
Bolt-On Strong Consistency: Specification, Implementation,
and Verification
NICHOLAS V. LEWCHENKO, University of Colorado Boulder, USA
GOWTHAM KAKI, University of Colorado Boulder, USA
BOR-YUH EVAN CHANG∗, University of Colorado Boulder, USA and Amazon, USA

Strongly-consistent replicated data stores are a popular foundation for many kinds of online services, but
their implementations are very complex. Strong replication is not available under network partitions, and so
achieving a functional degree of fault-tolerance requires correctly implementing consensus algorithms like Raft
and Paxos. These algorithms are notoriously difficult to reason about, and many data stores implement custom
variations to support unique performance tradeoffs, presenting an opportunity for automated verification tools.
Unfortunately, existing tools that have been applied to distributed consensus demand too much developer
effort, a problem stemming from the low-level programming model in which consensus and strong replication
are implemented—asynchronous message passing—which thwarts decidable automation by exposing the
details of asynchronous communication.

In this paper, we consider the implementation and automated verification of strong replication systems
as applications of weak replicated data stores. Weak stores, being available under partition, are a suitable
foundation for performant distributed applications. Crucially, they abstract asynchronous communication and
allow us to derive local-scope conditions for the verification of consensus safety. To evaluate this approach, we
have developed a verified-programming framework for the weak replicated state model, called Super-V. This
framework enables SMT-based verification based on local-scope artifacts called stable update preconditions,
replacing standard-practice global inductive invariants. We have used our approach to implement and verify a
strong replication system based on an adaptation of the Raft consensus algorithm.

CCS Concepts: • Software and its engineering→ Formal software verification; Distributed programming
languages; • Networks→ Protocol testing and verification.

ACM Reference Format:
Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang. 2025. Bolt-On Strong Consistency: Speci-
fication, Implementation, and Verification. Proc. ACM Program. Lang. 9, OOPSLA1, Article 137 (April 2025),
28 pages. https://doi.org/10.1145/3720502

1 Introduction
Replicated state is a common abstraction employed by distributed applications in which each
application node operates on the local replica of the application state while also propagating the
updates to the remote replicas. The Replicated State Machine model studied widely in the distributed
systems literature [Ailijiang et al. 2019; Lynch 1996; Schneider 1990] adopts strongly-consistent
replication, where updates are applied uniformly at all replicas in a linear order consistent with their
temporal order, i.e., their execution is linearizable [Herlihy andWing 1990]. This property simplifies
∗Bor-Yuh Evan Chang holds concurrent appointments at the University of Colorado Boulder and as an Amazon Scholar.
This paper describes work performed at the University of Colorado Boulder and is not associated with Amazon.

Authors’ Contact Information: Nicholas V. Lewchenko, University of Colorado Boulder, Boulder, USA, nicholas.lewchenko@
colorado.edu; Gowtham Kaki, University of Colorado Boulder, Boulder, USA, gowtham.kaki@colorado.edu; Bor-Yuh Evan
Chang, University of Colorado Boulder, Boulder, USA and Amazon, Seattle, USA, evan.chang@colorado.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART137
https://doi.org/10.1145/3720502

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

HTTPS://ORCID.ORG/0009-0001-0469-1991
HTTPS://ORCID.ORG/0000-0002-4189-3189
HTTPS://ORCID.ORG/0000-0002-1954-0774
https://doi.org/10.1145/3720502
https://orcid.org/0009-0001-0469-1991
https://orcid.org/0000-0002-4189-3189
https://orcid.org/0000-0002-1954-0774
https://orcid.org/0000-0002-1954-0774
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3720502

137:2 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

application programming by obviating the need to reason about concurrency. However, it comes at
the inevitable cost of increased latency, because preempting concurrency requires system-wide
coordination, which cannot be achieved within a bounded time on an unreliable network [Fischer
et al. 1985]. Furthermore, strong replication systems are unavailable under network partitions:
nodes must be blocked from making progress when network failures divide the system into disjoint
subnets [Gilbert and Lynch 2002].

The high cost of strong replication is unacceptable in many real-world distributed applications
that prioritize low latency and high availability. Such applications have come to adopt weakly-
consistent replication, which never blocks nodes from performing updates to their local replicas. As
a consequence, updates must be allowed to apply on remote replicas in different orders, possibly
violating linearizability. Despite this, weak replication has found use in a variety of distributed
applications ranging from e-commerce [DeCandia et al. 2007; Martyanov 2020] to collaborative
editors [Teixeira 2017; Wallace 2019], which establish weaker guarantees, such as convergence and
no lost writes. Several mostly-automated verification frameworks for these weaker properties have
been proposed in the last decade [Liu et al. 2020; Nagar and Jagannathan 2019; Zakhour et al. 2023].

Compared to weak replication, the strong replicated state model makes reasoning about applica-
tions easy: the application state behaves as a centralized database interface—a crucial property for
applications that maintain finite resources and must prevent double-spending bugs. Implementing
strong consistency efficiently, on the other hand, is extremely complex as it requires a careful design
that tolerates as many node and network failures as possible while orchestrating system-wide
consensus for each replicated operation. Researchers have proposed several fault-tolerant consen-
sus algorithms as the basis of strong replication implementations. These include the well-known
Paxos [Lamport 1998] and Raft [Ongaro and Ousterhout 2014] algorithms, as well as variants such
as Fast Paxos [Lamport 2006], Egalitarian Paxos [Moraru et al. 2013] and Flexible Paxos [Howard
et al. 2017]. While these provide a general solution, most distributed applications make unique
design choices that benefit from more specific performance and fault-tolerance optimizations. For
this reason, commodity distributed data stores tend to design and implement their own consensus
algorithm variations for their own specific use cases [Confluent 2024; Corbett et al. 2013; Grieger
2019; Junqueira et al. 2011; Schultz et al. 2021]. Regardless of their specific design choices, the
internal logic of these protocols is invariably complex to account for the possibility of failures at
each step of the execution, which makes reasoning about their correctness notoriously difficult.

To address the aforementioned problems, formal verification for distributed consensus algorithms
emerged as an active area of research. Several domain-specific languages and integrated verification
frameworks for distributed programming have emerged in the last decade [Kragl et al. 2020; Padon
et al. 2016; Sergey et al. 2017; Taube et al. 2018; Wilcox et al. 2015]. While they differ in their
choice of language-level abstractions and automation techniques, they adopt the same fundamental
approach to protocol specification and verification: inductive invariants on a global transition
system that represents a network of nodes and message queues. In practice, these invariants must
exhaustively detail the subtle relationships between elements of the system, such as the content
of messages in a queue and the value of their sender’s local state. Such invariants are hard to
identify [Padon et al. 2016] and have complex syntactic structure not amenable to automated
reasoning [Padon et al. 2017; v. Gleissenthall et al. 2019]. Despite such drawbacks, the low-level
approach to verification persists as protocols that orchestrate strong consistency are almost always
implemented on the low-level message-passing programming model.
Abstraction is the key to improving these implementation and verification practices. Weak

replication simplifies the distributed programming model by hiding the explicit mechanism of
communication between nodes, and yet it remains efficient for the implementation of general
distributed applications. Would it be to our benefit to implement strong replication systems as

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:3

applications of weak replicated stores, i.e., bolt on strong consistency? The compositional approach
to building replicated state abstractions is already a widely adopted practice. Conflict-free Replicated
Data Types (CRDTs) [Shapiro et al. 2011], which bring lock-free data structures to replicated state,
are often implemented on top of weak replicated stores that offer causal delivery, strengthening
that guarantee to strong eventual consistency [Brown et al. 2014; De Porre et al. 2023; Liu et al. 2020;
Nagar and Jagannathan 2019; Sivaramakrishnan et al. 2015; Zakhour et al. 2023]. Bailis et al. [2013]
further demonstrate that causal delivery itself can be implemented efficiently as a bolt-on shim layer
to a weaker replicated store, and Redmond et al. [2023] explores the verification of causal delivery
mechanisms. Why should the implementation of consensus algorithms for strong replication forgo
all these developments, returning to the full complexity of asynchronous message-passing?

In this paper, we extend the compositional approach to building replicated state abstractions from
weak consistency to strong consistency. In particular, we re-consider the underlying consensus
problem from first principles, with a weak, causally-consistent replication system as our underlying
model instead of asynchronous message-passing. The benefits of doing so, as we demonstrate, are
manifold. First, the replicated state model allows us to break the consensus verification problem
into two simpler proof obligations: monotonicity and commutativity. This decomposition is based
on the intuition that, in the context of a consensus protocol, if all replicas of the protocol state
(which contains within it the decision value) eventually converge, and a decision once made by
any replica cannot be reverted (i.e., it is monotonic), then it is inevitable that replicas will only ever
make decisions that agree, which is precisely the definition of consensus.

The second advantage of the replicated state systemmodel is that it abstracts away the complexity
of the underlying network layer, resulting in simpler verification conditions that support decid-
able automation. In particular, abstracting away the network layer eliminates the need to reason
about individual messages and message buffers, complex syntactic structures which often lead to
undecidable quantifier alternation [v. Gleissenthall et al. 2019]. This is the same intuition leveraged
by several verification frameworks to make verification of CRDTs tractable in practice [De Porre
et al. 2023; Liu et al. 2020; Zakhour et al. 2023]. Our approach extends this leverage to consensus
algorithms, for which we develop a new proof theory based on stable update preconditions instead
of inductive invariants. Notably, our proof theory’s verification conditions do not introduce higher-
order structures or quantifier alternations that could cause undecidability (Sec. 4). Decidability of
overall verification, however, depends on the domain-specific implementation choices made by the
programmer.
Finally, we observe that a causally-consistent system model allows us to simplify the design of

consensus algorithms. This is for the same reason that causal broadcast libraries simplify many
CRDT implementations [Redmond et al. 2023]: explicit, application-level dependency tracking can
be factored out when the underlying store provides it. This allowed us to eliminate some of the
complexity in our implemented variant of Raft [Ongaro and Ousterhout 2014], by relying on the
fact that updates are delivered in causal order. Moreover, we were able to safely incorporate a
non-standard optimization—the option to use minority/super-majority quorums [Howard et al.
2017]—with little additional effort. The adaptation to the replicated state model is otherwise
straightforward: message sends are replaced with updates to the shared state and receives are
simply reads. We discuss the design of this adapted algorithm, which we call Ferry, in Section 5.

We implemented our proof theory in a verifiable programming framework called Super-V. Our
framework provides a Haskell DSL for implementing distributed applications, which allows them
to execute atop a casually-consistent weak replicated store—a high-level abstraction familiar to
distributed application developers. Our framework also compiles these implementations to an
SMT-LIB representation and generates verification conditions for deciding their safety. We used
this framework to implement, evaluate, and verify a strongly-consistent replicated store based

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:4 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

on our Ferry consensus algorithm. Despite being implemented at a high level of abstraction, this
replicated store is comparable in performance—and scalable to the same network sizes—to stores
implemented in standard practice. To the best of our knowledge, this Ferry-based store is the first
verified strong consistency implementation that leverages the flexible quorums optimization first
proposed in Flexible Paxos [Howard et al. 2017].

Contributions. To summarize, we present the following contributions in this paper:

• The decomposition of global consensus safety, in the weak replication model, into monotonic-
ity and commutativity of updates—properties that can be verified in local terms.

• A novel proof theory for verifying consensus protocols in the weak replication model that
eschews system-wide inductive invariants in favor of more tractable stable update precon-
ditions. The proof theory is supplemented with a precise characterization of the resulting
verification conditions and their decidability.

• Super-V, a programming framework that implements our proof theory to enable the imple-
mentation of weak replication applications that are both executable and verifiable.

• A verified strong replicated data store based on Ferry: a consensus algorithm that is exten-
sionally identical to Raft but with simpler internal logic made possible by leveraging the weak
replication programming model. We present an extensive empirical evaluation comparing
Ferry against against a Raft-based strong replication system.

2 Motivation
In this section, we motivate our approach using a classic distributed consensus problem: leader
election. We will illustrate the difficulties that arise in the traditional verification approach, and
show how they can be avoided when using weak replication as the programming model.

2.1 Traditional Verification: Global Inductive Invariant
The goal of a leader election algorithm is to establish a single leader among a network of nodes, which
all nodes agree upon. Fig. 1a defines a toy one-shot election algorithm, using a message-passing
programming model typical for distributed algorithms. Any node can execute the castVote(𝑁𝑐)
action at any time—unless its local state (the local variable) says it has already voted, the node
sends a VoteFrom(𝑁𝑣) message (where 𝑁𝑣 is the sender’s unique self ID) to the candidate node
𝑁𝑐 . When the candidate 𝑁𝑐 receives VoteFrom(𝑁𝑣), it executes the appropriate handle procedure,
which adds the voter 𝑁𝑣 to 𝑁𝑐 ’s local myVotes set. When a node 𝑁𝑐 receives a majority number of
votes, it marks itself as leader and broadcasts a Leader(𝑁𝑐) that instructs peers to do the same.

This algorithm is simplistic: nodes vote only once, and so it cannot recover from a split vote
and has no liveness guarantee. However, it does provide a consensus safety guarantee: it ensures
that two different leaders 𝑁1 ≠ 𝑁2 cannot both be recognized. To be more specific, this guarantee
holds for two dimensions of the execution. Across time, a node cannot satisfy isLeader(𝑁1) now
and then satisfy isLeader(𝑁2) later. Across space, one node cannot satisfy isLeader(𝑁1) while a
distant node simultaneously satisfies isLeader(𝑁2)1.

Existing work has focused exclusively on verifying the space dimension of consensus safety [Haw-
blitzel et al. 2015; Padon et al. 2017; Taube et al. 2018; v. Gleissenthall et al. 2019; Woos et al. 2016],
likely because it is the least trivial aspect. The standard approach models the entire distributed
network as a single transition system, and defines (space) consensus safety as an invariant on the

1In Lamport’s writings on Paxos, the time and space aspects are called “stability” and “consistency,” respectively [Lamport
2004]. This meaning of “consistency” is distinct from the weak and strong consistency we discussed in Sec. 1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:5

castVote(𝑛) :=
if ¬local.hasVoted then

local.hasVoted := True;
send VoteFrom(self) to 𝑛;

isLeader(𝑛) := return(local.leader = 𝑛);

handle VoteFrom(𝑛) :=
local.myVotes.insert(𝑛);
if quorum(local.myVotes) then

local.leader := self;
send Leader(self) to All;

handle Leader(𝑛) :=
local.leader := 𝑛;

(a) General Message Passing.

castVote(𝑛) :=
if ¬local.votes(self) ≠ ⊥ then

update Vote(self, 𝑛);

isLeader(𝑛) :=
let 𝑞 := local.voters.filter(

𝜆𝑛1 . local.votes[𝑛1] = 𝑛
);
return(isQuorum(𝑞));

handle Vote(𝑛1, 𝑛2) :=
local.votes.insert(𝑛1, 𝑛2);

(b) Weakly Replicated State.

Fig. 1. One-shot leader election algorithm implemented under two programming models. Each node in the
network can arbitrarily execute the actions (castVote, isLeader), while the handle procedures automatically
execute upon receipt of a message or update.

global network states. The following invariant 𝐼cs is an example, for our toy election algorithm:

Σ ∈ 𝐼cs ≜ ∀𝑁1, 𝑁2, 𝑁3, 𝑁4. Σ[𝑁1] .isLeader(𝑁2) ∧ Σ[𝑁3] .isLeader(𝑁4) =⇒ 𝑁2 = 𝑁4.

Here, Σ is a mapping from node IDs to node states, representing part of the global state of the
network, and Σ[𝑁1] .isLeader(𝑁2) denotes the output of isLeader(𝑁2) under local state Σ[𝑁1].

The standard approach proceeds with an induction proof, showing that each network step takes
every Σ1 ∈ 𝐼cs to another Σ2 ∈ 𝐼cs. Unfortunately, the goal invariant is usually not inductive on
its own, due to asynchronicity: in addition to the local states of nodes, the network state contains
messages-in-transit which are not constrained by 𝐼cs. This under-specification allows impossible
messages—such as two VoteFor(𝑁𝑣) messages sent from the same node to two different recipients—
to appear “out of thin air” and break 𝐼cs. Achieving induction requires us to strengthen the invariant
with the following additional clauses. In addition to Σ, these clauses constrain Δ: a mapping from
𝑁 to the set of messages that have so-far been sent to 𝑁 (either delivered or still in-flight).

∀𝑁1, 𝑁2. Σ[𝑁1] .isLeader(𝑁2) =⇒ Leader(𝑁2) ∈ Δ[𝑁1] (1)

∀𝑁1, 𝑁2. Leader(𝑁1) ∈ Δ[𝑁2] =⇒ isQuorum(Σ[𝑁1] .myVotes) (2)
∀𝑁1, 𝑁2 . 𝑁1 ∈ Σ[𝑁2] .myVotes =⇒ VoteFrom(𝑁1) ∈ Δ[𝑁2] (3)
∀𝑁1, 𝑁2. VoteFrom(𝑁1) ∈ Δ[𝑁2] =⇒ Σ[𝑁1] .hasVoted (4)

∀𝑁1, 𝑁2, 𝑁3. VoteFrom(𝑁1) ∈ Δ[𝑁2] ∧ VoteFrom(𝑁1) ∈ Δ[𝑁3] =⇒ 𝑁2 = 𝑁3 (5)
The new clauses respectively assert that (1) a node’s myLeader is set to some 𝑁2 only if the Leader
message for 𝑁2 has been sent to it, (2) a Leader message exists only if the sender holds a quorum
of votes, (3) a node has recorded a vote only if the corresponding VoteFor message exists, (4) if

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:6 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

a VoteFor message exists, then the sender’s hasVoted flag is set, and (5) two distinct VoteFor
messages from the same sender cannot exist.

This inductive invariant is surprisingly unwieldy, considering the simple algorithm it describes.
The communication state, which was abstract in the implementation, must be detailed and exhaus-
tively related to the node states, which contain essentially the same information. In addition to the
effort involved in discovering this invariant, checking it is also complicated. We may wish to send
the induction verification conditions to an SMT solver, but the domain complexity will make its
behavior unpredictable. The global state Σ is essentially a function from node IDs to sets of node
IDs, since node states contain the myVotes field. At the same time, verification relies on a quorum
intersection axiom with a ∀∃ quantifier alternation on the same sorts, in the opposite direction:

∀𝑠1, 𝑠2 ∈ Set(NodeId). isQuorum(𝑠1) ∧ isQuorum(𝑠2) =⇒ (∃𝑁 ∈ NodeId. 𝑁 ∈ 𝑠1 ∧ 𝑁 ∈ 𝑠2).
This combination induces a sort cycle between NodeId and Set(NodeId), disqualifying the verifi-
cation conditions from the EPR fragment of logic and making their decidability uncertain. The
developer must either proceed with fragile automation or expend additional manual effort to
abstract the conditions and axioms to get back into EPR [Padon et al. 2017].

2.2 Weakly Replicated State
A node in the election algorithm of Fig. 1a operates using two basic abilities: modification of its
local state, and sending messages using send. This degree of freedommakes it impossible to reason
about the system’s behavior without revealing and exhaustively constraining its full complexity: the
array of node states Σ and the communication history Δ. Intuitively, our novel approach to verified
distributed algorithm development breaks this pattern by adopting a higher-level implementation
model: weakly consistent replicated state.

Fig. 1b details our implementation of a replicated state election algorithm. Rather than separately
modifying local state and sending messages, nodes in this system perform replicated updates that
do both: the statement update Vote(𝑁1, 𝑁2) records a vote for 𝑁2 from 𝑁1 in the node’s local state,
and also broadcasts a message instructing other nodes to make the same change to their states.
In contrast to the message-passing algorithm, a node in the replicated-state election algorithm
maintains a record of all votes, not just its own votes. The field local.votes maps each node that
has voted to its candidate. This simplifies the algorithm’s logic in two ways. Nodes can check
local.votes to ensure they have not yet voted, rather than maintaining a separate hasVoted field,
and each node can check for itself whether a particular candidate has received enough votes to win
the election—the leader does not need to send a Leader message.
Replicated updates are assumed to be causally consistent: updates can be applied to different

nodes in different orders, but if𝑈1 was visible to the node that created𝑈2, then𝑈1 must always be
applied before 𝑈2. This assumption provides a crucial balance between efficient implementability
and simplification of reasoning. An update is immediately applied to the origin node’s state and
asynchronously propagated to the node’s peers. Unlike the general message-passingmodel of Fig. 1a,
our replicated-state model enforces a distinction in capabilities between actions like castVote and
handlers. In the body of an action, the local variable is read-only, while in the body of a handler,
local is read/write but the update statement is disallowed.

2.3 Decomposing Consensus Safety
Like the general message passing version, our replicated leader election algorithm is intended to
satisfy both the temporal and spatial aspects of consensus safety. While these properties were
previously independent, adopting a replicated state model lets us relate them via convergence: the
often-sought property of weakly consistent replication which requires two nodes that have seen

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:7

the same updates to arrive at the same states. Our key observation is that temporal safety, combined
with convergence, guarantees spatial safety. Intuitively: if two nodes each recognize a leader,
and those nodes cannot un-recognize those leaders, and those nodes must be able to eventually
transition to matching states (by delivery of existing updates), then the two leaders must have
been the same all along. By decomposing convergence further into commutativity between pairs of
concurrent updates [Shapiro et al. 2011], we can approach verification of consensus safety—in the
weakly replicated state model—using the following rule, where Monotonicity refers to just the
temporal aspect of safety and Consensus refers to full safety:

Monotonicity ∧ Commutativity =⇒ Consensus

Crucially, unlike our previous global invariant formalization of consensus, monotonicity and
commutativity are conditions on local objects. To check monotonicity, we compare each node state
to each update. To check commutativity, we consider all update pairs in each node state. Thus, we
are able characterize consensus safety without referring to arrays of node states or messages.

2.4 Verification via Stable Update Preconditions
The remaining challenge is to demonstrate the monotonicity and commutativity properties of
replicated leader election (Fig. 1b) without resorting back to the discovery of a complex global
inductive invariant. Monotonicity requires an election node to never undo its decision about the
leader: isLeader(𝑁𝑐), once true, must remain true in consecutive states. Since state changes are only
made by updates, proving monotonicity amounts to showing that the handle procedure preserves
the existing decision about the leader (if any). Consider a hypothetical execution involving three
nodes, 𝑁 {1,2,3} (and quorum-size 2), where handle violates monotonicity. The execution starts with
the state 𝑆1 with the following votes: [𝑁1 ↦→ 𝑁1, 𝑁2 ↦→ 𝑁1, 𝑁3 ↦→ 𝑁2]. In this state, isLeader(𝑁1)
already holds. An update Vote(N2, N2) now arrives and handle is invoked in response. This replaces
the vote 𝑁2 ↦→ 𝑁1 with 𝑁2 ↦→ 𝑁2, thus undoing the earlier decision about the leader. Fortunately,
the protocol logic in Fig. 1b preempts this execution by prohibiting double voting. Put differently,
we can say that the violating update was not actually enabled: Vote(𝑁1, 𝑁2) can never actually
be created-by or delivered-to a node that holds state 𝑆1. Given a state 𝑆 , monotonicity only needs
to be checked for updates that are enabled in 𝑆 . Verification therefore requires an artifact that
characterizes an enabling condition for updates.

A need for a similar artifact can be felt when verifying commutativity of concurrent updates. In
a hypothetical scenario when two updates, Vote(N1, N2) and Vote(N1, N3), are concurrent, applying
them in different orders result in different states regardless of the initial state. Our algorithm also
prohibits this scenario: only 𝑁1 can cast a vote in its own name, and all updates that originate from
the same node are delivered in their order of creation. The aforementioned updates can therefore
never be concurrent and we need an artifact that characterizes the concurrency condition for pairs
of updates.

We observe that there is a single artifact that addresses both the aforementioned needs. We call
the artifact a stable update precondition (SUP), denoted Φs, which is a relation on node ID, update,
and state. Intuitively, ⟨𝑁,𝑈 , 𝑆⟩ ∈ Φs (𝑁, 𝐸, 𝑆) means that an update 𝑈 originating at a node 𝑁 is
enabled in a (local) state 𝑆 . For our election algorithm, the strong update precondition is as follows:

⟨𝑁, Vote(𝑁1, 𝑁2), 𝑆⟩ ∈ Φs ≜ 𝑁 = 𝑁1 ∧ 𝑆 [𝑁] = ⊥

Specifically, (1) the voter 𝑁1 indicated by the update must be the same node 𝑁 that initiated the up-
date, and (2) the state 𝑆 may not already contain a record of node 𝑁 voting. Our proof methodology
requires the programmer to provide Φs, analogous to how an inductive proof requires the program-
mer to prove an inductive invariant. However, considering the high-level abstraction utilized by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:8 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

our proof technique, SUPs are often simpler than global inductive invariants, as demonstrated by
the current example. Sec. 4 elaborates on this difference.
Given Φs, our proof technique generates four verification conditions: the first two establish

the soundness of Φs and the last two verify monotonicity and commutativity using Φs. The first
condition requires that any state 𝑆 on node 𝑁 where castVote can generate Vote(𝑁1, 𝑁2) must
satisfy ⟨𝑁, Vote(N1, N2), 𝑆⟩ ∈ Φs. In other words, the enabling condition must be initially true in
the state the update is generated. The second condition checks that in any state 𝑆 where two
Vote updates are simultaneously enabled, i.e., they are Φs-concurrent, they preserve each other’s
preconditions. This ensures that the enabling condition remains true when the update is applied at
a remote replica—notwithstanding any concurrent updates that get there first.

Next, to verify monotonicity, we check that in any state 𝑆 , if applying an enabled update results
in a state 𝑆 ′, then the pair ⟨𝑆, 𝑆 ′⟩ satisfies the monotonicity condition. This condition is valid for
the current example as Vote(𝑁1, 𝑁2) is enabled in state 𝑆 only if 𝑆 [𝑁1] = ⊥, i.e., 𝑁1 hasn’t yet
voted and voting now does not weaken any existing quorum support. Finally, we check that every
pair of Φs-concurrent messages commute. In the current example, if Vote(N1, N2) and Vote(N3, N4)
are concurrently enabled, then 𝑁1 ≠ 𝑁3, hence their handlers trivially commute. Leader election
therefore satisfies monotonicity and commutativity. Our meta-theory (Secs. 3.1 and 4) now lets us
conclude that Leader Election is safe, i.e., there will only ever be a single leader.

3 Consensus from Monotonicity and Commutativity
In this section, we first formalize consensus safety as a property on executions of an abstract
distributed system. We then show that, if our system operates using weakly-replicated state updates,
we can verify this complex global property using conditions on simpler local objects: consensus
safety can be guaranteed by checking monotonicity and commutativity for updates to individual
node states. We formalize this decomposition in a domain-agnostic way so as to be useful across a
wide range of consensus use-cases.

3.1 General Consensus Safety
Different consensus algorithmsworkwith different kinds of decisions. A decisionmight be a singular,
permanent choice, as in the Single-Decree Paxos algorithm [Lamport 1998], or an unbounded
stream of values that evolves over the course of the execution, as in the Raft algorithm [Ongaro
and Ousterhout 2014]. The common safety requirement for these algorithms is that two conflicting
decisions never arise in the course of a single execution. We will reason about consensus safety
using a general notion of conflict, formalized by the following definition.

Definition 3.1 (Decision Domain). A decision domain Dec is a set of values, called decisions,
equipped with a conflict relation (⊲⊳) ∈ P(Dec × Dec) which is symmetric and anti-reflexive. We
say that two decisions 𝐷1 and 𝐷2 agree when they do not conflict—we write this as 𝐷1 ̸⊲⊳ 𝐷2.

Example 3.2 (Leader Election Decision Domain). Recall the leader election algorithm from Sec. 2.
Given a set Nid of participating node ids, the decision domain (DecLE) and the conflict relation (⊲⊳LE)
that express the algorithm’s consensus semantics are as following:

DecLE ≜ { Undecided } ∪ { ElectedLeader(𝑁) | 𝑁 ∈ Nid } .

ElectedLeader(𝑁1) ⊲⊳LE ElectedLeader(𝑁2) ≜ 𝑁1 ≠ 𝑁2

Undecided ⊲⊳LE 𝐷 ≜ False

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:9

To express that only one leader should be elected, we define two decisions containing distinct
leader IDs to be in conflict. On the other hand, the initial Undecided decision does not conflict
with ElectedLeader(𝑁): it is safe for nodes to be less up-to-date than their peers. The decision
domain for Single-Decree Paxos [Lamport 1998] can be defined similarly to DecLE, using arbitrary
values in place of leader IDs.

Example 3.3 (Raft Decision Domain). Unlike leader election and Single-Decree Paxos, Raft [Ongaro
and Ousterhout 2014] decides a potentially infinite sequence of values. Its decision domain (DecRaft)
and conflict relation (⊲⊳Raft) can be defined thus:

DecRaft ≜ { Committed(𝐿) | 𝐿 ∈ List[Entry] } .
Committed(𝐿1) ⊲⊳Raft Committed(𝐿2) ≜ ¬(𝐿1 is prefix of 𝐿2 or 𝐿2 is prefix of 𝐿1).

Here, the decision Committed([𝐴, 𝐵,𝐶]) means that entries 𝐴, 𝐵, and 𝐶 have been committed to
the log, in that order. More up-to-date versions of the log, e.g., [𝐴, 𝐵,𝐶, 𝐷], and older versions,
e.g., [𝐴, 𝐵], do not conflict with the current log. However, a log that skips an entry, e.g., [𝐴, 𝐵, 𝐷],
or commits the entries in a different order, e.g., [𝐴,𝐶, 𝐵], are considered conflicting. Like Raft,
the Multiple-Decree variant of Paxos decides a stream of values, but it allows log entries to be
committed out of order, and so the decision domain for Multi-Paxos is a mapping from log indexes
to optional entries, where decisions conflict when they have non-equal entries at the same index.

Given a decision domain, we will now formalize consensus safety for any distributed system
in which nodes adopt decisions from that domain. First, we formally distinguish this class of
distributed systems as decision systems, and then define them to satisfy consensus safety when each
of their executions is free of conflicting decision pairs.

Definition 3.4 (Decision System). Given a decision domain Dec, we define a decision system
abstractly as a state transition system DS that, in every state, assigns a decision 𝐷 ∈ Dec to every
node 𝑁 ∈ Nid in the system. Formally, DS is the tuple:

DS =
〈
GState, GInit,⇝, Nid, 𝑓 d

〉
,

where the transition relation⇝ relates system states GState, starting from initial states GInit ⊆
GState. System states represent the global states of a distributed network. The function 𝑓 d maps
network nodes to their decisions: the value 𝑓 d (𝑁,𝐺) ∈ Dec is the decision held by node 𝑁 ∈ Nid
in global network state 𝐺 ∈ GState. An execution of DS is a non-empty sequence of system states,
such that the first state is a member of GInit and each state 𝐺1 is related to the next state 𝐺2 by
⇝. For system state 𝐺 , we define the set ReachFrom(𝐺) ⊆ GState as the set of states reachable
from 𝐺 in zero or more⇝ steps. We define the set Reachable(DS) ⊆ GState as the set of states
reachable from some initial state in zero or more⇝ steps.

Example 3.5. The message-passing leader election algorithm from Sec. 2 is a decision system for
DecLE. Each system state 𝐺 includes an array of nodes, each maintaining a set of votes received
from peers and an optional leader field. The function 𝑓 d (𝑁,𝐺) gives Undecided when 𝑁 ’s leader
field is empty, and gives ElectedLeader(𝑁1) when it is occupied by 𝑁1. The network state 𝐺 also
must include the state of an asynchronous message-passing system, so that one node can send a
message into the system in one step and the message can be delivered to another in a later step.

Definition 3.6 (Consensus Safety). A decision system DS has the consensus safety property iff no
pair of conflicting decisions are ever held within a single execution of DS:

∀𝑁1, 𝑁2 ∈ Nid. ∀𝐺1 ∈ Reachable(DS). ∀𝐺2 ∈ ReachFrom(𝐺1). 𝑓 d (𝑁1,𝐺1) ̸⊲⊳ 𝑓 d (𝑁2,𝐺2).
Note that this definition includes the cases where 𝑁1 = 𝑁2 and where 𝐺1 = 𝐺2.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:10 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

Example 3.7 (Consensus Safety for Raft). For our Raft decision domain, consensus safety mandates
that if one node ever holds committed log 𝐿1, and another node holds log 𝐿2, then 𝐿1 must be a
prefix of 𝐿2 or vice versa. This matches Raft’s stated state machine safety property, which requires
that if one node sees one command committed as the 𝑛th entry in the log, then no other node can
see a different 𝑛th entry [Ongaro and Ousterhout 2014].

Consensus safety is two-dimensional, relating decisions across both the time and space of a
distributed execution. A decision held by one node must agree with the decisions held in the past
and the future, by both itself and by its peers. As we demonstrated in Sec. 2, this makes verifying
consensus safety for message-passing algorithms a difficult task. Even the simple leader election
algorithm’s global system states are complex objects (see Example 3.5), and consensus safety is a
property of executions—sequences of those states. The remainder of this section will show how,
for decision systems that follow the replicated update model, we can derive consensus safety from
conditions on local node-state transitions rather than global system transitions.

3.2 Replicated Updates
To achieve local-termed conditions for consensus safety, we now narrow our focus to the class of
decision systems that operate in the replicated state model, in which every change to one node’s
state is eventually replicated by a similar change to the state of each other node. Replicated state
gives us a key advantage: it allows us to specify system behavior in purely local terms, as a transition
relation over individual node states.
In this subsection, we will first formalize our particular model of replicated state—replicated

update systems—and will then formalize our local-termed specifications for these systems.

Definition 3.8. A replicated update system is a distributed system in which every node maintains
an application state and only modifies that state according to updates that are communicated to all
peers. Each update is initiated by one origin node, and carries an effect that modifies the application
state of each node that receives the update. We define a replicated update system RS with the tuple:

RS =
〈
AState, AInit, Nid, Uid, Action, Val, Effect, 𝑓 h

〉
,

in which 𝑆 ∈ AState is an application state and AInit ⊆ AState are the initial application states.
RS defines a transition system in which system states take the form ⟨Σ,Δ⟩, with node configuration

Σ and update configuration Δ. The node configuration maps each node ID to its application state
and the totally-ordered history of update IDs that it has seen:

Σ ∈ Nid → (AState × P(Uid)≺).
Given Σ(𝑁) = ⟨𝑆, 𝐾⟩, we use𝑈1 ≺𝐾 𝑈2 to mean that𝑈1 precedes 𝑈2 in 𝐾 ’s ordering—representing
that 𝑁 applied 𝑈1 before it applied 𝑈2. The update configuration maps each update ID to the
update’s origin node, effect, and causal dependencies, or to ⊥ if the update ID has not yet been used:

Δ ∈ Uid → (Nid × Effect × P(Uid))⊥ .
In an initial transition system state ⟨Σ0,Δ0⟩, every node holds an identical initial application state
𝑆0 ∈ AInit and has seen no update IDs, and Δ0 maps every update ID to ⊥. We use Init(𝑆) to mean
the initial system state defined by initial application state 𝑆 .
The transitions of the RS system take two forms, presented in Fig. 2. In the Initiate(𝑈 , 𝑁, 𝐸)

transition, node 𝑁 triggers an update by executing an action 𝑓 a ∈ Action. An action represents a
request from the node’s client or runtime environment. The function 𝑓 a ∈ (Nid×AState×Val) →
(Val × Effect⊥) takes the local node’s ID and application state, as well as any relevant request
value, and produces a response value and optionally an effect. For our purposes, we treat the request

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:11

Initiate(𝑈 , 𝑁, 𝐸)
𝑓 a ∈ Action 𝑓 a (𝑁, 𝑆,𝑉1) = ⟨𝑉2, 𝐸⟩ Δ(𝑈) = ⊥

Σ[𝑁 ↦→ ⟨𝑆, 𝐾⟩],Δ ⇝ Σ[𝑁 ↦→
〈
𝑓 h (𝐸, 𝑆), 𝐾 :: 𝑈

〉
],Δ[𝑈 ↦→ ⟨𝑁, 𝐸, 𝐾⟩]

Deliver(𝑈 , 𝑁𝑢 , 𝐸, 𝑁𝑑)
Δ(𝑈) = ⟨𝑁𝑢, 𝐸, 𝐾𝑢⟩ 𝑈 ∉ 𝐾 𝐾𝑢 ⊆ 𝐾

Σ[𝑁𝑑 ↦→ ⟨𝑆, 𝐾⟩],Δ ⇝ Σ[𝑁𝑑 ↦→
〈
𝑓 h (𝐸, 𝑆), 𝐾 :: 𝑈

〉
],Δ

Fig. 2. Transition rules for a replicated update system. For update ID𝑈 and totally-ordered set 𝐾 , we write
𝐾 :: 𝑈 to mean 𝐾 ∪ {𝑈 } such that𝑈 is ordered to the right of all preexisting 𝐾 elements.

value that comes from the node’s client/environment as non-deterministic. Actions that return
no effect are invisible to the transition system—the Initiate(𝑈 , 𝑁, 𝐸) transition is only triggered
when an action produces an effect.

Initiate(𝑈 , 𝑁, 𝐸) makes two changes to the system state. First, 𝑁 modifies its application state
𝑆 by applying 𝐸 using the handler function 𝑓 h ∈ (Effect × AState) → AState, and second, it
broadcasts this update to its peers. The broadcast is modeled in the transition system by assigning
𝑈 to ⟨𝑁, 𝐸, 𝐾⟩ in Δ, where𝑈 is a fresh effect identifier and 𝐾 is its causal dependencies—the updates
that 𝑁 saw before creating𝑈 .
The second transition is Deliver(𝑈 , 𝑁, 𝐸), which models the delivery of update𝑈 to the node

𝑁 . Updates are delivered to each node exactly once: 𝑈 can only be delivered if it is not yet in 𝑁 ’s
update set 𝐾 . Moreover, updates are delivered in causal order:𝑈 can be delivered only if all of its
dependencies (𝐾𝑢) have already been delivered, i.e., 𝐾𝑢 ⊆ 𝐾 . This makes RS causally consistent—a
feature that we will leverage in Sec. 3.4

Example 3.9. The replicated version of the leader election algorithm that we presented in
Sec. 2 is an example of a replicated update system, which we can formalize as RS𝑅𝐿𝐸 . Each state
⟨roll, votes⟩ ∈ AState𝑅𝐿𝐸 defines the roll of eligible voters and the record of existing votes:
a mapping of voters to their votees. An initial state 𝑆0 ∈ AInit𝑅𝐿𝐸 has an empty vote record:
𝑆0.votes = 𝜖 . An update’s effect adds a single vote to the mapping:

Effect𝑅𝐿𝐸 ≜ { Vote(𝑁1, 𝑁2) | 𝑁1, 𝑁2 ∈ Nid𝑅𝐿𝐸 }
𝑓 h𝑅𝐿𝐸 (Vote(𝑁1, 𝑁2), 𝑆) ≜ 𝑆.votes[𝑁1 ↦→ 𝑁2]

The eligible voter roll is not modified by any effect. Updates are triggered by two actions that nodes
can execute:

startCampaign(𝑁, 𝑆, ⟨⟩) ≜ if 𝑆.votes(𝑁) = ⊥ then ⟨⟨⟩ , Vote(𝑁, 𝑁)⟩ else ⟨⟨⟩ ,⊥⟩
tryGiveVote(𝑁, 𝑆, ⟨⟩) ≜ if ∃𝑁1. 𝑆 .votes[𝑁1] = 𝑁1 ∧ 𝑆.votes(𝑁) = ⊥

then ⟨⟨⟩ , Vote(𝑁, 𝑁1)⟩ else ⟨⟨⟩ ,⊥⟩
Nodes execute startCampaign if they have not seen any votes after a random timeout. Each time
a node’s state changes, it executes tryGiveVote to vote for any other node that has already started
a campaign by self-voting. Both actions only return an effect—and thus only initiate a replicated
update—if the executing node (𝑁) has not yet voted (𝑆.votes(𝑁) = ⊥).

Definition 3.10 (Replicated Decision System). If the application states of RS are a decision domain—
that is, if we define a conflict relation ⊲⊳ on the AStateRS states—then RS is also a decision system
(Def. 3.4), as follows. The system states ⟨Σ,Δ⟩ of RS define the global state set GState, and likewise

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:12 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

for initial RS system states and the set GInit of initial global states. The transition relation⇝ is
defined by Fig. 2, and the node decision function 𝑓 d returns the given node’s application state:

𝑓 d (𝑁, ⟨Σ,Δ⟩) ≜ 𝑆 where Σ(𝑁) = ⟨𝑆, 𝐾⟩ .

By this definition, consensus safety (Def. 3.6) for RS means that no two conflicting application states
can arise in any execution of RS.

Example 3.11. As demonstrated in Sec. 2, the replicated leader election algorithm is an example
of a replicated decision system. The conflict relation on application states is defined as follows:

𝑆1 ⊲⊳𝑅𝐿𝐸 𝑆2 ≜ ∃𝑁1, 𝑁2. 𝑁1 ≠ 𝑁2 ∧ IsLeader(𝑁1, 𝑆1) ∧ IsLeader(𝑁2, 𝑆2),

where IsLeader(𝑁, 𝑆) ≜ | { 𝑁1 | 𝑆.votes[𝑁1] = 𝑁 } | ∗ 2 > |Nid|.

Like our other examples of distributed systems, replicated update systems have complex states:
an array of node states, a communication subsystem, etc. However, the replicated model allows us
to specify the behavior of a particular system in local terms.

Definition 3.12. An update specification for a replicated update system RS is a relation 𝑇 u ∈
P(Nid × Effect × AState × AState) such that:
(1) The transition Initiate(𝑈 , 𝑁, 𝐸) over states Σ1,Δ1 ⇝ Σ2,Δ2, where Σ1 [𝑁] = ⟨𝑆1, 𝐾1⟩ and

Σ2 [𝑁] = ⟨𝑆2, 𝐾2⟩, is reachable only if ⟨𝑁, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u.
(2) The transition Deliver(𝑈 , 𝑁𝑢, 𝐸, 𝑁𝑑) over states Σ1,Δ1 ⇝ Σ2,Δ2, where Σ1 [𝑁𝑑] = ⟨𝑆1, 𝐾1⟩

and Σ2 [𝑁𝑑] = ⟨𝑆2, 𝐾2⟩, is reachable only if ⟨𝑁𝑢, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u.
(3) 𝑇 u is functional: ⟨𝑁, 𝐸, 𝑆, 𝑆 ′⟩ ∈ 𝑇 u ∧ ⟨𝑁, 𝐸, 𝑆, 𝑆 ′′⟩ ∈ 𝑇 u =⇒ 𝑆 ′ = 𝑆 ′′.

We say that an update ⟨𝑁, 𝐸⟩ is enabled in 𝑆 when there exists an 𝑆 ′ such that ⟨𝑁, 𝐸, 𝑆, 𝑆 ′⟩ ∈ 𝑇 u.
When it is clear which 𝑇 u we are using, we will use 𝑆

𝑁,𝐸−−−→ 𝑆 ′ to mean that ⟨𝑁, 𝐸, 𝑆, 𝑆 ′⟩ ∈ 𝑇 u.
Likewise, we will use 𝑆

𝑁1,𝐸1;...;𝑁𝑛,𝐸𝑛−−−−−−−−−−−→ 𝑆 ′ to mean that a sequence of intermediate states exist which
the sequence of updates transitions over to reach 𝑆 ′:

∃𝑆1, . . . , 𝑆𝑛−1 ∈ AState. ⟨𝑁1, 𝐸1, 𝑆, 𝑆1⟩ ∈ 𝑇 u ∧ · · · ∧ ⟨𝑁𝑛, 𝐸𝑛, 𝑆𝑛−1, 𝑆 ′⟩ ∈ 𝑇 u .

As an example, an update specification for our replicated leader election algorithm could say
that no update can modify an existing vote:

⟨𝑁, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u
RLE ≜ ∀𝑁𝑣, 𝑁𝑐 ∈ Nid. 𝑆1 .votes(𝑁𝑣) = 𝑁𝑐 =⇒ 𝑆2.votes(𝑁𝑣) = 𝑁𝑐 .

This property is not local—we require the context of the overall execution to determine that a
Deliver(𝑈 , 𝑁𝑢, 𝐸, 𝑁𝑑) transition will not violate it. And yet, the update specification allows us to
state the property in local terms—node IDs, effects, and application states—rather than define it in
terms of global system states or executions.

In Sec. 4, we will discuss the definition and verification of suitable update specifications.

3.3 Monotonicity
To understand our first consensus condition, consider an execution of the Leader Election algo-
rithm, in which a node held the Undecided decision, later adopted the Leader(𝑁1) decision, but
subsequently goes back to Undecided. This execution does not violate agreement in the sense two
distinct leaders have not been elected, but it is nonetheless prevented by the algorithm. Likewise,
the Raft algorithm does not produce executions where a node uncommits previously committed
entries of its log. In general, consensus algorithms prevent participants from ever reducing the
strength of their decisions—we call this property decision-monotonicity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:13

Definition 3.13 (Decision Strength). For decision domain Dec, we define the strength relation
⊑∈ P(Dec × Dec) as follows:

𝐷1 ̸⊲⊳ 𝐷2 ∧ ∀𝐷3 . 𝐷1 ⊲⊳ 𝐷3 =⇒ 𝐷2 ⊲⊳ 𝐷3 .

Two decisions are related by 𝐷1 ⊑ 𝐷2 iff the two agree and 𝐷2 conflicts with every decision that
𝐷1 conflicts with. We define 𝐷1 ⊏ 𝐷2 as 𝐷1 ⊑ 𝐷2 ∧ 𝐷2 ̸⊑ 𝐷1.

Lemma 3.14. The strength relation is a preorder.

Intuitively,𝐷1 ⊏ 𝐷2 means that𝐷2 is stronger than𝐷1, in the sense that𝐷2 hasmore conflicts, and
is thus more specific. For example, in the decision domain of Raft, [𝐴, 𝐵] ⊏ [𝐴, 𝐵,𝐶] because, first,
[𝐴, 𝐵,𝐶] shares all of [𝐴, 𝐵]’s conflicts, such as [𝐴,𝑋], and second, [𝐴, 𝐵,𝐶] has additional conflicts,
such as [𝐴, 𝐵, 𝑍] which [𝐴, 𝐵] does not conflict with. In the case of Raft, a form of monotonicity is
explicitly included, as “Leader Append-Only”, among Raft’s stated safety properties [Ongaro and
Ousterhout 2014]. Paxos and Multi-Paxos also maintain monotonicity, and it is sometimes included
in their explicitly-stated safety properties [Lamport 2004].

Definition 3.15. A decision system DS is decision-monotonic iff, in each reachable system state,
each node’s decision is related by ⊑ to all later decisions of the same node:

∀𝑁 ∈ NidRS. ∀𝐺1 ∈ Reachable(DS). ∀𝐺2 ∈ ReachFrom(𝐺1).
𝐺1 (𝑁) = 𝐷1 ∧ 𝐺2 (𝑁) = 𝐷2 =⇒ 𝐷1 ⊑ 𝐷2.

Recall that when AStateRS is a decision domain, then the replicated update system RS serves as
a decision system, in which application states are decisions. Using an update specification for RS,
we can derive the decision-monotonicity property from a condition on local terms.

Theorem 3.16. If RS satisfies 𝑇 u, then RS is decision-monotonic under the following condition:

∀ ⟨𝑁, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u . 𝑆1 ⊑ 𝑆2 .

We refer to any 𝑇 u that satisfies the condition of Thm. 3.16 as a decision-monotonic.
Observe that in a decision-monotonic system, two decisions must not conflict if they are both

held by a single node within a single execution, because non-conflict is required for them to be
related by ⊑. Thus, monotonicity allows us to guarantee the temporal aspect of consensus safety
using a condition on individual update transitions. The spatial aspect of consensus still remains,
for which we will define a second condition that relates the behavior of an update across nodes.

3.4 Commutativity
Commutativity is a well-known property in the realm of CRDTs [Shapiro et al. 2011]. In general,
universal commutativity—the property that any pair of replicated application updates commute
when applied to any application state—is sufficient for consensus safety when combined with
monotonicity. For illustration, consider the system execution in Fig. 3, in which two nodes have
applied different updates to arrive at different application states: 𝑆1 and 𝑆2. Indeed, 𝑆1 and 𝑆2 need
not be identical—they are the products of different updates—but consensus safety requires that
they at least agree with each other. We make this argument using commutativity.
The dashed lines in the figure illustrate the hypothetical completion of each node’s history: its

state after applying the updates it has missed. If the system is monotonic (Def. 3.15), then 𝑆3 must
be stronger than both 𝑆1 and 𝑆2, and in that case we can deduce 𝑆1 ̸⊲⊳ 𝑆2 by applying a lemma:

Lemma 3.17. If 𝑆1 𝑆2, and 𝑆3 are decisions for which 𝑆1 ⊑ 𝑆3 and 𝑆2 ⊑ 𝑆3, then 𝑆1 ̸⊲⊳ 𝑆2.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:14 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

𝑆0

𝑈𝑎 𝑈𝑏 𝑈𝑑 𝑆1 𝑈𝑐

𝑈𝑏 𝑈𝑐 𝑆2 𝑈𝑎 𝑈𝑑

𝑆3

𝑆1 ⊑ 𝑆3

𝑆2 ⊑ 𝑆3

=⇒ 𝑆1 ̸⊲⊳ 𝑆2

Fig. 3. Monotonicity and commutativity, together, guarantee consensus safety. The solid lines and boxes
represent an execution with two nodes, in which 𝑈𝑏 was applied by both nodes, but 𝑈𝑎 , 𝑈𝑐 , and 𝑈𝑑 were
applied only by their origin nodes. The dashed lines represent a hypothetical extension of the execution, in
which the nodes have delivered𝑈𝑎 and𝑈𝑐 to each other. Commutativity ensures that the extensions converge
to a common final state: 𝑆3. Monotonicity ensures that 𝑆1 and 𝑆2 are each weaker (⊑) than 𝑆3, and so 𝑆1 and
𝑆2 cannot be in conflict (Lem. 3.17).

Unfortunately, universal commutativity is too strong for replicated applications implementing
consensus. For example, in Replicated Leader Election, the effects Vote(𝑁1, 𝑁2) and Vote(𝑁1, 𝑁3)
do not commute as they both update 𝑁 ′

1𝑠 vote in the replicated map of votes. Indeed, these effects
need not commute as the protocol logic preempts the possibility of their concurrent execution. In
case of Leader Election, a node only ever votes in its name and votes by a single node are never
concurrent. Likewise in Paxos, there will never be two concurrent proposals in a single term since
only one node can get a quorum of acknowledgments required to propose. Universal commutativity
is too strong in either case. We define a weaker commutativity constraint that requires a pair of
updates to commute only in racing states where both are simultaneously enabled. Using the update
specification 𝑇 u, we formalize this intuition below.

Definition 3.18 (Racing-State Commutativity). An update specification 𝑇 u is racing-state commu-
tative iff, for every pair of distinct-origin updates that are both enabled for a single application state
𝑆 , there exists a common state 𝑆 ′ that can be reached by applying the updates to 𝑆 in either order:

∀𝑁𝑙 , 𝑁𝑟 ∈ Nid. ∀𝐸𝑙 , 𝐸𝑟 ∈ Effect. ∀𝑆, 𝑆𝑙 , 𝑆𝑟 ∈ AState.

𝑁𝑙 ≠ 𝑁𝑟 ∧ =⇒ ∃𝑆 ′ ∈ AState.𝑆

𝑆𝑙

𝑆𝑟

𝑁𝑙,
𝐸𝑙

𝑁
𝑟 , 𝐸𝑟

𝑆 ′

𝑆𝑙

𝑆𝑟

𝑁
𝑟 , 𝐸𝑟

𝑁𝑙, 𝐸
𝑙

Intuitively, racing-state commutativity applies to all concurrent update pairs that arise in an
execution—those that can appear in different orders in different contexts. Because replicated update
systems enforce causal consistency, a pair of updates can only appear in different orders when they
originate from distinct nodes.
We will now prove that the convergent state 𝑆3 in Fig. 3 exists, while only assuming that the

depicted system satisfies an update specification 𝑇 u which is racing-state commutative. We do so
by transforming the concrete execution (the part with solid lines) into the hypothetical execution
in Fig. 4. Our first step is to factor out the two nodes’ common history, so that both nodes start
by taking the same step 𝑆0

𝑈𝑏−−→ 𝑆 for some 𝑆 . To do so, we apply our racing-state-commutativity
assumption: 𝑈𝑎 and 𝑈𝑏 are racing on state 𝑆0, and so we can flip them in the top node’s history
without changing their post-state. This step proves that 𝑇 u includes the dashed 𝑆 → 𝑆1 segment.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:15

𝑆0 𝑈𝑏 𝑆

𝑈𝑎 𝑈𝑑 𝑆1

𝑈𝑐 𝑆2𝑈𝑐

𝑈𝑐

𝑈𝑎 𝑈𝑑

𝑆3

Fig. 4. Transformation of the execution in Fig. 3, using the racing-state commutativity assumption to ensure
the existence of a common 𝑆3. Lem. 3.23 ensures that 𝑇 u includes the dashed segments of the transformed
execution, and Lem. 3.19 ensures that 𝑇 u includes the dash-dotted segments. The segment 𝑆0 → 𝑆 → 𝑆2 is
solid because it is part of the concrete execution in Fig. 3.

Now, showing that 𝑆3 exists simply requires us to commute𝑈𝑐 with the sequence [𝑈𝑎 ;𝑈𝑑]. In fact,
racing-state commutativity allows us to commute sequences, according to the following lemma.

Lemma 3.19 (Commutative Seqences). If an update specification𝑇 u is racing-state commutative,
then two sequences of updates commute when there is no origin node that appears in both sequences
and when both sequences are enabled for the same state:

∀𝑁 𝑙1, . . . , 𝑁 𝑙𝑛, 𝑁 𝑟1 , . . . , 𝑁 𝑟𝑚 ∈ Nid. ∀𝐸𝑙1, . . . , 𝐸𝑙𝑛, 𝐸𝑟1, . . . , 𝐸𝑟𝑚 ∈ Effect. ∀𝑆, 𝑆𝑙 , 𝑆𝑟 ∈ AState.

∧𝑛
𝑖=1

∧𝑚
𝑗=1 (𝑁 𝑙𝑖 ≠ 𝑁 𝑟𝑗) ∧ =⇒ ∃𝑆 ′ ∈ AState.𝑆

𝑆𝑙

𝑆𝑟

𝑁
𝑙
1, 𝐸

𝑙
1; . .

. ;𝑁
𝑙
𝑛
, 𝐸

𝑙
𝑛

𝑁 𝑟
1 , 𝐸𝑟1 ; . . . ;𝑁 𝑟

𝑚 , 𝐸𝑟𝑚

𝑆 ′
𝑆𝑙

𝑆𝑟

𝑁 𝑟
1 , 𝐸𝑟1 ; . . . ;𝑁 𝑟

𝑚 , 𝐸𝑟𝑚

𝑁
𝑙
1, 𝐸

𝑙
1; . .

. ;𝑁
𝑙
𝑛
, 𝐸

𝑙
𝑛

We know that 𝑈𝑐 in Fig. 3 does not share an origin with either 𝑈𝑎 or 𝑈𝑑 , because otherwise it
would appear always-before or always-after those updates. Thus, we can apply Lem. 3.19 to ensure
the existence of 𝑆3. And thus, if 𝑇 u is decision-monotonic, we also ensure that 𝑆1 ̸⊲⊳ 𝑆2.
Racing-state commutativity always allows us to perform the common-history factoring step.

The following lemmas state this, relying on the fact that replicated update system executions
are causally-consistent. When working in the context of a specific system state, we will use the
shorthand 𝑆

𝐾−→ 𝑆 ′ to mean that 𝑆
𝑁1,𝐸1;...;𝑁𝑛,𝐸𝑛−−−−−−−−−−−→ 𝑆 ′ for the origin nodes and effects of the updates in

𝐾 , as defined by the system state.

Definition 3.20 (Causal Cut). Given update configuration Δ, we say that history𝐾 is a causal cut of
Δ iff for every𝑈 ∈ 𝐾 , there is an entryΔ(𝑈) = ⟨𝑁, 𝐸, 𝐾1⟩ such that𝐾1 ⊆ 𝐾 and∀𝑈1 ∈ 𝐾1. 𝑈1 <𝐾1 𝑈 .

Lemma 3.21 (Causal Consistency). For any RS, every history contained in every reachable system
state is a causal cut of that state’s update configuration.

Lemma 3.22 (Causal Cut Enabled). Given system RS, which satisfies 𝑇 u and has system state

⟨Σ,Δ⟩ reachable from Init(𝑆0), if 𝐾 is a causal cut of Δ, then ∃𝑆. 𝑆0
𝐾−→ 𝑆 .

Lemma 3.23 (Common History). For system state ⟨Σ,Δ⟩ reachable from 𝑆0, in which Σ(𝑁𝑎) =
⟨𝑆𝑎, 𝐾𝑎⟩ and Σ(𝑁𝑏) = ⟨𝑆𝑏, 𝐾𝑏⟩, let 𝐻 = 𝐾𝑎 ∩ 𝐾𝑏 , such that 𝐻 has the same ordering as 𝐾𝑎 . If 𝑇 u is

racing-state commutative, then 𝑆 ∈ AState exists for which 𝑆0
𝐻−→ 𝑆 , 𝑆

𝐾𝑎\𝐾𝑏−−−−−→ 𝑆𝑎 , and 𝑆
𝐾𝑏\𝐾𝑎−−−−−→ 𝑆𝑏 .

Intuitively, once we have factored out the common history of two nodes using Lem. 3.23, we
can commute their remaining non-common suffixes to reach a common final state, like 𝑆3 in Fig. 3.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:16 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

Monotonicity ensures that the common final state is a ⊑-upper-bound for the nodes’ existing states,
and so those states must agree.

Theorem 3.24 (Consensus from Monotonicity and Commutativity). If 𝑇 u is decision-
monotonic and racing-state commutative, then every 𝑇 u-system RS has the consensus safety property.

4 Verification via Stable Update Preconditions
In this section, we consider the formulation of sound update specifications for given systems.

4.1 Stable Update Precondition
Def. 3.12 requires 𝑇 u (𝑁, 𝐸, ·, ·) to relate two distinct pairs of states capturing the effect of applying
𝐸 from 𝑁 at origin and remote nodes respectively. In both instances, the final state 𝑆2 is obtained
from the initial state 𝑆1 by applying the handler, 𝑆2 = 𝑓 h (𝐸, 𝑆1). Thus 𝑇 u (𝑁, 𝐸, 𝑆1, 𝑆2) could simply
be defined as a relational abstraction of 𝑓 h (𝐸, ·). However, simply capturing the semantics of the
handler function makes 𝑇 u too weak to be useful: RS does not admit all transitions defined by 𝑓 h.
In particular, the Initiate transition (Fig. 2) can only apply 𝑓 h to a state 𝑆1 if the system includes
an action 𝑓 a that returns an 𝐸 when given 𝑆1. From this, we can derive a notion of local precondition
Φ(𝑁, 𝐸) for an update with origin 𝑁 and effect 𝐸: a condition that 𝑆1 must satisfy for any action
𝑓 a (𝑁, 𝑆1,𝑉) to produce 𝐸, and thus initiate the update ⟨𝑁, 𝐸⟩. For example, in replicated leader
election, 𝑁 can produce Vote(𝑁1, 𝑁2) in a state 𝑆1 only if 𝑁 = 𝑁1 and if 𝑁 has not already voted
in 𝑆1. We could then define ⟨𝑁, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u iff 𝑆1 ∈ Φ(𝑁, 𝐸) and 𝑓 h (𝐸, 𝑆1) = 𝑆2.

The 𝑇 u based on local precondition is correct and useful in the case of replicated leader election,
but for many systems, it is actually under-approximate, and thus unsafe: it excludes transitions that
the system may actually take. The local precondition is only guaranteed to hold in the Initiate
step—in the following Deliver steps, 𝐸 may be applied to different states where other concurrent
updates have already taken effect. For example, consider a replicated Paxos-like system, in which
node 𝑁 campaigns to be leader of round 𝑟 and then proposes the decision value 𝑣 using an
update Propose(𝑟, 𝑣). Before generating Propose(𝑟, 𝑣), 𝑁 checked that its state did not contain
a preexisting proposal, and so 𝑆 ∈ Φ(𝑁, Propose(𝑟, 𝑣)) could require 𝑆.proposal = ⊥. However,
when the update is delivered to node 𝑁𝑑 , it is possible that 𝑁𝑑 has already seen an alternative
proposal, and 𝑆𝑑 .proposal = ⟨𝑟1, 𝑣1⟩. For this system, Φ defines an unsafe 𝑇 u—to define a safe,
over-approximate𝑇 u, we must discover a weaker, stable precondition, which holds for the pre-state
of each Initiate step and each Deliver step. For example:

𝑆 ∈ Φs (𝑁, Propose(𝑟, 𝑣)) ≜ 𝑆.proposal = ⟨𝑟1, 𝑣1⟩ =⇒ 𝑟1 ≠ 𝑟

A stable update precondition (SUP) over-approximates the condition under which an effect can
be applied to a state, during either an Initiate transition or a Deliver transition.

Definition 4.1 (Stable Update Precondition). A replicated update system RS satisfies the stable
update precondition Φs ∈ P(Nid × Effect × AState) iff ⟨𝑁, 𝐸, 𝑆⟩ ∈ Φs whenever an update with
effect 𝐸 and origin node 𝑁 modifies state 𝑆 at any node. Specifically, RS satisfies the following:
(1) For any reachable Initiate(𝑈 , 𝑁, 𝐸), node 𝑁 starts with 𝑆 such that ⟨𝑁, 𝐸, 𝑆⟩ ∈ Φs.
(2) For any reachable Deliver(𝑈 , 𝑁𝑢, 𝐸, 𝑁𝑑), node 𝑁𝑑 starts with 𝑆 such that ⟨𝑁𝑢, 𝐸, 𝑆⟩ ∈ Φs.

For readability, we will also write 𝑆 ∈ Φs (𝑁, 𝐸) to mean ⟨𝑁, 𝐸, 𝑆⟩ ∈ Φs.

Using a stable update precondition for RS, we can now define a non-trivial, over-approximate
update specification for RS:

⟨𝑁, 𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑇 u (RS,Φs) ≜ 𝑆1 ∈ Φs (𝑁, 𝐸) ∧ 𝑆2 = 𝑓
h
RS (𝐸, 𝑆1)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:17

Theorem 4.2. For replicated update system RS with stable update precondition Φs, the relation
𝑇 u (RS,Φs) is an update specification for RS.

By applying our monotonicity (Def. 3.15) and commutativity (Def. 3.18) conditions to 𝑇 u (RS,Φs),
we realize Φs as the key artifact required to verify consensus safety for RS. As the example demon-
strates, a suitable SUP does not follow directly from the system’s local behavior—it must be creatively
discovered. Suitable SUPs must be creatively discovered, and are thus analogous to a global induc-
tive invariant in standard verification approaches, but with a key difference: a global invariant is
defined in global terms—its domain is system states, structures which containmany node states and
many messages. In contrast, an SUP is defined in local terms—it relates an individual node ID and
effect to an individual node state. Let AState denote the type of a node state in any (distributed)
decision system.

4.2 Verification Conditions for SUPs
The following theorem formalizes local-termed conditions for verifying an SUP (and thus the
update specification based upon it).

Theorem 4.3 (SUP Verification). A replicated update system RS has stable update precondition
Φs if the following verification conditions hold:

Initiation Safety

∀𝑁 ∈ NidRS. ∀𝐸 ∈ EffectRS . ∀𝑆 ∈ AStateRS. ∀𝑉1,𝑉2 ∈ ValRS. ∀𝑓 a ∈ Action.

𝑓 a (𝑁,𝑉1, 𝑆) = ⟨𝑉2, 𝐸⟩ =⇒ ⟨𝑁, 𝐸, 𝑆⟩ ∈ Φs

Racing-State Stability

∀𝑁1, 𝑁2 ∈ NidRS. ∀𝐸1, 𝐸2 ∈ EffectRS . ∀𝑆, 𝑆 ′ ∈ AStateRS.

⟨𝑁1, 𝐸1, 𝑆⟩ ∈ Φs ∧ ⟨𝑁2, 𝐸2, 𝑆⟩ ∈ Φs ∧ 𝑓 hRS (𝐸2, 𝑆) = 𝑆 ′ =⇒ ⟨𝑁1, 𝐸1, 𝑆
′⟩ ∈ Φs

Racing-State Commutativity

∀𝑁1, 𝑁2 ∈ NidRS. ∀𝐸1, 𝐸2 ∈ EffectRS. ∀𝑆, 𝑆 ′1, 𝑆 ′′1 , 𝑆 ′2, 𝑆 ′′2 ∈ AStateRS.

(⟨𝑁1, 𝐸1, 𝑆⟩ ∈ Φs ∧ ⟨𝑁2, 𝐸2, 𝑆⟩ ∈ Φs ∧ 𝑓 hRS (𝐸1, 𝑆) = 𝑆 ′1
∧ 𝑓 hRS (𝐸2, 𝑆 ′1) = 𝑆 ′′1 ∧ 𝑓 hRS (𝐸2, 𝑆) = 𝑆 ′2 ∧ 𝑓 hRS (𝐸1, 𝑆 ′1) = 𝑆 ′′2) =⇒ 𝑆 ′′1 = 𝑆 ′′2

The first condition simply checks that Φs holds for each update at the moment that it is created.
The second condition checks that an update’s precondition is not invalidated if another racing
update is delivered first. We use the same notion here of racing states that we used in Sec. 3.4: a
state that is racing for Φs (when it satisfies Φs for two distinct-origin updates) is also racing, by our
previous definition, for 𝑇 u (RS,Φs). The third condition is the SUP equivalent to our racing-state
commutativity condition on update specifications (Def. 3.18) The ability to commute concurrent
updates is not only useful to ensure consensus safety—it is foundational to how we verify the
stability of Φs, and thus the correctness of 𝑇 u (RS,Φs).
For a SUP Φs verified using Thm. 4.3, the resulting 𝑇 u (RS,Φs) already satisfies racing-state

commutativity. Thus, we achieve consensus safety using one additional condition which ensures
that 𝑇 u (RS,Φs) satisfies decision-monotonicity (Def.3.15).

Corollary 4.4 (Consensus Safety Verification). A replicated update decision system RS, for
which Φs satisfies the conditions of Thm. 4.3, has consensus safety if the following holds:

Decision Monotonicity

∀𝑁 ∈ NidRS . ∀𝐸 ∈ EffectRS . ∀𝑆1, 𝑆2 ∈ AStateRS. 𝑆1 ∈ Φs (𝑁, 𝐸) ∧ 𝑓 hRS (𝑆1) = 𝑆2 =⇒ 𝑆1 ⊑ 𝑆2

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:18 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

Our approach thus generates four verification conditions—all using purely local terms—to estab-
lish the consensus safety of a replicated update system.

4.3 Decidability
To support automated verification, we observe that our verification conditions for consensus safety
can be adapted to fit into the decidable Extended EPR [Taube et al. 2018] fragment of logic. In
this form, the conditions are checked against relational abstractions of a system’s actions (𝑓 a) and
handler function (𝑓 h).

Definition 4.5. The relations 𝑅𝑎 ∈ P(Nid × AState × Val × Effect),
𝑅ℎ ∈ P(Effect × AState × AState), and 𝑅𝑑 ∈ P(AState × AState) abstract RS under the follow-
ing conditions:
(1) 𝑅𝑎 over-approximates the set of actions:

∀𝑓 a ∈ ActionRS . ∀𝑁 ∈ NidRS. ∀𝑆 ∈ AStateRS. ∀𝑉1,𝑉2 ∈ ValRS.

𝑓 a (𝑁, 𝑆,𝑉1) = ⟨𝑉2, 𝐸⟩ =⇒ ⟨𝑁, 𝑆,𝑉1, 𝐸⟩ ∈ 𝑅𝑎 .

Note that 𝑅𝑎 abstracts away the 𝑉2 action output, which is inconsequential to state safety.
(2) 𝑅ℎ over-approximates the handler function:

∀𝐸 ∈ EffectRS. ∀𝑆 ∈ AStateRS. ∀𝑆 ′ ∈ AStateRS. 𝑓
h (𝑁, 𝑆) = 𝑆 ′ =⇒ ⟨𝑁, 𝑆, 𝑆 ′⟩ ∈ 𝑅ℎ .

(3) 𝑅𝑑 under-approximates the decision strength relation:

∀𝑆1, 𝑆2 ∈ EffectRS . ⟨𝑆1, 𝑆2⟩ ∈ 𝑅𝑑 =⇒ 𝑆1 ⊑ 𝑆2.

Extended EPR requires that sorts are stratified, i.e. totally ordered such that a function symbol
𝑓 ∈ 𝐴 → 𝐵 requires 𝐴 > 𝐵, and a quantifier alternation of the form ∃𝐴. ∀𝐵 also requires 𝐴 > 𝐵.

Definition 4.6. We obtain the decidability-friendly verification conditions by modifying the four
conditions given in Thm. 4.2 and Cor. 4.4:
(1) Replace each instance of 𝑓 a (𝑁, 𝑆,𝑉1) = ⟨𝑉2, 𝐸⟩ with ⟨𝑁, 𝑆,𝑉1, 𝐸⟩ ∈ 𝑅𝑎 .
(2) Replace each instance of 𝑓 h (𝐸, 𝑆1) = 𝑆2 with ⟨𝐸, 𝑆1, 𝑆2⟩ ∈ 𝑅ℎ .
(3) Replace each instance of 𝑆1 ⊑ 𝑆2 with ⟨𝑆1, 𝑆2⟩ ∈ 𝑅𝑑 .

Theorem 4.7. If
〈
𝑅𝑎, 𝑅ℎ, 𝑅𝑑

〉
abstracts RS, and the conditions of Def. 4.6 hold for some Φs, then RS

has the consensus safety property.

Of course, the ultimate decidability of the decidability-friendly conditions depends on the inputs—
𝑅𝑎 , 𝑅ℎ , 𝑅𝑑 , and Φs—themselves being sort-stratified. The advantage, compared with traditional
verification conditions on global system states, is that our conditions do not mandate any stratifica-
tion orderings. Intuitively, global states map nodes to their states, and so a verification condition
over a global state would force the ordering 𝑁 > AState. If the condition’s inputs defined a
contradictory ordering 𝑁 < AState, the decidability of the condition would be in question.

Theorem 4.8 (Decidability Friendly). The Def. 4.6 conditions are decidable as long as the
relations 𝑅𝑎 , 𝑅ℎ , 𝑅𝑑 , and Φs, taken together, are in the Extended EPR logic fragment.

In the next section, we discuss our case study, in which we used our tool Super-V to generate
these abstractions. Existing tools such as IVy [Taube et al. 2018] are also suitable to this purpose.
The details of abstracting sequential code in this way are beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:19

5 Case Study: Log Replication
To evaluate the practicality of our new approach, we used the weakly-replicated application
programmingmodel to implement a log consensus algorithmwe call Ferry. Ferry’s behavior (Sec. 5.1)
is extensionally identical to the the well-known Raft algorithm [Ongaro and Ousterhout 2014].
Internally, we leveraged the underlying weak replication model to simplify Ferry’s design compared
to Raft (Sec. 5.2), and we applied our automated verification technique to verify consensus safety
for Ferry using less effort than required for Raft (Sec. 5.3). We compared the runtime performance
of Ferry to that of an industry-strength Raft implementation, and found that Ferry’s design does
not incur any significant performance penalty (Sec. 5.5).

Ferry demonstrates that our replicated application approach provides a significant advantage—a
reduction of verification effort—at no significant cost to performance.

5.1 Safety and Fault-Tolerance
Ferry replicates a growing log of values across a network of nodes. The log is guaranteed to be
append-only: once one node sees a value committed to the log, no other node will see a different
value in its place. To illustrate this property, consider the network of nodes in Fig. 5. If we ignore
𝑁4, then the remaining nodes 𝑁1, 𝑁2, and 𝑁3 satisfy the guarantee: no two nodes contain different
values for the same log index. Node 𝑁4, however, disagrees with nodes 𝑁2 and 𝑁3 on the value at
index 2.

[𝐴]

[𝐴, 𝐵,𝐶]

[𝐴, 𝐵]

[𝐴,𝐶]

𝑁1

𝑁3

𝑁2

𝑁4✓

✓

✓

✓

✗

✗

Fig. 5. A network of nodes holding copies of a
replicated log. Blue check-marks denote agree-
ment, and red cross-marks denote conflict.

Append-only logs make Ferry, like Raft, suitable
to host a replicated state machine, in which nodes
each maintain a copy of a state machine and use
the log as a stream of commands. Nodes apply the
commands to their machines—irrevocably—as the
commands are committed to the log. The append-
only guarantee, called state machine safety in the
context of Raft, ensures that each node’s state ma-
chine follows the same sequence of transitions.
We formalized the append-only property as an

instance of general consensus safety (Sec. 3.1), using
Ferry’s node states as the decisions for which con-
sensus safety must be maintained. Our instantiation
defines node state 𝑆2 to be stronger than or equivalent to state 𝑆1 iff 𝑆1’s committed log is a prefix
of 𝑆2’s committed log. By this definition, two Ferry nodes are in conflict—violating safety—when
they hold committed logs such that one is not a prefix of the other, which is consistent with our
examples of the append-only property in Fig. 5.
Ferry provides the same key fault-tolerance property as Raft: it is always possible to make

progress, i.e., commit entries to the replicated log, as long as a majority of the nodes are functioning
and able to communicate. No distributed consensus algorithm can guarantee progress within a finite
amount of time or number of steps [Fischer et al. 1985], but Ferry, like Raft, uses random timeouts to
make fast progress highly probable. We do not address the formal verification of fault-tolerance or
progress in this paper, but we do empirically evaluate the speed with which Ferry makes progress
in the presence of failures in Sec. 5.5.

5.2 Design and Implementation
To maintain fault tolerance, Ferry nodes must be able to operate concurrently. However, concurrent
additions to the log can violate safety, creating conflicts like the one between 𝑁2 and 𝑁4 in Fig. 5.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:20 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

1𝑏 𝐴 𝐵
𝑁1

1𝑏 𝐴𝑁2

(a) State after 𝑁1 proposes𝐴 and
𝐵. 𝑁2 receives only 𝐴, which it
accepts.

1𝑏

2𝑏

𝐴

𝐶

𝑁2

(b) 𝑁2’s state after appending 𝐶 .

1𝑏

2𝑏

𝐴 𝐵

𝐶

𝑁2

(c) 𝑁2’s state after receiving 𝐵
from 𝑁1.

Fig. 6. Copies of the replicated log at nodes 𝑁1 and 𝑁2. Cyan entries with double border are committed.
Others are proposed but not committed.

To avoid these conflicts, Ferry, like Raft, requires nodes to first propose each new entry to their
peers and commit it to the log only after receiving a quorum of acknowledgments. This ensures
that only one entry can be committed—by any number of nodes—at any one index. Each node
tracks the progress of the proposals it has seen thus far. Unlike Raft, Ferry uses a tree data structure
that leverages weak replicated state to maintain alternative pending proposals side-by-side. We
demonstrate this mechanism in Fig. 6 and Fig. 7, using an example execution of a Ferry cluster with
three nodes: 𝑁1, 𝑁2, and 𝑁3. Initially, node 𝑁1 adds the entry 𝐴 to the log, which is accepted by all
nodes, hence committed. 𝑁1 then proposes 𝐵 as the next entry, but a transient network partition
prevents other nodes from receiving this proposal. At this point, the nodes 𝑁1 and 𝑁2 have the
replicated state copies shown in Fig. 6a. Here, 1𝑏 denotes the branch number, which is analogous
to a term number in Raft. Just like Raft has a unique leader for a term, Ferry has a unique owner
for a branch. The existing entries (𝐴 and 𝐵) are both on branch 1𝑏 , which 𝑁1 owns.
Suppose the network partition continues, and 𝑁2, assuming that 𝑁1 has failed, decides to take

on the role of proposing new entries. To do so, 𝑁2 must take ownership of a new, higher-numbered
branch, by convening an election similar to that described in Sec. 2. Assume 𝑁2 wins this election
and becomes the owner of branch 2𝑏 . 𝑁2 then issues the Propose(1𝑏, 1𝑖 , 2𝑏,𝐶) update, which
initializes the branch 2𝑏 with the entry 𝐶 . The first two arguments, 1𝑏 and 1𝑖 , denote the branch
and index of a previous entry in the log. In this case, 𝐶 is added so that it follows 𝐴—the entry at
0𝑖 index in branch 0𝑏—which is the latest entry that 𝑁2 had seen. The state of 𝑁2 at this point is
shown in Fig. 6b.

1𝑏

2𝑏

3𝑏

𝐴 𝐵

𝐶

𝐷

𝑁1

Fig. 7. The state of 𝑁1 after becoming
owner of 3𝑏 , proposing 𝐷 on 3𝑏 , and
receiving an Accept for 𝐷 from 𝑁3.

Assume that the network partition is repaired and the up-
date Propose(1𝑏, 1𝑖 , 1𝑏, 𝐵), issued by 𝑁1 to propose entry 𝐵, is
finally delivered to 𝑁2. Even though 𝐵 is on the old branch 1𝑏 ,
𝑁2 still adds the entry to its tree. This is because𝐶 has not yet
been majority-accepted, and so 𝐵 could still become part of
the committed log. The state of 𝑁2 at this point is shown in
Fig. 6c. The entry 𝐵 is colored red to show that 𝐵 has been de-
ferred: it is not currently part of 𝑁2’s proposed log—it has been
bypassed by the entry 𝐶 on a higher branch—but it can still
become part of the proposed or committed log in the future
if an entry on a branch higher than 2𝑏 cites 𝐵 as its previous
entry.
Assume that a new network partition now separates 𝑁2 from rest of the cluster, preventing its

peers from receiving its 𝐶 proposal, and that 𝑁1 wins an election in the aftermath to establish

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:21

a new branch 3𝑏 . 𝑁1 now proposes a new entry 𝐷 on 3𝑏 to be included in the log following its
earlier proposal 𝐵, using update Propose(1𝑏, 2𝑖 , 3𝑏, 𝐷). Node 𝑁3 receives the proposal, and accepts
it by responding with Accept(3𝑏, 𝑁3, 3𝑖). Assuming 𝑁1 accepted its own proposal, this gives the
proposal 𝐷 a majority acceptance, leading to 𝐷 and its prior entry 𝐵 being committed (causal
consistency guarantees that wherever 𝐷 is delivered, 𝐵 has also been delivered). The state of 𝑁1 at
this point is as shown in Fig. 7. Observe that 𝐵, which was deferred, is now part of 𝑁1’s committed
log [𝐴, 𝐵, 𝐷]: the path from the tree’s root to the highest-index entry with majority acceptance.
When 𝑁2 eventually receives 𝐷’s Propose and Accept updates, it will adopt the same committed
log [𝐴, 𝐵, 𝐷], and 𝐷 will have bypassed 𝐶 in 𝑁2’s tree. At that point, because 𝐶 has been bypassed
by a committed entry, 𝐶 can no longer become part of any proposed log, and is eligible for garbage
collection.

Comparison to Raft. As described earlier, Ferry’s design is inspired by Raft and adapts it to the
replicated state setting. There are, however, several notable differences.

First, Raft nodes only maintain a linear log of proposals, not a tree. In a Raft execution that follows
similarly to the Ferry example we gave above, 𝑁2 would discard the 𝐵 proposal it received, rather
than store it (deferred) as illustrated in Fig. 6c. For this reason, Raft’s design requires retransmission:
for 𝑁2 to receive the final 𝐷 proposal from 𝑁1, it would need to request that 𝑁1 retransmit the 𝐵
entry. Ferry leverages its underlying causal replication layer to ensure that updates are, eventually,
transmitted once. It then uses the tree structure to save potentially future-relevant entries so that
they do not need to be retransmitted.
Second, Ferry uses its causal delivery assumption to ensure that new branch leaders have seen

all majority-accepted entries on lower branches: to receive the necessary Vote updates from its
voters, a new branch owner must have seen those voters’ pre-existing Propose and Accept updates.
Raft enforces an equivalent requirement by adding explicit metadata—previous-terms and log
indexes—to requests for votes.

Third, Ferry nodes use their own state copies to determine when new entries become committed,
based on the Accept updates that have been broadcast. In contrast, Raft nodes must wait for a
commit notification to be sent directly from the current leader. If the leader has failed, a majority-
replicated entry cannot be considered committed until a new leader has been elected.

Finally, Ferry employs the flexible quorums design [Howard et al. 2017], allowing configurations
that trade faster performance under normal conditions for slower performance under failures—to
our knowledge, Ferry is the first verified consensus implementation that has this feature. To compare
performance in a more straightforward way, we use a Raft-like simple majority configuration in
our Sec. 5.5 experiments.

5.3 Safety Verification
We verified Ferry’s consensus safety—and thus its append-only guarantee—by using Super-V to
instantiate and discharge the verification condition templates of Sec. 4. Compared with existing
projects that have verified Raft, our verification of Ferry required significantly less manual effort
for two reasons. First, the manual artifacts that we had to provide were more concise than those
that have been required for Raft. Second, our instantiated verification conditions fell immediately
into a decidable fragment of logic (Extended EPR)—when automated verification has been used for
Raft, decidability has required the creative definition and verification of auxiliary abstractions.

Concise Artifacts. Verifying Ferry required us to manually discover stable update preconditions
(SUPs) for each of Ferry’s updates (Vote, Propose, and Accept). SUPs are analogous in function
to the global inductive invariants required for traditional verification of distributed systems: they
observe restrictions on a system’s overall behavior that do not follow directly from local context.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:22 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

⟨𝑁𝑢, Vote(𝑏, 𝑁voter, 𝑁cand), 𝑆⟩ ∈ Φs ≜ 𝑁voter = 𝑁𝑢 ∧ 𝑆.votes[⟨𝑏, 𝑁𝑢⟩] = ⊥
⟨𝑁𝑢, (Propose(𝑏old, 𝑖old, 𝑏new, 𝐴)), 𝑆⟩ ∈ Φs ≜

elected(𝑁𝑢, 𝑏new, 𝑆)
∧ ⟨𝑏old, 𝑖old⟩ ∈ 𝑆.tree ∧ ⟨𝑏new, 𝑖old + 1⟩ ∉ 𝑆.tree
∧ (∀ ⟨𝑏, 𝑖⟩ ∈ 𝑆.tree. ⟨𝑏, 𝑖⟩ ⊑𝑆.tree ⟨𝑏old, 𝑖old⟩ ∨ deferred(𝑏, 𝑖, 𝑆))〈

𝑁𝑢, Accept(𝑁accepter, 𝑏, 𝑖), 𝑆
〉
∈ Φs ≜ 𝑁accepter = 𝑁𝑢 ∧ ⟨𝑏, 𝑖⟩ ∈ 𝑆.tree ∧ ¬frozen(𝑁𝑢, 𝑏, 𝑆)

elected(𝑁,𝑏, 𝑆) ≜ | { 𝑁𝑣 | 𝑁𝑣 ∈ 𝑆.voters ∧ 𝑆.votes[⟨𝑏, 𝑁𝑣⟩] = 𝑁 } | ≥ 𝑆.voteQ

deferred(𝑏, 𝑖, 𝑆) ≜ |rejecters| ≥ 𝑆.acceptQ

where rejecters ≜ { 𝑁 | 𝑁 ∈ 𝑆.voters ∧ frozen(𝑁,𝑏, 𝑆) ∧ 𝑆.accepts[⟨𝑏, 𝑁 ⟩] < 𝑖 }
frozen(𝑁,𝑏, 𝑆) ≜ ∃𝑏2 . 𝑏2 > 𝑏 ∧ 𝑆.votes[⟨𝑏2, 𝑁 ⟩] ≠ ⊥

Fig. 8. Stable update preconditions (SUPs) for Ferry. For node state 𝑆 , the field 𝑆.votes maps a branch 𝑏 and
node 𝑁 to the candidate that 𝑁 voted to be owner of 𝑏, or to ⊥ if none. The field 𝑆.accepts maps 𝑏 and 𝑁 to
the index of the latest entry that 𝑁 has accepted on branch 𝑏.

However, SUPs are more concise than global invariants because they only relate individual updates
to individual states.
The SUPs for Ferry are detailed in Fig. 8. The Vote(𝑏, 𝑁voter, 𝑁cand) update, which records a

vote for the owner of branch 𝑏, has the same SUP that was described for the one-shot election
algorithm in Sec. 2. The SUP for Accept(𝑁accepter, 𝑏, 𝑖) is similar, requiring that the origin node is
the accepting node, that the accepted tree location is occupied, and that the node has not already
voted for a higher branch (which represents a promise to stop accepting on lower branches). The
SUP for Propose(𝑏old, 𝑖old, 𝑏new, 𝐴) can be broken down into four conditions. First, the proposing
node (𝑁𝑢) must be the elected owner of 𝑏new. Second, the preceding tree location ⟨𝑏old, 𝑖old⟩ must
be occupied by an entry, and third, the new tree location ⟨𝑏new, 𝑖old + 1⟩ must be unoccupied.

The fourth condition for Propose is the least trivial, requiring that existing entries bypassed by
the new entry are deferred, i.e. cannot be committed directly. The condition ⟨𝑏, 𝑖⟩ ⊑𝑆.tree ⟨𝑏old, 𝑖old⟩
means that ⟨𝑏, 𝑖⟩’s log (the sequence of entries from the root to ⟨𝑏, 𝑖⟩) is a prefix of ⟨𝑏old, 𝑖old⟩’s
log. If that’s not the case, then the new proposed log will be missing some of ⟨𝑏, 𝑖⟩’s entries (for
example, 𝐵 in Fig. 6c), and it is important that those entries cannot concurrently become committed.
The deferred(𝑏, 𝑖, 𝑆) condition ensures this: it requires that a quorum of rejecters have promised,
by voting on a branch higher than 𝑏, to never accept ⟨𝑏, 𝑖⟩.
We simplified Ferry’s SUPs by relying on the following integrity invariant for individual node

states 𝑆 , which we verified to be inductive over SUP-constrained updates:

(∀𝑏, 𝑁 , 𝑖 . 𝑆 .accepts[⟨𝑏, 𝑁 ⟩] = 𝑖 =⇒ ⟨𝑏, 𝑖⟩ ∈ 𝑆.tree)
∧ (∀ ⟨𝑏, 𝑖⟩ ∈ 𝑆.tree. ⟨𝑏, 𝑖⟩ ⊑𝑆.tree head(𝑆.tree) ∨ deferred(𝑏, 𝑖, 𝑆)) .

This condition states that every accept-record corresponds to an existing entry, and every entry
bypassed by the current highest branch has been deferred. Finally, we relied on the following
assumption for configured vote-quorum and accept-quorum sizes, which ensures that every vote-
quorum intersects with every accept-quorum, and that every pair of vote-quorums intersect:

|𝑆.voters| < (𝑆.voteQ + 𝑆.acceptQ) ∧ |𝑆.voters| < (𝑆.voteQ + 𝑆.voteQ).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:23

The symbolic representation of Ferry’s action functions and effect-handler function was derived
automatically from the implementation by Super-V.

Decidability. When instantiated with the symbolic representation of Ferry’s code and with the
manually-discovered SUP artifacts, the resulting verification conditions for consensus safety fall
within Extended EPR: a decidable fragment of logic. This means that we were able to dispatch them
directly to an SMT solver (CVC5 [Barbosa et al. 2022]), and could expect the solver to reliably verify
or falsify them—a crucial feature during the trial-and-error process of identifying the SUPs.

We were able to achieve this immediate decidability because our verification conditions did not
range over complex global system states and execution histories—only over pairs of node states
and updates. Ferry’s node states themselves contain complex structures—maps and trees—but Ferry
uses restricted interfaces to these structures which could be axiomatized without creating sort
cycles. This would not have been possible if we had to accommodate sort edges that were mandated
by the verification condition templates themselves.

In contrast, existing projects that have verified Raft using the traditional verification approach—
induction over global system states—have required additional manual effort to overcome the
undecidability of their initial verification conditions. The approach of Woos et al. [2016] eschewed
automation entirely, requiring the authors to write an immense proof consisting of 50,000 lines
of Coq code. The authors of Taube et al. [2018] recovered decidable automation by manually
developing an abstraction of the global system and then verifying relations between this abstraction
and the components of the concrete system. As a result, they verified their implementation of Raft
using 300 lines of IVy code to define the necessary invariants and manage the ghost-state. To verify
Ferry, we used 110 lines of code in Super-V’s DSL to define the necessary specification and artifacts.
Verifying Ferry takes about 50min using a 2019 Intel Core-i5 laptop.

5.4 Communication Complexity
Ferry’s design gives it a communication complexity that is different from Raft and Paxos. For a leader
election in Raft, 2(𝑛 − 1) messages are sent for 𝑛 nodes: the candidate node sends a RequestVote
message to each of its 𝑛 − 1 peers, and each peer sends a response. In Ferry, 𝑛 + (𝑛 − 1)2 messages
are sent: the candidate broadcasts a Vote update to its 𝑛 − 1 peers, and each peer broadcasts its
own Vote to its 𝑛 − 1 peers. These numbers repeat for the Propose update its Accepts. In practice,
the impact of higher complexity is limited: consensus clusters typically operate 3 or 5 nodes.
Replicated state gives Ferry an advantage when considering communication delays. For Raft, 3

communication delays must pass for the followers to learn that a newly-proposed entry has been
committed: one delay for the leader to broadcast its AppendEntries messages to its followers, one
delay for those followers to send their response messages to the leader, and one delay for the leader
to send a commit notification back to the followers (piggy-backed on the next AppendEntries
request). In contrast, Ferry nodes learn of a committed entry after only 2 communication delays: one
delay for the leader to broadcast its Propose update, and one delay for the followers to broadcast
their Accept updates—to the leader and to one another.

5.5 Performance Evaluation
We sought to evaluate Ferry—as a representative of the general class of consensus algorithms built
on weakly-replicated state—against algorithms based on standard practice. We had two research
questions. RQ1: Does Ferry perform similarly to standard-practice consensus algorithms under
normal network conditions? RQ2: Under failure conditions, is Ferry’s ability to recover similar to
that of standard-practice consensus algorithm?

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:24 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

(a) (b)

Fig. 9. Throughput and fault recovery experiments, comparing Ferry to existing Raft implementations.

To answer RQ1 we deployed two log consensus clusters in a typical deployment environment:
clusters of 5 machines (Intel Xeon Platinum 8380s, 2.30Ghz) co-located in a single datacenter with an
average round-trip communication delay of 0.04ms. One cluster ran Ferry, and the other ran etcd:
a modern, widely used, replicated key-value store that uses Raft to enforce strong consistency [etcd
2024]. Ten client processes on a separate machine made repeated PUT requests (no GETs) of each
cluster. Our hypothesis was that Ferry’s higher message complexity would give Ferry a small
latency overhead, compared to etcd, that would remain constant as the request rate increased.

The results of this experiment, plotted in Fig. 9a, support our hypothesis on low request rates—
Ferry starts with a 1.2ms latency disadvantage—but on high request rates it outperforms etcd,
against our expectations. We do not take these results to suggest that Ferry’s design provides any
fundamental advantage over that of etcd, but we do take them as a positive answer to RQ1: Ferry’s
replicated state basis does not impose any significant performance penalty.

For RQ2, we evaluated Ferry’s ability to recover quickly from leader failure. In this experiment,
which mirrors an experiment presented in the original Raft paper [Ongaro and Ousterhout 2014],
we varied the range of random timeouts that trigger leader elections. For each time range, we
ran 150 elections—for each, we killed the leader node of a cluster and then measured the time it
took for another node to notify the client that it had assumed leadership. Our results (Fig. 9b) are
similar to those reported in the Raft paper, answering RQ2 positively: like Raft, Ferry’s failure
recovery speed is a function of the timeout ranges used. Given the same timeout configuration
parameters, Ferry and etcd have similar 90th-percentile election delays, though Ferry’s delays are
longer (about 10% longer for 150-300ms). However, a smaller fraction of etcd elections are triggered
and completed much more quickly; etcd has an unexpected two-phase curve that is not shared
by Ferry or Ongaro and Ousterhout [2014]. This is probably not desirable behavior: if election
timeouts trigger significantly faster than their configured interval, followers may launch spurious
elections (with associated delays) in between the heartbeats of a functioning leader.

6 Related Work
As implied in Sec. 1, there are two broad categories of related work: verification approaches that
focus on strong replication implementations (i.e. consensus algorithms) and those that focus on
replicated state applications. Notably, there does not exist any prior work that intersects these two
categories as we do: verification of distributed consensus algorithms as replicated state applications.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:25

Verification of Consensus Algorithms. IronFleet [Hawblitzel et al. 2015] is a verification methodol-
ogy for distributed programs based on gradual refinement of specifications to low-level implementa-
tions. In contrast, our verification focuses on high-level implementations of protocols while trusting
a replicated state library/service to correctly handle the low-level concerns. While IronFleet’s
verification extends to liveness properties, we focus only on safety. Verdi [Wilcox et al. 2015] is a
Coq-based verification framework for distributed systems that focuses on abstracting layered fault
models, using transformers. It has been used to verify Raft [Ongaro and Ousterhout 2014], showing
that it acts as a transformer with a linearizability guarantee. Verification is primarily driven by
inductive invariants and proofs are tactic-based with little automation. Consequently, the proof
effort is often prohibitive: Raft verification required a 50,000-line proof [Woos et al. 2016]. Our
approach presents a light-weight alternative that is more amenable to automation. Ivy [Padon et al.
2016; Taube et al. 2018] is a verification tool that focuses on achieving predictable automation by
modularizing implementations such that each module is limited to decidable logic. Their verification
methodology requires identification of system-wide inductive invariants, which we avoid.

Pretend Synchrony [v. Gleissenthall et al. 2019] is a recently proposed verification methodology
for distributed protocol implementations with the express purpose of reducing the size of inductive
invariants. Their proof technique computes a sound synchronization of the protocol, which can
be verified as a sequential program without complex invariants. The synchronization is however
conditional. In particular, their SPCP programming model severely restricts message-broadcast
loops over replica IDs and does not admit the Raft/Multi-Paxos behavior of using one leader election
to drive many successive log proposals.

Verification of Replicated Applications. Gotsman et al. [2016] present a rely-guarantee based
verification framework for replicated state applications. Balegas et al. [2015] describe a static analysis
that discovers concurrency-related bugs in a replicated application and identifies which can be fixed
by strengthening consistency. In both cases, strong consistency is axiomatized to reason about the
safety of applications. In contrast, we reason about the safety of distributed protocols that implement
strong consistency. Bloom [Alvaro et al. 2011] presents a static analysis to identify coordination
points in distributed programs. Bloom is based on the CALM theorem [Ameloot et al. 2013], which
observes that logically monotonic programs do not need coordination to achieve consistency.
Our approach is based on similar intuitions about monotonicity, although we exclusively focus
on verifying programs that perform coordination. Several authors have proposed verification
frameworks for CRDTs [De Porre et al. 2023; Gomes et al. 2017; Liu et al. 2020; Zakhour et al. 2023]
which satisfy strong eventual consistency, only requiring the replicas to eventually agree. In contrast,
our approach verifies consensus, which insists that replicas never conflict.

Augmenting the Network Model. In existing work, the unreliable fault detector [Chandra and
Toueg 1996; Gafni 1998] network model abstraction has been used to ease the verification of
liveness/termination for consensus algorithms. This approach is orthogonal to our own, which
augments the network model using the causal delivery assumption to ease the verification of safety
for consensus algorithms. In practice, Ferry (like Raft) uses election-triggering timeouts to achieve
the probabilistic progress measured in Sec. 5.5. However, we do not address verification of liveness,
and so we have not formalized this timeout mechanism as a unreliable fault detector.

Data-Availability Statement
Our artifact for this paper includes the Super-V verification and runtime system, as well as our
implementation of the Ferry consensus algorithm, which uses Super-V’s embedded language.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

137:26 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

Acknowledgments
Results presented in this paper were obtained using the Chameleon testbed supported by the
National Science Foundation.

References
Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019. Dissecting the Performance of Strongly-Consistent

Replication Protocols. In Proceedings of the 2019 International Conference onManagement of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 1696–1710. https://doi.org/10.1145/3299869.
3319893

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency Analysis in Bloom: a CALM
and Collected Approach. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR 2011, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings. www.cidrdb.org, 249–260. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf

Tom J. Ameloot, Frank Neven, and Jan Van Den Bussche. 2013. Relational Transducers for Declarative Networking. J. ACM
60, 2, Article 15 (may 2013), 38 pages. doi:10.1145/2450142.2450151

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on Causal Consistency. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data (New York, New York, USA) (SIGMOD ’13). ACM, New
York, NY, USA, 761–772. doi:10.1145/2463676.2465279

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa Najafzadeh, and Marc Shapiro.
2015. Putting Consistency Back into Eventual Consistency. In Proceedings of the Tenth European Conference on Computer
Systems (Bordeaux, France) (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages. doi:10.1145/2741948.2741972

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415–442. doi:10.1007/978-3-030-
99524-9_24

Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott. 2014. Riak DT Map: A Composable, Convergent
Replicated Dictionary. In Proceedings of the First Workshop on Principles and Practice of Eventual Consistency (Amsterdam,
The Netherlands) (PaPEC ’14). ACM, New York, NY, USA, Article 1, 1 pages. doi:10.1145/2596631.2596633

Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for reliable distributed systems. J. ACM 43, 2
(March 1996), 225–267. doi:10.1145/226643.226647

Confluent. 2024. Kafka Raft Metadata Mode. https://docs.confluent.io/platform/current/kafka-metadata/kraft.html.
James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander
Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed Database.
ACM Trans. Comput. Syst. 31, 3, Article 8 (aug 2013), 22 pages. doi:10.1145/2491245

Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. 2023. VeriFx: Correct Replicated Data Types for the Masses. In 37th
European Conference on Object-Oriented Programming (ECOOP 2023) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 9:1–9:45. doi:10.4230/LIPIcs.ECOOP.2023.9

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.
In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles (Stevenson, Washington, USA)
(SOSP ’07). Association for Computing Machinery, New York, NY, USA, 205–220. doi:10.1145/1294261.1294281

etcd. 2024. etcd: a distributed reliable key-value store. https://github.com/etcd-io/etcd. Accessed: 2024-10-15.
Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of Distributed Consensus with One Faulty

Process. J. ACM 32, 2 (apr 1985), 374–382. doi:10.1145/3149.214121
Eli Gafni. 1998. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceedings of

the Seventeenth Annual ACM Symposium on Principles of Distributed Computing (Puerto Vallarta, Mexico) (PODC ’98).
Association for Computing Machinery, New York, NY, USA, 143–152. doi:10.1145/277697.277724

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-tolerant
Web Services. SIGACT News 33, 2 (June 2002), 51–59. doi:10.1145/564585.564601

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford. 2017. Verifying strong eventual
consistency in distributed systems. Proc. ACM Program. Lang. 1, OOPSLA, Article 109 (oct 2017), 28 pages. doi:10.1145/

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

https://doi.org/10.1145/3299869.3319893
https://doi.org/10.1145/3299869.3319893
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1145/2450142.2450151
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1145/226643.226647
https://docs.confluent.io/platform/current/kafka-metadata/kraft.html
https://doi.org/10.1145/2491245
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.1145/1294261.1294281
https://github.com/etcd-io/etcd
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/277697.277724
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933

Bolt-On Strong Consistency: Specification, Implementation, and Verification 137:27

3133933
Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’M Strong Enough:

Reasoning About Consistency Choices in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA,
371–384. doi:10.1145/2837614.2837625

Tobias Grieger. 2019. Joint Consensus in Raft. https://www.cockroachlabs.com/blog/joint-consensus-raft/. Accessed: March
1, 2025.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). ACM, New York, NY, USA, 1–17. doi:10.1145/2815400.2815428

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. doi:10.1145/78969.78972

Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2017. Flexible Paxos: Quorum Intersection Revisited. In 20th
International Conference on Principles of Distributed Systems (OPODIS 2016) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 70), Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone (Eds.). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 25:1–25:14. doi:10.4230/LIPIcs.OPODIS.2016.25

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-performance broadcast for primary-backup
systems. In Proceedings of the 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN ’11).
IEEE Computer Society, USA, 245–256. doi:10.1109/DSN.2011.5958223

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2020. Refinement for Structured Concurrent Programs. In Computer
Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I
(Los Angeles, CA, USA). Springer-Verlag, Berlin, Heidelberg, 275–298. doi:10.1007/978-3-030-53288-8_14

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (may 1998), 133–169. doi:10.1145/279227.
279229

Leslie Lamport. 2004. Generalized Consensus and Paxos. Microsoft Research. https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr-2005-33.pdf

Leslie Lamport. 2006. Fast Paxos. Distrib. Comput. 19, 2 (oct 2006), 79–103. doi:10.1007/s00446-006-0005-x
Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou. 2020. Verifying Replicated Data

Types with Typeclass Refinements in Liquid Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 216 (nov 2020),
30 pages. doi:10.1145/3428284

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Dmitry Martyanov. 2020. CRDT in Production. https://www.infoq.com/presentations/crdt-production/. Accessed: March 1,

2025.
Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in Egalitarian parliaments. In

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
Association for Computing Machinery, New York, NY, USA, 358–372. doi:10.1145/2517349.2517350

Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized Verification of CRDTs. In Computer Aided Verification,
Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham, 459–477.

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association,
USA, 305–320.

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos Made EPR: Decidable Reasoning about Distributed
Protocols. Proc. ACM Program. Lang. 1, OOPSLA, Article 108 (oct 2017), 31 pages. doi:10.1145/3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: Safety Verification by
Interactive Generalization. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 614–630.
doi:10.1145/2908080.2908118

Patrick Redmond, Gan Shen, Niki Vazou, and Lindsey Kuper. 2023. Verified Causal Broadcast with Liquid Haskell.
In Proceedings of the 34th Symposium on Implementation and Application of Functional Languages (<conf-loc>,
<city>Copenhagen</city>, <country>Denmark</country>, </conf-loc>) (IFL ’22). Association for Computing Machinery,
New York, NY, USA, Article 6, 13 pages. doi:10.1145/3587216.3587222

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput.
Surv. 22, 4 (dec 1990), 299–319. doi:10.1145/98163.98167

William Schultz, Siyuan Zhou, and Stavros Tripakis. 2021. Brief Announcement: Design and Verification of a Logless
Dynamic Reconfiguration Protocol in MongoDB Replication. In 35th International Symposium on Distributed Computing
(DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 209), Seth Gilbert (Ed.). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 61:1–61:4. doi:10.4230/LIPIcs.DISC.2021.61

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625
https://www.cockroachlabs.com/blog/joint-consensus-raft/
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/78969.78972
https://doi.org/10.4230/LIPIcs.OPODIS.2016.25
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1007/978-3-030-53288-8_14
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1145/3428284
https://www.infoq.com/presentations/crdt-production/
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/3587216.3587222
https://doi.org/10.1145/98163.98167
https://doi.org/10.4230/LIPIcs.DISC.2021.61

137:28 Nicholas V. Lewchenko, Gowtham Kaki, and Bor-Yuh Evan Chang

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and Proving with Distributed Protocols. Proc. ACM
Program. Lang. 2, POPL, Article 28 (dec 2017), 30 pages. doi:10.1145/3158116

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-free Replicated Data Types. In Proceedings
of the 13th International Conference on Stabilization, Safety, and Security of Distributed Systems (Grenoble, France) (SSS’11).
Springer-Verlag, Berlin, Heidelberg, 386–400. http://dl.acm.org/citation.cfm?id=2050613.2050642

KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative Programming over Eventually Consistent
Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 413–424. doi:10.1145/2737924.2737981

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and
Doug Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (Philadelphia,
PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 662–677. doi:10.1145/3192366.3192414

Pedro Teixeira. 2017. Decentralized Real-Time Collaborative Documents - Conflict-free editing in the browser using js-ipfs
and CRDTs. https://ipfs.io/blog/30-js-ipfs-crdts.md.

Klaus v. Gleissenthall, Rami Gökhan Kıcı, Alexander Bakst, Deian Stefan, and Ranjit Jhala. 2019. Pretend Synchrony:
Synchronous Verification of Asynchronous Distributed Programs. Proc. ACM Program. Lang. 3, POPL, Article 59 (jan
2019), 30 pages. doi:10.1145/3290372

Evan Wallace. 2019. How Figma’s Multiplayer Technology Works. https://www.figma.com/blog/how-figmas-multiplayer-
technology-works/. Accessed: March 1, 2025.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). Association
for Computing Machinery, New York, NY, USA, 357–368. doi:10.1145/2737924.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for
Change in a Formal Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,
USA, 154–165. doi:10.1145/2854065.2854081

George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. 2023. Type-Checking CRDT Convergence. Proc. ACM
Program. Lang. 7, PLDI, Article 162 (jun 2023), 24 pages. doi:10.1145/3591276

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 137. Publication date: April 2025.

https://doi.org/10.1145/3158116
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/3192366.3192414
https://ipfs.io/blog/30-js-ipfs-crdts.md
https://doi.org/10.1145/3290372
https://www.figma.com/blog/how-figmas-multiplayer-technology-works/
https://www.figma.com/blog/how-figmas-multiplayer-technology-works/
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3591276

	Abstract
	1 Introduction
	2 Motivation
	2.1 Traditional Verification: Global Inductive Invariant
	2.2 Weakly Replicated State
	2.3 Decomposing Consensus Safety
	2.4 Verification via Stable Update Preconditions

	3 Consensus from Monotonicity and Commutativity
	3.1 General Consensus Safety
	3.2 Replicated Updates
	3.3 Monotonicity
	3.4 Commutativity

	4 Verification via Stable Update Preconditions
	4.1 Stable Update Precondition
	4.2 Verification Conditions for SUPs
	4.3 Decidability

	5 Case Study: Log Replication
	5.1 Safety and Fault-Tolerance
	5.2 Design and Implementation
	5.3 Safety Verification
	5.4 Communication Complexity
	5.5 Performance Evaluation

	6 Related Work
	Acknowledgments
	References

