 2). syncope’s design realizes two
fundamental classes of run-time procedures on effects and
operations, a combination of which is necessary to enforce
fine-grained consistency requirements in a message-passing
distributed system (such as our system model). In the fol-
lowing subsections, we will explain these techniques in detail.

EC ReplicaFi
lte

r

Bl
oc

ke
r

...E1E1 E2E2 EkEk

User
Operation

Figure 2: Shim Layer Layout

3.1 Blocking
syncope’s first consistency enforcement technique is called

blocking, which is a generalized mechanism to stall a user op-
eration until a certain set of necessary dependencies of that
operation become available at the underlying replica. syn-
cope relies on the underlying store for effect propagation
which guarantees the eventual delivery of all effects to all
replicas. Consequently, all user operations will eventually
proceed in an unpartitioned network2.

A use case of this technique is when two operations from
the same session are routed to different replicas. This can
sometimes be problematic, e.g. when a user deposits some
money into her bank account and then queries the balance.
If the effect of the deposit is not available at the replica ex-
ecuting the query, she might think that the bank has stolen
her money. In this scenario, the second operation should be
blocked, until the effect of the deposit operation is delivered
to the replica.

2Detailed and formal explaination of all mechanisms with
formal proofs of liveness, correctness and optimality can be
found the longer version of this paper [19]

The effects that an operation must wait for, are known
as the dependency set of that operation. In the following
parts we will introduce a formal language that allows users
to define a rich set of fine-grained dependencies for each
operation, in order to prevent undesired behaviors in their
application.

3.2 Filtration
Similar to other systems offering add-on consistency guar-

antees for EC key-value stores, syncope’s shim layer also
maintains a safe environment in the memory by periodic-
ally (or on-demand) reading from the underlying EC data-
base and adding the effects to the environment, only if the
dependencies of them have already been added to the en-
vironment. For example, [6, 21] enforce causal consistency
using similar shim layers, which maintain consistent caches
that are guaranteed to contain a causal cut of the global
execution history at any given point in time.

syncope generalizes this idea into a fine-grained filtration
mechanism which maintains multiple safe environments (E1,
E2,...), each for the use of a specific operation. Users then
can specify arbitrary consistency guarantees in a language
that is seeded with so and vis relations and define con-
straints on read operations that can be used to synthesize
appropriate filtration mechanisms.

For example, in a microblogging application where Bob
tweets two consecutive related messages B1 and B2, Alice
who is connected to a different replica, should not be able
to read Bob’s second message without witnessing the first.
Fig. 3 (left) shows this scenario on an unprotected EC sys-
tem which permits this undesired anomaly. The middle and
right parts of the figure, however, depict how a simple filtra-
tion mechanism can prevents Alice from seeing Bob’s second
message by allowing B2 into the memory only after B1 is also
available. Even though filtration imposes extra staleness on
the underlying database (e.g. in the middle part of Fig.3),
it is very effective in eliminating many anomalous behaviors
of applications running under EC.

vi
si
bl
e

op

Filter

B2B2

⌘1⌘1
⌘2⌘2

vi
si
bl
e

op

B2B2

⌘1⌘1
⌘2⌘2

vi
si
bl
e

op

Filter

⌘1⌘1

B1B1

B2B2

⌘2⌘2

Figure 3: Filteration

3.3 Specification Language
The formal syntax of our specification (or contract) lan-

guage, presented in Fig. 4, allows definitions of prop, a first-
order formula that establishes dependency relations between
effects, necessary to determine the effects an operation may
witness, under a given consistency level.

r ∈ rel.seed := vis | so | r ∪ r
R ∈ relation := r | R; r | null

π ∈ prop := ∀a. a R−→ η̂ ⇒ a
vis−→ η̂

ψ ∈ spec := π | π ∧ π

Figure 4: Specification Language

The language is seeded with so and vis, respectively repres-
enting session order and visibility relations over effects, and
defines dependency relation as a sequence3 of seeds, where

(a
r1;...;rk−−−−−→ b) is interpreted as ∃c.(a

r1;...;rk−1−−−−−−−→ c ∧ c rk−→ b).
null is the empty relation. Additionally, the language allows
conjunctions of propositions, spec, used to define a safe en-
vironment free from multiple inconsistencies. Our language
is crafted to capture all fine-grained weak consistency levels,
including well-known ones such as those explicated by Terry
et al. [22] (see e.g., Fig. 5).

Guarantee Contract

Read My Writes (RMW) ∀a.a so−→ η̂ ⇒ a
vis−→ η̂

Monotonic Writes (MW) ∀a.a so;vis−−−→ η̂ ⇒ a
vis−→ η̂

Monotonic Reads (MR) ∀a.a vis;so−−−→ η̂ ⇒ a
vis−→ η̂

Transitive Visibility (2VIS) ∀a.a vis;vis−−−→ η̂ ⇒ a
vis−→ η̂

Figure 5: Contract Examples

4. PRACTICALITY
In this section, we report on benchmark applications that

utilize fine-grained weak consistency requirements, express-
able in syncope’s specification language. Fig. 6 presents
seven such programs, that include library definitions of in-
dividual replicated data types as well as larger applications
consisting of multiple replicated types.

Each program supports various operations, some of which
have non-trivial consistency requirements. Out of the 38 op-
erations defined in these programs, there are 11 such opera-
tions, whose consistency requirements can be expressed as a
combination of four previously described consistency guar-
antees: Monotonic Reads (MR), Monotonic Writes (MW),
Read-My-Writes (RMW), and Transitive Visibility (2VIS).
The significant diversity among the consistency requirements
of these operations emphasizes the need for a multi-abled
environment that can understand and enforce fine-grained
consistency requirements efficiently. It is clearly not prac-
tical to hard code them all, due to their sheer number; even
if we ignore bespoke consistency requirements, there are 15
combinations of just the 4 aforementioned consistency guar-
antees.

Causal consistency (CC), the strongest of the weak con-
sistency guarantees, is often used as a metaphorical one-size
to fit all weak consistency requirements (including all the
benchmarks above). Notably, none of the operations we ana-
lyzed intrinsically requires CC and the undesired anomalous
behaviors could be prevented by combinations of weaker con-
sistency levels, which syncope can enforce exactly as they
are specified.

5. EVALUATION
syncope is implemented as an extension to a GHC Haskell

add-on called Quelea [21]. Quelea maintains a causally con-
sistent [6] cache on top of Cassandra, and all operations
whose contract is satisfied under causal consistency, are per-
formed witnessing that cache (even if they require weaker
guarantees.).

In syncope, we maintain a generic cache in which op-
erations maintained by the cache are associated with tags,
3syncope also allows using closures of seeds, which is omit-
ted here for simplicity.

Benchmark Consistency Description

Counter MR Monotonicly increasing counter
e.g. YouTubes’ watch count

DynamoDB RMW
Integer register allowing
various conditional puts
and gets

Online Store RMW
Online store with shopping
carts and modifiable
item prices

Bankaccount 2VIS ∧ RMW
Offering deposit,
withdraw and get
balance operations

Shopping List MW ∧ RMW
A shopping list with
concurrent adds and
deletes

Microblog MW, RMW A Twitter-like application
modeled after Twissandra [1]

Rubis RMW, RMW∧2VIS
eBay-like application with
browsing, supporting user
wallet

Figure 6: Fine-grained consistency requirement in
benchmark programs

and are allowed to witnesses only the subset of effects in
the cache that also have that tag (i.e. effects that are in the
logical cache associated with that operation). We implemen-
ted a dependency finder mechanism in syncope, that is used
to verify the presence of arbitrarily defined dependencies of
an effect in each logical cache. Consequently, syncope’s fil-
tration and blocking mechanisms are added to the runtime
system, which rely on this dependency finder to keep each
logical cache consistent according to its associated contract.

Considering the arbitrary length of the dependency rela-
tions that may be generated and the fact that verifying the
presence of dependencies for an effect might fail for an un-
bounded number of trials until all dependencies arrive, spe-
cial care must be taken to ensure performance does not grade
at scale. We implemented a number of techniques to improve
cache efficiency such as memoization that extends the binary
notion of dependency presence to the degree of dependency
presence (DDP) representing the maximum depth (or size)
of the dependencies of an effect, whose presence has already
been verified. Consequently, when verification fails, we can
avoid checking previously computed and known dependen-
cies when subsequent effects arrive. syncope’s runtime, by
performing periodic DDP refreshes, tries to assign larger
DDP values to each effect when more dependencies arrive
at the replica. The details of this technique, captured as an
operational semantics in available in the longer version of
this paper [19].

We have deployed syncope on a cloud cluster, consisting
of three fully replicated Cassandra replicas, running on sep-
arate machines within the same datacenter. Each machine
is instantiated with a syncope shim layer, that responds to
clients, which are instantiated on a VM co-located with one
of the replicas on a machine. We deploy the cluster on three
m4.4xlarge Amazon EC2 instances in the US-West (Ore-
gon) region, with an inter-machine communication time of
5ms.

Inter-replica communication in Cassandra uses TCP con-
nections, causing all messages to get delivered with no loss
and reordering, which is in practice, far more consistent
than EC, and masks out the performance gain from our fine-
grained consistency guarantees. Consequently, to simulate
a realistic and pure EC environment, we injected artificial
message losses in syncope’s shim layer, forcing random mes-
sages to be delayed for 1s, simulating messages losses in a
network with 600ms RTT.

Fig. 7(a) and 7(b) represent our experimental results, with

Latency in CC (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss CC - Take1 CC - Take2 CC - Take3 CC - Take4 CC - Take5 CC - Take6 CC - Take7 CC - Take8 CC - Take9 CC - Take10 CC - Avg

0 7ms 16ms 16ms 7ms 10ms 7ms 7ms 7ms 7ms 6ms 0.973761596

2 34ms 14ms 12ms 29ms 33ms 19ms 30ms 31ms 21ms 62ms 0.956276237333333

4 69ms 98ms 70ms 59ms 55ms 52ms 52ms 79ms 60ms 75ms 0.924200126

6 94ms 158ms 57ms 130ms 114ms 71ms 97ms 85ms 108ms 56ms 0.916165079333333

8 150ms 147ms 201ms 157ms 79ms 109ms 178ms 97ms 130ms 146ms 0.902917742

10 190ms 201ms 222ms 150ms 182ms 160ms 120ms 182ms 121ms 238ms 0.871551667333333

12 110ms 210ms 150ms 224ms 164ms 173ms 255ms 197ms 218ms 182ms 0.871206734

14 203ms 202ms 357ms 12ms 156ms 242ms 262ms 204ms 206ms 208ms 0.866238984

St
al

en
es

s
M

ea
su

re

0.8

0.85

0.9

0.95

1

Package Loss %

0 2 4 6 8 10 12 14

CV
MW
2VIS

Latency in RMW (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss RMW - Take1 RMW - Take2 RMW - Take3 RMW - Take4 RMW - Take5 RMW - Take6 RMW - Take7 RMW - Take8 RMW - Take9 RMW - Take10 RMW - Avg

0 8ms 7ms 7ms 6ms 7ms 10ms 9ms 8ms 7ms 20ms 0.975049035333333

2 20ms 15ms 29ms 19ms 7ms 17ms 8ms 6ms 8ms 34ms 0.968053423333333

4 54ms 45ms 7ms 34ms 67ms 35ms 51ms 21ms 9ms 20ms 0.95834452

6 29ms 46ms 34ms 49ms 48ms 74ms 36ms 44ms 44ms 26ms 0.944643605333333

8 28ms 33ms 83ms 68ms 45ms 79ms 81ms 103ms 40ms 32ms 0.933676471333333

10 107ms 80ms 58ms 48ms 67ms 116ms 127ms 67ms 52ms 79ms 0.933729010666667

12 93ms 50ms 95ms 97ms 88ms 82ms 83ms 103ms 103ms 80ms 0.9312551

14 84ms 137ms 101ms 80ms 112ms 72ms 111ms 106ms 150ms 96ms 0.917292477333333

Latency in MR (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss MR - Take1 MR - Take2 MR - Take3 MR - Take4 MR - Take5 MR - Take6 MR - Take7 MR - Take8 MR - Take9 MR - Take10 MR - Avg

0 9ms 10ms 8ms 8ms 7ms 7ms 8ms 7ms 8ms 9ms 0.997848305333333

2 8ms 20ms 57ms 26ms 14ms 22ms 39ms 17ms 19ms 25ms 0.997654716

4 29ms 29ms 59ms 16ms 58ms 42ms 47ms 66ms 19ms 35ms 0.996318111333333

6 40ms 40ms 50ms 62ms 44ms 58ms 58ms 63ms 56ms 80ms 0.998256336666667

8 84ms 108ms 83ms 128ms 62ms 50ms 78ms 114ms 65ms 93ms 0.995312508666667

10 88ms 41ms 108ms 144ms 97ms 114ms 90ms 105ms 107ms 56ms 0.999367666666667

12 114ms 102ms 130ms 97ms 108ms 84ms 149ms 126ms 107ms 84ms 0.989071320666667

14 137ms 137ms 99ms 115ms 224ms 102ms 134ms 141ms 118ms 154ms 0.993599488666666

La
te

nc
y

(m
s)

0

030

060

090

120

150

180

Clients

5 10 15 20 25 30 35 40 45 50

Handwritten
Syncope

La
te

nc
y

(m
s)

0

055

110

165

220

Package Loss %

0 2 4 6 8 10 12 14

CC
MR
RMW

(a) Latency

Latency in CC (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss CC - Take1 CC - Take2 CC - Take3 CC - Take4 CC - Take5 CC - Take6 CC - Take7 CC - Take8 CC - Take9 CC - Take10 CC - Avg

0 7ms 16ms 16ms 7ms 10ms 7ms 7ms 7ms 7ms 6ms 0.973761596

2 34ms 14ms 12ms 29ms 33ms 19ms 30ms 31ms 21ms 62ms 0.956276237333333

4 69ms 98ms 70ms 59ms 55ms 52ms 52ms 79ms 60ms 75ms 0.924200126

6 94ms 158ms 57ms 130ms 114ms 71ms 97ms 85ms 108ms 56ms 0.916165079333333

8 150ms 147ms 201ms 157ms 79ms 109ms 178ms 97ms 130ms 146ms 0.902917742

10 190ms 201ms 222ms 150ms 182ms 160ms 120ms 182ms 121ms 238ms 0.871551667333333

12 110ms 210ms 150ms 224ms 164ms 173ms 255ms 197ms 218ms 182ms 0.871206734

14 203ms 202ms 357ms 12ms 156ms 242ms 262ms 204ms 206ms 208ms 0.866238984

St
al

en
es

s
M

ea
su

re

0.8

0.85

0.9

0.95

1

Package Loss %

0 2 4 6 8 10 12 14

CV
MW
2VIS

Latency in RMW (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss RMW - Take1 RMW - Take2 RMW - Take3 RMW - Take4 RMW - Take5 RMW - Take6 RMW - Take7 RMW - Take8 RMW - Take9 RMW - Take10 RMW - Avg

0 8ms 7ms 7ms 6ms 7ms 10ms 9ms 8ms 7ms 20ms 0.975049035333333

2 20ms 15ms 29ms 19ms 7ms 17ms 8ms 6ms 8ms 34ms 0.968053423333333

4 54ms 45ms 7ms 34ms 67ms 35ms 51ms 21ms 9ms 20ms 0.95834452

6 29ms 46ms 34ms 49ms 48ms 74ms 36ms 44ms 44ms 26ms 0.944643605333333

8 28ms 33ms 83ms 68ms 45ms 79ms 81ms 103ms 40ms 32ms 0.933676471333333

10 107ms 80ms 58ms 48ms 67ms 116ms 127ms 67ms 52ms 79ms 0.933729010666667

12 93ms 50ms 95ms 97ms 88ms 82ms 83ms 103ms 103ms 80ms 0.9312551

14 84ms 137ms 101ms 80ms 112ms 72ms 111ms 106ms 150ms 96ms 0.917292477333333

Latency in MR (50 concurrent clients | 5 Objects | 50 Rounds)

% of package loss MR - Take1 MR - Take2 MR - Take3 MR - Take4 MR - Take5 MR - Take6 MR - Take7 MR - Take8 MR - Take9 MR - Take10 MR - Avg

0 9ms 10ms 8ms 8ms 7ms 7ms 8ms 7ms 8ms 9ms 0.997848305333333

2 8ms 20ms 57ms 26ms 14ms 22ms 39ms 17ms 19ms 25ms 0.997654716

4 29ms 29ms 59ms 16ms 58ms 42ms 47ms 66ms 19ms 35ms 0.996318111333333

6 40ms 40ms 50ms 62ms 44ms 58ms 58ms 63ms 56ms 80ms 0.998256336666667

8 84ms 108ms 83ms 128ms 62ms 50ms 78ms 114ms 65ms 93ms 0.995312508666667

10 88ms 41ms 108ms 144ms 97ms 114ms 90ms 105ms 107ms 56ms 0.999367666666667

12 114ms 102ms 130ms 97ms 108ms 84ms 149ms 126ms 107ms 84ms 0.989071320666667

14 137ms 137ms 99ms 115ms 224ms 102ms 134ms 141ms 118ms 154ms 0.993599488666666

La
te

nc
y

(m
s)

0

030

060

090

120

150

180

Clients

5 10 15 20 25 30 35 40 45 50

Handwritten
Syncope

La
te

nc
y

(m
s)

0

055

110

165

220

Package Loss %

0 2 4 6 8 10 12 14

CC
MR
RMW

(b) Staleness

Figure 7: Performance Comparison

a workload generated by 50 concurrent clients repeatedly
running sessions, each composed of three operations, where
operations uniformly choose from 5 objects, performed un-
der a specified consistency level. We increase the percentage
of delayed messages from 0 to 14. Each experiment ran for
100 repeated sessions per client. In addition to client per-
ceived latency, we also measure the staleness of operations,
which we define as the average ratio of the number of visible
effects, to the number of all available effects, when executing
an operation.

In the first set of experiments, we measure latency un-
der three different contracts, all implemented in syncope.
As expected, causal consistency and RMW experience re-
spectively the highest and the lowest performance loss as
the percentage of lost messages is increased. With only a
4% percent message loss rate, we see 17% higher latency
under an MR contract compared to RMW, and similarly
67% higher latency in CC compared to MR; with 10 percent
message loss, the numbers are increased to 18% and 87%.

Similarly, we repeated the experiment with 3 other con-
tracts to measure the staleness imposed by them. Here, a

causal visibility (CV) contract (i.e. ∀a.a (so∪vis)∗;vis−−−−−−−→ η̂ ⇒
a

vis−→ η̂), yields the most stale data when the percentage
of lost messages is increased, whereas staleness in MW is
the lowest and is barely affected. We report 3% (6%) differ-
ence between staleness of data under MW and 2VIS, and 4%
(7%) difference between 2VIS and CV, at four (ten) percent
message loss rate.

Our results are strong evidence for practicality of the im-
plementation of arbitrary weak consistency guarantees in
off-the-shelf EC key-value stores, which can greatly benefit
from losing the unnecessary reliable inter-replica connections
for certain applications.

6. RELATED WORKS AND CONCLUSION
Distributed data structures composed of operation-based

replicated data types (RDTs) [9, 20] have been utilized in
a number of real-world systems [7, 12]. However, these sys-
tems are developed without assuming any principled notions
of consistency, and thus have goals different from syncope.
Like [6], syncope’s focus is entirely on consistency manage-
ment, and leaves issues of liveness and durability manage-
ment to the underlying data store.

The specification of consistency requirements of replic-

ated data-objects have been studied in several works [14,
8, 3], where multiple sufficient conditions and analysis tech-
niques are proposed to detect potential coordination points
in programs to enforce different notions of consistency. syn-
copeshares similar goals, manifested within a lightweight
runtime enforcement mechanism that dynamically validates
fine-grained consistency specifications.

Numerous systems [15, 18, 23, 13, 6, 21] define and im-
plement various levels of consistency guarantees in order to
protect applications from anomalies admitted under EC. [13]
presents a verified implementation for a causally consist-
ent store, assuming a system model with session stickiness,
where unlike syncope, operations from a session are always
routed to the same replica. The idea of a causally consistent
shim layer on top of an off-the-shelf ECDS, is proposed in [6]
and is also utilized in [21], which offers three coarse-grained
levels of consistency. syncopeextends the shim layer in [21]
by maintaining multiple fine-grained weak consistency levels.

This paper presents syncope, a lightweight runtime mech-
anism and specification framework for enforcing fine-grained
consistency contracts in eventually consistent distributed
systems. Our design is provably optimal and safe, and exper-
imental results indicate that automatic consistency valida-
tion using the techniques described here outperforms ad hoc
manual solutions. We believe these results pave the way for
strengthening any off-the-shelf distributed data store with
consistency validation support for free.

7. REFERENCES
[1] twissandra.

https://github.com/twissandra/twissandra. Accessed:
2017-05-11.

[2] Ahamad, M., Neiger, G., Burns, J. E., Kohli, P.,
and Hutto, P. W. Causal memory: definitions,
implementation, and programming. Distributed
Computing 9, 1 (1995), 37–49.

[3] Alvaro, P., Conway, N., Hellerstein, J. M., and
Marczak, W. R. Consistency analysis in bloom: A
calm and collected approach. In In Proceedings 5th
Biennial Conference on Innovative Data Systems
Research (2011), pp. 249–260.

[4] Bailis, P., Davidson, A., Fekete, A., Ghodsi, A.,
Hellerstein, J. M., and Stoica, I. Highly available
transactions: Virtues and limitations. Proc. VLDB

Endow. 7, 3 (Nov. 2013), 181–192.

[5] Bailis, P., Fekete, A., Hellerstein, J. M.,
Ghodsi, A., and Stoica, I. Scalable atomic visibility
with ramp transactions. In Proceedings of the 2014
ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2014),
SIGMOD ’14, ACM, pp. 27–38.

[6] Bailis, P., Ghodsi, A., Hellerstein, J. M., and
Stoica, I. Bolt-on causal consistency. In Proceedings
of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 2013),
SIGMOD ’13, ACM, pp. 761–772.

[7] Balakrishnan, M., Malkhi, D., Wobber, T., Wu,
M., Prabhakaran, V., Wei, M., Davis, J. D.,
Rao, S., Zou, T., and Zuck, A. Tango: Distributed
data structures over a shared log. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 325–340.

[8] Balegas, V., Duarte, S., Ferreira, C.,
Rodrigues, R., Preguiça, N., Najafzadeh, M.,
and Shapiro, M. Putting consistency back into
eventual consistency. In Proceedings of the Tenth
European Conference on Computer Systems (New
York, NY, USA, 2015), EuroSys ’15, ACM,
pp. 6:1–6:16.

[9] Burckhardt, S., Gotsman, A., Yang, H., and
Zawirski, M. Replicated data types: Specification,
verification, optimality. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2014),
POPL ’14, ACM, pp. 271–284.

[10] Gilbert, S., and Lynch, N. Brewer’s conjecture and
the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33, 2
(June 2002), 51–59.

[11] Herlihy, M., and Wing, J. Linearizability: A
Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems
12, 3 (July 1990), 463–492.

[12] Lakshman, A., and Malik, P. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 2 (Apr. 2010), 35–40.

[13] Lesani, M., Bell, C. J., and Chlipala, A. Chapar:
Certified causally consistent distributed key-value
stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2016),
POPL ’16, ACM, pp. 357–370.

[14] Li, C., Leitão, J. a., Clement, A., Preguiça, N.,
Rodrigues, R., and Vafeiadis, V. Automating the
choice of consistency levels in replicated systems. In
Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2014), USENIX ATC’14, USENIX Association,
pp. 281–292.

[15] Li, C., Porto, D., Clement, A., Gehrke, J.,
Preguiça, N., and Rodrigues, R. Making
geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12,

USENIX Association, pp. 265–278.

[16] Lloyd, W., Freedman, M. J., Kaminsky, M., and
Andersen, D. G. Don’t settle for eventual: Scalable
causal consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2011), SOSP ’11, ACM, pp. 401–416.

[17] Papadimitriou, C. H. The serializability of
concurrent database updates. J. ACM 26, 4 (1979),
631–653.

[18] Petersen, K., Spreitzer, M. J., Terry, D. B.,
Theimer, M. M., and Demers, A. J. Flexible
update propagation for weakly consistent replication.
SIGOPS Oper. Syst. Rev. 31, 5 (Oct. 1997), 288–301.

[19] Rahmani, K., Kaki, G., and Jagannathan, S.
syncope: Automatic Enforcement of Distributed
Consistency Guarantees. Tech. rep., Purdue
University, DEPARTMENT OF COMPUTER
SCIENCE, 05 2017.

[20] Shapiro, M., Preguiça, N., Baquero, C., and
Zawirski, M. Conflict-free replicated data types. In
Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed
Systems (Berlin, Heidelberg, 2011), SSS’11,
Springer-Verlag, pp. 386–400.

[21] Sivaramakrishnan, K., Kaki, G., and
Jagannathan, S. Declarative programming over
eventually consistent data stores. In Proceedings of the
36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY,
USA, 2015), PLDI ’15, ACM, pp. 413–424.

[22] Terry, D. B., Demers, A. J., Petersen, K.,
Spreitzer, M., Theimer, M., and Welch, B. W.
Session guarantees for weakly consistent replicated
data. In Proceedings of the Third International
Conference on Parallel and Distributed Information
Systems (Washington, DC, USA, 1994), PDIS ’94,
IEEE Computer Society, pp. 140–149.

[23] Terry, D. B., Prabhakaran, V., Kotla, R.,
Balakrishnan, M., Aguilera, M. K., and
Abu-Libdeh, H. Consistency-based service level
agreements for cloud storage. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 309–324.

